РазноеРегулятор мощности своими руками: Симисторный регулятор мощности до трёх киловатт своими руками

Регулятор мощности своими руками: Симисторный регулятор мощности до трёх киловатт своими руками

Содержание

Симисторный регулятор мощности до трёх киловатт своими руками

Такой простой, но в то же время очень эффективный регулятор, сможет собрать практически каждый, кто может держать в руках паяльник и хоть слегка читает схемы. Ну а этот сайт поможет вам осуществить своё желание. Представленный регулятор регулирует мощность очень плавно без бросков и провалов.

Схема простого симисторного регулятора



Такой регулятор можно применить в регулировании освещения лампами накаливания, но и светодиодными тоже, если купить диммируемые. Температуру паяльника регулировать — легко. Можно бесступенчато регулировать обогрев, менять скорость вращения электродвигателей с фазным ротором и ещё много где найдётся место такой полезной вещице. Если у вас есть старая электродрель, у которой не регулируются обороты, то применив этот регулятор, вы усовершенствуете такую полезную вещь.
В статье, с помощью фотографий, описания и прилагаемого видео, очень подробно описан весь процесс изготовления, от сбора деталей до испытания готового изделия.


Сразу говорю, что если вы не дружите с соседями, то цепочку C3 — R4 можете не собирать. (Шутка) Она служит для защиты от радиопомех.
Все детали можно купить в Китае на Алиэкспресс. Цены от двух до десяти раз меньше, чем в наших магазинах.
Для изготовления этого устройства понадобится:
  • R1 – резистор примерно 20 Ком, мощностью 0,25вт;
  • R2 – потенциометр примерно 500 Ком, можно от 300 Ком до 1 Мом, но лучше 470 Ком;
  • R3 — резистор примерно 3 Ком, 0, 25 Вт;
  • R4- резистор 200-300 Ом, 0, 5 Вт;
  • C1 и C2 – конденсаторы 0, 05 МкФ, 400 В;
  • C3 – 0, 1 МкФ, 400 В;
  • DB3 – динистор, есть в каждой энергосберегающей лампе;
  • BT139-600, регулирует ток 18 А или BT138-800, регулирует ток 12 А – симисторы, но можно взять и любые другие, в зависимости от того, какую нагрузку нужно регулировать. Динистор ещё называют диак, симистор – триак.
  • Радиатор охлаждения выбирается от величины планируемой мощности регулирования, но чем больше, тем лучше. Без радиатора можно регулировать не более 300 ватт.
  • Клеммные колодки можно поставить любые;
  • Макетную плату применять по вашему желанию, лишь бы всё вошло.
  • Ну и без прибора, как без рук. А вот припой применять лучше наш. Он хоть и дороже, но намного лучше. Хорошего припоя Китайского не видел.



Приступаем к сборке регулятора


Сначала нужно продумать расстановку деталей так, чтобы ставить как можно меньше перемычек и меньше паять, затем очень внимательно проверяем соответствие со схемой, а потом все соединения запаиваем.







Убедившись, что ошибок нет и поместив изделие в пластиковый корпус, можно опробовать, подключив к сети.






Будьте очень внимательны при испытании. Все детали схемы находятся под прямым напряжением сети 220 вольт и прикосновение к ним, является очень опасным.

Если сборка вами проведена правильно, то всё должно заработать сразу. Устройство в регулировке и наладке не нуждается.

Испытание регулятора мощности


Симисторный регулятор мощности сделать самому своими руками

В статье мы расскажем о том, как изготовить симисторный регулятор мощности своими руками. Что такое симистор? Это прибор, построенный на кристалле полупроводника. У него аж 5 p-n-переходов, ток может проходить как в прямом, так и в обратном направлении. Но эти элементы широкое распространение в современной промышленной аппаратуре не получили, так как у них высокая чувствительность к помехам электромагнитной природы.

Также они не могут работать при высокой частоте тока, выделяют большое количество тепла, если производят коммутацию больших нагрузок. Поэтому в промышленной аппаратуре используют IGBT-транзисторы и тиристоры. Но симисторы тоже не стоит упускать из виду – они дешевые, у них маленький размер, а самое главное – высокий ресурс. Поэтому они могут использоваться там, где перечисленные выше недостатки не играют большой роли.

Как работает симистор?

Встретить сегодня симисторный регулятор мощности можно в любой бытовой технике – в болгарках, шуруповертах, стиральных машинках и пылесосах. Другими словами, везде, где есть необходимость в плавной регулировке частоты вращения двигателя.

Регулятор работает как электронный ключ – он закрывается и открывается с определенной частотой, которая задается схемой управления. Когда прибор отпирается, полуволна напряжения проходит через него. Следовательно, к нагрузке поступает небольшая часть минимальной мощности.

Можно ли сделать самому?

Многие радиолюбители изготавливают своими руками симисторные регуляторы мощности для различных целей. С его помощью можно контролировать нагрев жала паяльника. Но, к сожалению, на рынке готовые устройства встретить можно, но довольно редко.

У них низкая стоимость, но часто приборы не отвечают требованиям, которые предъявляются потребителями. Именно поэтому намного проще, оказывается, не купить готовый регулятор, а сделать его самостоятельно. В этом случае вы сможете учесть все нюансы использования прибора.

Схема регулятора

Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:

  1. Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
  2. Динистор с порогом открывания 32 В.
  3. Для регулировки мощности используется переменный резистор.

Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора. Последний при этом открывается, чтобы ток прошел к нагрузке.

Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается прямо пропорциональна сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.

Как работает устройство

Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

В схеме используются такие элементы:

  1. Динистор типа DB3.
  2. Симисторы типа ВТ136-600, ТС106-10-4 и аналогичные с номиналом по току до 12 А.
  3. Полупроводниковые диоды германиевые – 1N4007.
  4. Электролитический конденсатор на напряжение более 250 В, емкость 0,47 мкФ.
  5. Переменный резистор 100 кОм, постоянные – от 270 Ом до 1,6 кОм (подбираются опытным путем).

Особенности схемы регулятора

Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик. В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах. При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.

Подготовительные работы

Для того чтобы собрать симисторный регулятор мощности для электродвигателя, вам достаточно придерживаться такой последовательности:

  1. Сначала нужно определить характеристики прибора, который будет подключаться к регулятору. К характеристикам можно отнести: число фаз (либо 3, либо 1), необходимость в точной корректировке мощности, напряжение и ток.
  2. Теперь нужно выбрать конкретный тип устройства – цифровой или аналоговый. После этого можно осуществить выбор компонентов по мощности нагрузки. В принципе, для моделирования можно использовать специально программное обеспечение.
  3. Рассчитайте тепловыделение. Для этого умножьте два параметра – номинальный ток (в Амперах) и падение напряжения на симисторе (в Вольтах). Все эти данные можно найти среди характеристик элемента. В итоге вы получите мощность рассеяния, выраженную в Ваттах. Исходя из этого значения, нужно выбрать радиатор и кулер (при необходимости).
  4. Закупите все необходимые элементы или подготовьте их, если они у вас имеются.

Теперь можно приступить непосредственно к сборке устройства.

Сборка регулятора

Прежде чем собрать по схеме симисторный регулятор мощности, нужно выполнить ряд действий:

  1. Осуществите разводку дорожек на плате и подготовьте площадки, на которых нужно установить элементы. Заранее предусмотрите места для монтажа симистора и радиатора.
  2. Установите все элементы на плате и припаяйте их. В том случае, если у вас нет возможности сделать печатную плату, допускается использование навесного монтажа. Провода, которыми соединяются все элементы, должны быть как можно короче.
  3. Обратите внимание на то, соблюдена ли полярность при подключении симистора и диодов. Если отсутствует маркировка, прозвоните элементы мультиметром.
  4. Проверьте схему, используя мультиметр в режиме измерения сопротивления.
  5. Закрепите на радиаторе симистор, желательно использовать термопасту для лучшего контакта поверхностей.
  6. Всю схему можно установить в пластиковом корпусе.
  7. Установите в крайнее левое положение ручку переменного резистора и включите прибор.
  8. Измерьте значение напряжения на выходе устройства. Если вращать ручку резистора, напряжение должно плавно увеличиваться.

Как видите, изготовленный своими руками симисторный регулятор мощности – это полезная конструкция, которую можно использовать в быту практически без ограничений. Ремонт этого устройства копеечный, так как себестоимость довольно низкая.

простые самодельные схемы для повторения

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками.

Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Регулятор напряжения для тена от 1 до 6 кВт

Регулятор напряжения в электрических цепях, служит для изменения мощности, подаваемой в нагрузку. С помощью регулятора напряжения можно управлять скоростью вращения электродвигателей, уровнем освещенности и нагревательными приборами такие как паяльник, электрическая плитка, тэн. В радиомагазинах можно купить готовое изделие но сделать регулятор напряжения своими руками не сложно.

В процессе самогоноварения выяснилось что на газу процес нагревания браги происходит достаточно долго (около 2-х часов) и к тому же, неудобно регулировать процесс дистилляции браги, газовой плиткой. В следствии чего возникла острая необходимость в модернизации самогонного(дистиллятного) аппарата, врезкой в него электрического нагревателя. Изначально задумывалось, что тен будет ставится мощностью 3 kW но в дальнейшем передумали и уменьшили до 2500 ватт. Далее нам понадобилась регулировка напряжения для управления процессом дисциляции, её мы решили изготовить своими руками, благо схем в общем доступе полно, они простые, минимум деталей и изготовление много времени не занимает.

Схема регулятора напряжения на 220 вольт

  • Рисунок 1. Схема.

Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.

  • Рисунок 2. Схема с вольтметром.

Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.

Детали для схемы:

1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.

2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.

3.Динистор DB3 у него нет полярности припаиваем как хотим.

4.Резистор 10 кОм.

5.Конденсатор керамический 0,1 мкФ.

Изготовление схемы

  • Рисунок 3. Схема в моем исполнение.

Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).

И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.

  • Рисунок 4. Схема регулятора мощности в моем исполнение.

Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.

  • Рисунок 5. Регулировка с пылесоса.

Также можно заказать с сайта Алиэкспресс вот несколько вариантов. 1 вариант, 2 вариант по заверению китайца способен держать 5 кВт, 3 вариант в красивом корпусе с вольтметром, 4 вариант.

Как происходит процесс регулировки напряжения в дистилляторном аппарате.

На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.

Регулятор напряжения

Тиристорный регулятор мощности. Изготовление регулятора мощности на симисторе своими руками

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление . Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях . Именно поэтому он используется в сетях переменного тока.

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г .

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1. 3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 — к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 — СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 — К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2…4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г — другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150…250, у VT2 — 250…270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50…100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300…600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1. 1. Его особенностью является появление высокого уровня (логической «1») на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня («О») при совладении входных сигналов. В результате этого «Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух «1» (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме — родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 — СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа — К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт — никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками , на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания и т. д.) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров , применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.

Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах .

Плюсы и минусы использования симисторов

Среди основных преимуществ можно назвать следующие:

  • минимальная стоимость прибора;
  • длительный срок эксплуатации;
  • возможность избежать механических контактов.

Есть и недостатки:

  • чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
  • симистор очень чувствителен к переходным процессам;
  • нет возможности использовать на больших частотах;
  • реагирует на посторонние помехи и шумы.

Особенности применения в электроприборах

Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:

  • осветительные приборы, которые можно регулировать;
  • бытовые строительные электроинструменты;
  • нагревательные приборы;
  • приборы с наличием компрессора;
  • стиральные машины , пылесосы, вентиляторы, фены.

Как сделать регулятор мощности своими руками

Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.

Для паяльника

Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.

Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.

Варианты схем

Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.

Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.

Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.

Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.

Настройка устройства

Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.

Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.

Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.

Видео: изготовление симисторного диммера

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.


Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.


Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.


Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.


Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.


Простой регулятор мощности для пылесоса своими руками

Простой регулятор мощности для пылесоса своими руками

Регулятор напряжения на симисторе своими руками

Простой регулятор мощности 3,5 кВт

Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка). Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic. При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей. Фото схема регулятора для бесколлекторных двигателей. В данной схеме есть две части одна логическая, где на микросхеме расположен микроконтроллер, а вторая силовая. В основном такая электрическая схема используется для мощного электрического двигателя. : регулятор оборотов электродвигателя с ШИро V2. Как сделать самодельный регулятор оборотов двигателя. Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена. Что-то не так? Пожалуйста, отключите Adblock. Портал существует только за счет рекламы, поэтому мы были бы Вам благодарны простой регулятор мощности для пылесоса если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо. Как добавить наш сайт в исключения AdBlock.

Регулятор для двигателя переменного тока На основе мощного симистора BT138-600, можно собрать схему регулятора скорости вращения двигателя переменного тока. Эта схема предназначена для регулирования скорости вращения электродвигателей сверлильных машин, вентиляторов, пылесосов, болгарок и др. Скорость двигателя можно регулировать путем изменения сопротивления потенциометра P1. Параметр P1 определяет фазу запускающего импульса, который открывает симистор. Схема также выполняет функцию стабилизации, которая поддерживает скорость двигателя даже при большой его нагрузке. Принципиальная схема регулятора электромотора переменного питания Например, когда мотор сверлильного станка тормозит из-за повышенного сопротивления металла, ЭДС двигателя также уменьшается. Это приводит к увеличению напряжения в R2-P1 и C3 вызывая более продолжительное открывание симистора.

Подборка схем и описание работы регулятора балончика мощности на симисторах и не только. Схемы симисторных регуляторов. Мотор задёргался, но не включился, тогда простой регулятор мощности для пылесоса я вместо 30 поставил 150 Ом, мотор заработал, при. Стабильный регулятор мощности своими руками, в статье описана конструкция простого симисторного регулятора мощности для управления лампами накаливания и светодиодными лампами, рассчитанными на управление с помощью диммеров. Так же рассказано об опыте ремонта фабричных диммеров производства компании Leviton. Близкие темы, собери простой регулятор мощности для паяльника за час. Как за час сделать импульсный блок питания из сгоревшей лампочки? Пролог, я уже описывал конструкцию самого простого регулятора мощности для паяльника. Некоторые радиолюбители приспособили этот регулятор напряжения для управления яркостью осветительных ламп. При правильном подборе элементов, регулятор позволяет управлять мощностью ламп накаливания и даже оборотами асинхронных свадебного двигателей, но всё же не так хорошо. Регулятор Мощности Для простой регулятор мощности для пылесоса Пылесоса. Нужна Помощь. — Регуляторы мощности, диммеры — Форум по радиоэлектронике. Перейти к содержимому.

Радиотехника, электроника и схемы своими руками Простой регулятор мощностиОписываемый регулятор мощности позволяет регулировать мощность подключаемой.

Плавная работа двигателя, без рывков и скачков мощности это залог его долговечности. Для контроля этих.

LA 0:19Ничего не нужно менять, проверено на нагрузке в 800Вт. Юрий 23:16Что нужно изменить с вашей схеме, чтобы можно было подключить нагрузку, в виде лампы мощностью в 800-900вт. Ais 22:13Спасибо за статью — буду делать. Пользовательские теги: регулятор мощности мощние електронки Что это? Дальше в разделе радиотехника, электроника и схемы своими руками: Регулируемый блок питания для лаборатории, схема и описание блока питания с регулируемым выходным напряжением, имеющим два диапазона. Максимальное напряжение — 60 вольт.

В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1.

Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3. Регуляторы мощности для паяльника, подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю. Регулятор мощности комбинированного типа, комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого. Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений. Регулятор мощности на.

http://business-planet.ru

Регулятор мощности на симисторе | Радиобездна

Всем привет. Настала очередь очередной электронной самоделки. Сегодняшняя статья будет посвящена симисторному регулятору мощности.

На страницах своего сайта я неоднократно публиковал разные тиристорные регуляторы мощности, например такой или такой. Тиристорные и симисторные регуляторы мощности имеют большую популярность, так как в изготовлении они очень просты и не требуют большого количества радиодеталей. Хоть и эти два полупроводниковых прибора имеют сходное назначение, регулировать мощность нагрузки, имеют разное устройство. Так тиристор способен пропускать ток через себя только в одном направлении, в тоже время симистор может работать в цепях переменного тока. Поэтому чтобы собрать регулятор мощности на тиристоре, в схему нужно будет добавить диодный мост, благодаря которому ток через тиристор будет двигаться в одном направлении. Главное достоинство симисторного регулятора мощности в том, что он может пропускать ток в обоих направлениях, поэтому его можно применять бес мощных силовых диодах.

Ну, давайте же перейдём к самому устройству, рассмотрим принципиальную схему регулятора мощности на симисторе.

Схема регулятора мощности на симисторе

Схема симисторного регулятора очень проста, содержит менее десяти распространённых радиодеталей. Готовое устройство практически не нуждается в настройке и после правильного монтажа начинает работать сразу:

Основным регулирующим элементом схемы является симистор BTA16. Этот симистор способен  регулировать ток активной нагрузки мощностью до 3 кВт. Если требуется больше, нужно воспользоваться симистором большей мощности, например BTA25 с соответствующим радиатором охлаждения. Также в схеме используются корректирующие радиодетали: два резистора, один подстроечный резистор, один переменный, два конденсатора, один динистор.

Давайте более подробно рассмотрим устройство симисторного регулятора мощности.

Диммер своими руками, регулятор мощности на симисторе

Регулятор мощности не имеет дефицитных радиодеталей. Большинство из них можно выковырять из неисправного старого телевизора или любой другой бытовой техники. Например, динистор VD1 можно извлечь из неисправной энергосберегающей лампы. 

Детали устройства:

  • Симистор BTA16 или подобный
  • Резистор 100 Ом 1 Ватт
  • Резистор 4,7 килоом
  • Подстроечный резистор 2 мегаом
  • Переменный резистор 500 килоом
  • Конденсатор 0,1 микрофарад 300 Вольт 2 штуки
  • Динистор DB3

Чтобы упростить изготовление диммера своими руками, можно воспользоваться навесным монтажом. Что вполне приемлемо, так как количество деталей небольшое. Но гораздо проще приобрести симисторный регулятор мощности на известном китайском интернет-магазине, так как стоимость данного устройства невелика.

Все компоненты устройства расположены на печатной плате, выполненной из стеклотекстолита:

Симистор расположен хоть и не на большом, но достаточно эффективном радиаторе охлаждения, выполненном из алюминия:

Большинство элементов находятся в центре печатной платы и располагаются достаточно компактно:

Подстроечный резистор R4 расположен с краю печатной платы:

Напротив расположены две клеммные колодки для подключения в цепь. Чтобы не перепутать правильность подключения устройства, имеются соответствующие надписи:

Основной орган регулировки резистор R3 расположен на металлическом кронштейне, который обеспечивает необходимую надёжность готового изделия:

Готовое устройство получилось достаточно компактным, благодаря чему его можно использовать для регулировки практически любой активной нагрузки: лампы накаливания, нагревательные элементы, тэны:

Настройка симисторного регулятора мощности заключается в регулировке подстроечного резистора R4. При помощи него производится некоторая настройка устройства. Заключается она в следующем. Нужно движок переменного резистора R3 переместить в крайние положение, тем самым убавив регулятор на минимум, и подстраивая подстроечный резистор R4 добиться минимальной мощности отдаваемой в нагрузку. Основная настройка будет завершена. Если устройство собрано правильно, симисторный регулятор сразу начнёт работать.

При настройки устройства не забываем о безопасности.

Внимание! Будьте внимательны, эта самоделка не имеет трансформатора, поэтому некоторые радиодетали  могут находиться под высоким потенциалом сети. Будьте осторожны при настройке регулятора мощности.

Как я уже говорил, рассматриваемая самоделка подходит для регулировки мощности устройств,  имеющих активное сопротивление. Для регулировки бытовых приборов имеющих реактивное сопротивление, например, таких как пылесос, я рекомендую использовать регулятор мощности на тиристоре, который я использую уже не один год, для регулировки оборотов пылесоса.

На этом я буду завершать своё повествование. Надеюсь, данная статья поможет вам в самостоятельном изготовлении симисторного регулятора мощности. До новых встреч. Всем пока.

Как сделать схемы регулятора напряжения

Регулятор напряжения — это устройство, используемое для преобразования колеблющегося напряжения на его входе в определенное и стабильное напряжение на его выходе. Регуляторы напряжения могут быть механическими, электрическими, переменного или постоянного тока. В этой статье мы рассмотрим электронные линейные регуляторы постоянного тока.

Применение регуляторов

Для большинства схем требуется постоянное напряжение питания, не зависящее от потребляемого тока. Даже небольшое перенапряжение может оказаться разрушительным, поэтому следует использовать регуляторы.Но регуляторы также очень помогают в устранении сетевого шума в аудиоусилителях. В генераторах сигналов или генераторах выходная частота зависит от напряжения питания и также должна быть хорошо отрегулирована, чтобы поддерживать ее постоянной.

Типы регуляторов

Существует три основных класса или типа регуляторов: положительные регуляторы с положительным входным напряжением, отрицательные регуляторы с отрицательным входным напряжением, сдвоенные регуляторы напряжения, , которые представляют собой наборы обоих, например.g., схема операционного усилителя и, наконец, регулируемые регуляторы , где может присутствовать любой из вышеперечисленных, но иметь ручку управления для изменения выходного напряжения по требованию.

Простой регулятор Зенера r

Зенеровский диод — это тип диода, который при подключении в конфигурации с обратным смещением (см. ниже) начинает «пробиваться» или проводить ток при определенном напряжении, называемом напряжением Зенера. Как только он начинает проводить, ток не останавливается, поэтому резистор (R1 показан ниже) должен ограничивать ток до безопасного значения.

В приведенном выше простом регуляторе Vin равно 12 В, Vout равно 5 В, а I равно 10 мА. Без стабилитрона R1 это было бы R=V/I = 12-5/0,01 = 700 Ом. Однако регулирования не будет, так как Зенер не будет дирижировать. Используя эмпирическое правило, стабилитрон должен проводить в два-пять раз больше тока нагрузки, скажем, 50 мА. Учитывая это, должно быть I = 50 + 10 = 60 мА, поэтому R1 = 7/0,06 = 116 Ом.

Проблема, однако, в том, что рассеиваемая мощность на резисторах R1 и D1 при больших токах нагрузки будет чрезмерной.А вот это вполне подходящая схема для преобразования уровней сигналов, скажем, 5В вниз в 3,3В модули.

Стабилитрон в качестве эталона и транзистор Q1

Здесь мы использовали стабилитрон в качестве эталона и транзистор Q1 в качестве последовательного стабилизатора, выполняющего тяжелую работу. Резистор R2 обеспечивает смещение для включения транзистора Q1 и подачи гораздо меньшего тока через стабилитрон D2. Если Vout равно 5 В, к этому будет добавлено падение напряжения база-эмиттер 0,6 В, поэтому D2 должно быть 5,6 В (обычно доступно), а R2 теперь должен обеспечивать ток коллектора / hfe транзистора (скажем, 1000).Для источника питания 1 А, 1/1000 10 мА, R2 = 12-5,6/0,01 = 640 Ом плюс немного тока для стабилитрона, скажем, 560 Ом.

Но это все равно много тока тратится на нагрев стабилитрона. Итак, теперь мы добавили Q5 и сеть обратной связи от Vout, чтобы обеспечить полезную схему:

D4 больше не критичен и может быть любым в диапазоне от 1В до 4В и регулируемым. Поскольку Vout пытается превысить напряжение базы/эмиттера Q5 +0,6 + D4, он начинает отбирать ток у базы Q4, стабилизируя напряжение. R6 теперь может быть более значительным значением и не критично, так как 1k подойдет. R7 и R8 также обеспечивают более легкую регулировку.

Давайте сделаем еще один шаг вперед и добавим защиту от перегрузки по току:

Падение напряжения на D6 и D7 всегда будет 0,6 + 0,6 = 1,2 В, а Vbe Q6 также равно 0,6 В. Например, если мы тщательно выбираем R14, чтобы он соответствовал точке, в которой мы хотим предотвратить перегрузку по току, скажем, 2 А, как только V на R14 = 1,2 В, D6 и D7 отнимут ток у базы Q6, не допуская дальнейшего тока питания более 2 А. .

Следовательно, R14 = 1,2/2 = 0,6 Ом. Но есть еще одно улучшение, которое мы можем сделать, чтобы предотвратить большие токи в диодах.

Заменены диоды на Q9. Все, что ему нужно, это 0,6, чтобы включить его и вызвать ограничение тока. Для 2А это будет R19 = 0,6/2 = 0,3 Ом.

Регулятор постоянного напряжения

Здесь у нас есть простота трехполюсного стабилизатора с фиксированным напряжением. ИС стабилизаторов напряжения серии LM78xx выпускаются с несколькими различными напряжениями.Например, LM7812 выдает 12 В, LM7809 выдает 9 В, а LM7805 выдает 5 В.

С4 и С10 не следует путать со сглаживающими конденсаторами. Они предназначены для шума и стабильности и должны иметь низкое ESR (эквивалентное последовательное сопротивление). C4 обычно 10 мкФ, а C10 1 мкФ. Обратите внимание, что диод D9 должен разряжать любую большую емкость нагрузки в обратном направлении, чтобы предотвратить обратное смещение регулятора, когда вход становится низким.

Регулируемый регулятор напряжения

И, наконец, мы подошли к концу эволюции с регулируемым трехвыводным стабилизатором — знаменитым стабилизатором напряжения LM317 и его отрицательным аналогом — отрицательным стабилизатором напряжения LM337.

C2 для шума и может быть 1 мкФ. Соотношение R20 и R23 задает выходное напряжение. Это могут быть два постоянных резистора или регулируемый потенциометр. В даташите R20 указано как нестандартное 240 Ом, но если сделать его стандартным 220 Ом, то для любого напряжения между V max и V min, R7 = (176*V out ) – 220.

Так что, если вы хотите 9 В, R23 может быть фиксированным значением, то есть 176 * 9 — 220 = 1 кОм. Обратите внимание, что, поскольку внутреннее опорное напряжение составляет 1,25 В, что является самым низким значением, которое может обеспечить регулятор, ему также требуется не менее 2 В между входом и выходом, а максимальное напряжение составляет 32 В, поэтому он может обеспечивать регулировку от 1.от 2В до 30В. Сделать R23 10k.

Мощность, рассеиваемая регулятором, составляет (Vin-Vout )* Iout. Таким образом, для входа 12 В и выхода 5 В при 1 А мощность составляет (12-5) * 1 = 7 Вт. Это нелогично, но это означает, что регулятор рассеивает большую часть мощности, когда он установлен на самое низкое выходное напряжение.

Если вы будете брать с регулятора более 1А или он слишком горячий, чтобы его можно было держать пальцами, ему нужен радиатор. Вы можете попробовать установить его на корпус алюминиевой коробки, которую вы используете, или установить на кусок плоского алюминия или, что еще лучше, на подходящий радиатор и угадать размер.Вы должны быть в состоянии удобно держать регулятор, не обжигая при этом руку или пальцы.

Не забудьте оставить комментарий ниже, если у вас есть какие-либо вопросы!


Почему вы должны использовать линейный регулятор напряжения

Регуляторы напряжения

являются неотъемлемой частью многих проектов, требующих стабильного входного напряжения. Их работа состоит в том, чтобы взять нестабилизированное входное напряжение и вывести регулируемое напряжение , с единственной загвоздкой в ​​том, что входное напряжение должно быть выше, чем выходное напряжение.Если у вас есть проект в работе, который требует определенного напряжения, вот несколько вариантов, которые вы можете рассмотреть:

Фиксированное напряжение — LM78XX

Микросхемы линейного регулятора напряжения серии LM78XX чрезвычайно популярны, и на то есть веские причины. Они дешевы, просты в использовании, требуют нескольких дополнительных компонентов и имеют встроенную защиту цепи от слишком большого тока. Существуют разные модели для вывода разного напряжения, и последние две цифры в номере модели обозначают их выходное напряжение.Например, LM7805 выдает 5 вольт, LM7810 выдает 10 вольт, а LM7824 выдает 24 вольта.

Фиксированное напряжение – стабилитрон

Вы уже на полпути к своему проекту и только что поняли, что у вас закончились интегральные схемы линейного регулятора. Что ты можешь сделать? Если у вас есть нужный стабилитрон напряжения и силовой транзистор, вы можете сделать свой собственный стабилизатор постоянного напряжения, используя принципиальную схему выше. Выходное напряжение будет на 0,6 В ниже напряжения стабилитрона диода из-за падения напряжения база-эмиттер на транзисторе.

Переменное напряжение — LM317

Когда вам нужно настроить выходное напряжение регулятора напряжения, вам подойдет LM317. Он очень похож на серию LM78XX, за исключением того, что у него есть регулировочный штифт для изменения выходного напряжения. Добавив в схему потенциометр, вы можете использовать его для управления скоростью вращения вентилятора или источниками питания с регулируемым напряжением.

Примечание по радиаторам

Чем больше падение напряжения на регуляторе напряжения, тем больше тепла будет рассеиваться через компонент.Чтобы он не сгорел, обязательно используйте радиатор!

Как установить регулятор напряжения генератора

Регулятор напряжения генератора необходим для поддержания постоянного напряжения в генераторе переменного или постоянного тока. Во время работы двигатель внутри генератора работает с разной скоростью в зависимости от мощности, которую необходимо произвести. Перегруженный двигатель может нагреваться и создавать скачки напряжения, которые могут нанести ущерб генератору. Регулятор напряжения в основном используется в автомобилях для защиты аккумулятора от перезарядки и выхода из строя.

Шаг 1. Проверка генератора

Прежде чем устанавливать регулятор, проверьте, работает ли ваш генератор. Также проверьте состояние аккумулятора, так как он является неотъемлемой частью системы. Проводка между генератором, регулятором и аккумулятором часто подвержена коррозии, которую можно удалить мелкой наждачной бумагой. Прежде чем отсоединять какие-либо провода от их соединения, пометьте их, чтобы их можно было снова подключить. Генератор должен быть поляризован перед проверкой регулятора. Подсоедините положительную клемму аккумулятора к якорю генератора, чтобы поляризовать его.Извлеките аккумулятор после этого шага. Хотя в некоторых руководствах говорится, что регулятор должен быть поляризован, на самом деле это просто означает генератор, поскольку регуляторы не чувствительны к полярности.

Шаг 2. Выберите регулятор

Убедитесь, что используемый вами регулятор подходит для генератора. Величина напряжения, которое вырабатывает ваш генератор, должна находиться в диапазоне, которым может управлять регулятор. Популярный диапазон для регулятора составляет от 6 до 12 вольт. Большинство регуляторов имеют маркировку силы тока и напряжения для облегчения идентификации.Не думайте, что чем выше напряжение, указанное на регуляторе, тем лучше для вашего генератора и аккумулятора. Если у вас есть внутренний регулятор, это означает, что ваш регулятор установлен внутри генератора переменного тока, и его нельзя снять или заменить. Если регулятор неисправен, вам нужно будет переустановить весь генератор.

Шаг 3. Знакомство с генераторами переменного тока и проводкой регуляторов

Хотя большинство генераторов переменного тока имеют встроенный регулятор, некоторые из них имеют внешний регулятор.Клемма заземления аккумулятора должна быть отключена перед работой с генератором или регулятором. Регулятор будет иметь три провода. Вам нужно будет подключить два меньших провода к генератору. Генератор обычно имеет маркировку с надписью F и R. Подсоедините F к отметке 1 на регуляторе, а R к отметке 2. Иногда на маркировке генератора и регулятора написано 1 и 2, или вместо этого на регуляторе написано F и R генератора. Просто запомните соответствующие соединения.Подсоедините большой провод к аккумулятору. Убедитесь, что проводка при любых обстоятельствах выполнена правильно, так как любое неправильное соединение может повредить ваш регулятор и генератор.

Шаг 4. Знакомство с проводкой генераторов постоянного тока и регулятора

В этой системе нужно позаботиться только о трех основных проводах: автоматическом выключателе, регуляторе тока и регуляторе напряжения. Подсоедините провод F вашего регулятора к полевому проводу генератора, подключите A к якорю генератора и подключите BATT к положительной клемме аккумулятора.BATT обычно коричневый/желтый, F — желтый/зеленый, а A — в основном коричневый (имейте в виду, что эти цвета могут меняться в зависимости от марки устройства).

Самодельный дискретный и простой регулятор напряжения — DIY

от Toli

Некоторое время назад я довольно много экспериментировал со старинными аудиоусилителями/ресиверами, и во многих из них я улучшал блок питания для слаботочных каскадов дифференциального усилителя. Это всегда была простая и дешевая задача, которая стоила потраченного времени, когда дело дошло до звука.Желая «сделать это по-другому», я не хотел использовать для этого микросхему, а предпочел использовать дискретную, но простую конструкцию. Схема, которую я придумал, очень хорошо подходила для таких приложений, и поэтому я решил, что было бы неплохо сделать из нее независимую плату регулятора для общего использования в аудиоустройствах, которые я создаю. В то время у меня также был ограниченный опыт проектирования печатных плат, так что это казалось отличным проектом для начала. Нет лучшего способа научиться, чем просто попробовать.

Рис. 1. Схема регулятора минимального напряжения Toli

Простейшая форма регулятора показана на рис. 1. Это старые схемы, которые я нарисовал в TinyCAD до использования KiCAD, и поэтому они выглядят не так красиво, как схемы на моих более поздних схемах. Схема довольно проста, но отличается от большинства регуляторов напряжения. В отличие от большинства регуляторов, в которых доступно явное опорное напряжение, а затем оно буферизуется усилителем ошибки и проходными транзисторами, в этой схеме используется другой механизм. «Опорным» напряжением в этом случае является VGS, необходимое для того, чтобы M3 пропускал ток, обеспечиваемый J2. Все компоненты слева от J2 представляют собой не более чем двухполупериодный выпрямитель и конденсатор объемного фильтра. J2 в этом случае работает в режиме насыщения и поэтому действует как источник постоянного тока (CCS). Этот ток заряжает узел затвора M2, что, в свою очередь, приводит к высокому уровню выходного узла. Это приводит к тому, что узел затвора M3 поднимается, и M3 проводит ток J2 в узел заземления. Равновесное состояние наступает, когда ток M3 равен току J2.Следовательно, выходное напряжение можно описать как:

VOUT(DC)=VGS(M3)*Ra+RbRb

Это (часть регулятора, без выпрямителя) схема, которую я не раз использовал в качестве локальных регуляторов в винтажных усилителях. Его можно построить на небольшой сборной доске и разместить рядом с точкой нагрузки. Тот факт, что его точное значение выходного постоянного тока не определяется перед измерением (из-за вариаций VTH M3), не имеет большого значения в аудиоприложениях. Тем не менее, это довольно хороший регулятор с очень низким уровнем шума.

Однако при использовании его в качестве автономного регулятора линейное регулирование имеет гораздо большее значение. Одной частью схемы, которая ухудшает стабилизацию линии в этой схеме, является чувствительность J2 к изменениям напряжения на нем. Поэтому, чтобы улучшить это, можно несколько модифицировать схему по рис. 2. В этой схеме J2 больше не работает напрямую от выпрямленного напряжения. Вместо этого используется стабилитрон D5, чтобы обеспечить J2 чистым питанием. J1 снова используется как CCS для ограничения изменений тока через стабилитрон.Очевидно, J1 должен поддерживать ток J2 и стабилитрона. Поскольку теперь у нас есть дополнительное напряжение, которое несколько выше, чем на затворе M2, мы можем использовать его для управления затвором дополнительной NMOS, M1. Он может действовать как каскод для M2, ограничивая вариации VDS по нему и дополнительно улучшая регулирование линии. Эта модифицированная схема, очевидно, достигается за счет увеличения требований к запасу по запасу стабилизатора (Vin-Vout необходим для правильной работы).

Рис. 2. Улучшенная стабилизация линии

Возможный компромисс между ними (большой запас мощности и хорошая стабилизация линии переменного тока) может быть достигнут путем замены этих дополнительных устройств простым фильтром нижних частот (ФНЧ), как на рис.3.

Рис. 3. ФНЧ для уменьшенной пульсации 100 Гц/120 Гц

Однако я хотел посмотреть, как далеко я могу продвинуть эту базовую схему, расширив схему вокруг нее, чтобы обеспечить дополнительную функциональность. Некоторые из вещей, которых я надеялся достичь, — это снижение требований к запасу без ущерба для производительности, а также некоторая базовая форма ограничения тока. Я предпочитаю не создавать схемы, в которые не включены какие-либо ограничения по току, просто в качестве меры минимизации ущерба в случае возникновения какой-либо проблемы.После пары итераций я пришел к схеме рис. 4, которую благосклонно назвал «ТолиРег» 🙂

Рис. 4. Окончательная версия регулятора напряжения (ToliReg)

. Эта схема имеет немного больше деталей и на самом деле не соответствует первоначальному замыслу «сделать ее как можно более простой», но предлагает немного больше. функциональность. Обозначение устройства было изменено по сравнению с первой схемой, но по-прежнему легко узнать тот же механизм, который устанавливает выходное напряжение. M1 теперь является устройством обратной связи (усилитель ошибки), а M2 — проходным транзистором.Raa был добавлен в качестве дополнительной подстройки выходного напряжения, чтобы сделать его менее чувствительным к параметрам M1. CCS теперь реализован с использованием CRD1 (который все еще может быть JFET, что и является CRD). Однако для снижения требований к запасу этот ток поступает не напрямую, а через токовое зеркало, состоящее из транзисторов Q5/Q6. Q7 используется как каскод для Q6, чтобы ограничить тепловые различия между Q5/Q6. D6 нужен только для того, чтобы обеспечить смещение базы Q7.
Чтобы обеспечить достаточное питание для этой схемы смещения, используется LPF (R1 и C4), буферизованный транзистором Q4 в качестве умножителя емкости.D5/C3 действуют как схема «удержания пика», что является очень эффективным дополнением. При использовании этой топологии допускается значительное падение напряжения на конденсаторе большой емкости без влияния на работу усилителя ошибки, что, в свою очередь, означает лучшую стабилизацию даже при более высоком выходном токе.
Наконец, вокруг Rsense добавлена ​​функция ограничения тока. Этот резистор стоит на стоке M2, поэтому на выходное сопротивление регулятора он не повлияет. Когда напряжение на этом резисторе возрастет до ~ 0,6 В, Q1 будет проводить.Это, в свою очередь, активирует Q2/Q3. Q2 опустит затвор M2 ниже и ограничит выходное напряжение (и ток). Q3 является необязательным и может использоваться для управления светодиодом для визуального оповещения о состоянии предельного тока.

Рис. 5. Схема платы ToliReg V3

Я также разработал версию того же регулятора с двумя направляющими для использования в моих собственных проектах. Я провел некоторые измерения шума регулятора (на более ранней версии печатной платы, как показано на рисунке ниже. Измерение шума было выполнено с помощью LNMP от касательной (см. ссылку для получения дополнительной информации) с полосой пропускания 100 кГц -3 дБ. .Общий интегральный шум на выходе регулятора, настроенного на 24 В, был измерен при 10 мкВ (среднеквадратичное значение).

Рис. 6. Печатная плата, используемая для измерения шума

. Как и в случае с некоторыми другими проектами, которые я выполнял в свое время, я организовал большую часть необходимой информации для создания одного из них в файле PDF для размещения на нескольких форумах. Я также прикрепляю этот файл со схемой, спецификацией и несколькими дополнительными примечаниями о схеме.

ToliRegV3_Документация

ToliRegV3_Gerbers.zip

Сделай сам: вырабатывай собственное электричество — OpenLearn

Сделай сам

Генератор — это просто устройство, которое преобразует механическую энергию (полученную из угля, нефти, природного газа, ветра, воды, ядерных реакций или других источников) в электрическую энергию.Здесь мы опишем, как использовать легкодоступные материалы для изготовления простого генератора. Хотя его мощности будет достаточно только для того, чтобы зажечь небольшую лампочку, он работает по тем же основным принципам, что и генераторы электростанций, которые снабжают электричеством дом.

Как работает генератор

Когда электрический ток течет по проводу, он создает вокруг провода трехмерное магнитное силовое поле, подобное тому, которое окружает стержневой магнит. Магниты также окружены подобным трехмерным полем.Это можно «увидеть» в двух измерениях, если на лист бумаги, помещенный над магнитом, насыпать железные опилки. Опилки выстраиваются вдоль линий магнитной силы, окружающих магнит.

Двумерное представление магнитного поля вокруг стержневого магнита. Стрелки указывают направление силовых линий магнитного поля. N (север) и S (юг) указывают на полюса магнита, где сосредоточены силовые линии.Северный полюс магнита будет отталкивать северный полюс компаса или другого стержневого магнита, а его южный полюс будет притягивать северный полюс компаса или другого стержневого магнита.

Простейший генератор состоит всего лишь из катушки с проволокой и стержневого магнита. Когда вы проталкиваете магнит через середину катушки, в проводе возникает электрический ток. Ток течет в одном направлении, когда магнит вдавливается, и в другом направлении, когда магнит удаляется. Другими словами, вырабатывается переменный ток.Если вы держите магнит абсолютно неподвижно внутри катушки, ток вообще не генерируется. Другой способ получения тока состоит в том, чтобы магнит вращался внутри катушки или катушка вращалась вокруг магнита.

Этот метод получения электричества, называемый индукцией, был открыт Майклом Фарадеем в 1831 году. Он обнаружил, что чем сильнее магниты, чем больше витков проволоки в катушке, и чем быстрее движется магнит или катушка, тем больше производимое напряжение.Фарадей также заметил, что катушка наматывается на металлический сердечник более эффективно, так как это помогает концентрировать магнитное поле.

Напряжение и ток

Что означают электрические термины напряжение (измеряется в вольтах) и ток (измеряется в амперах, часто сокращается до ампер)? Представьте, что электрический ток, протекающий по токопроводящему проводу, подобен автомобилям, движущимся по автомагистрали. Автомагистраль — это провод, а напряжение — скорость, с которой движутся автомобили. Ток соответствует количеству автомобилей, проезжающих данную точку каждую секунду.

Когда ток течет по проводу, электрическая энергия преобразуется в другие формы энергии, такие как тепло в нагревательном элементе, свет от нити накаливания лампы или звук из громкоговорителя. Электрический ток можно также заставить производить механическую энергию, что и происходит в электродвигателе. Таким образом, двигатель — это просто генератор, работающий в обратном направлении.

Создание собственного генератора

Что вам понадобится
  • картон
  • Железный гвоздь длиной 15 см, диаметром 6 мм и большой шляпкой
  • Болт длиной 8–10 см и диаметром 6 мм и гайка
  • 25-метровый эмалированный медный провод (30 swg или прибл.диаметр 0,3 мм)*
  • Магнит кнопки E825 Eclipse (с крепежным отверстием)*
  • Лампа фонарика 6 В, 0,06 А и держатель лампы*
  • рулон изоляционной ленты*
  • ручная дрель

* Можно приобрести в магазинах «Сделай сам» или в магазинах электроники.

 

простой генератор

Что делать

Ваш генератор будет состоять из катушки, прикрепленной к вращающемуся магниту.

  1. Вырежьте два картонных диска диаметром примерно 3 см и проделайте в центре каждого отверстие диаметром 4–5 мм. Вставьте гвоздь в отверстие и подтолкните один диск к его головке. Следующие 2–3 см поверхности ногтя покройте парой слоев изоляционной ленты.
  2. Наденьте другой диск, пока он не упрется в ленту, а затем намотайте еще ленты на другую сторону, чтобы зафиксировать положение таким образом, чтобы расстояние между картонными дисками не превышало 2–3 см. Размотайте примерно 30 см провода с катушки, чтобы сформировать провод от катушки, и начните наматывать оставшийся провод на изоляционную ленту между двумя картонными дисками.Для отслеживания может быть полезно делать отметку на листе бумаги после каждых 100 оборотов. Количество витков не критично, но чем больше, тем лучше; 1 500 должно хватить.
  3. Покрыв ноготь одним слоем витков, продолжайте наращивать слои один поверх другого. Вам не нужно делать особенно аккуратную работу.
  4. После примерно 1 500 витков оставьте около 30 см провода свободным на другом конце, а затем накройте обмотки изоляционной лентой. Удалите около сантиметра изоляции с двух концевых проводов, соскоблив эмаль, и подсоедините их к патрону лампы.Вставьте лампочку в держатель.
  5. Пропустите болт через отверстие, просверленное в основании магнита, и закрепите его, затянув гайку. Закрепите болт в патроне ручной дрели. Далее закрепите острый конец гвоздя в тисках (или между двумя тяжелыми книгами) так, чтобы он располагался горизонтально. Поднесите магнит примерно на 1 мм к шляпке гвоздя, которая должна быть немного смещена от центра вращающегося магнита. Убедитесь, что зазор между магнитом и шляпкой гвоздя как можно меньше, но не настолько, чтобы они соприкасались. Совет здесь — положите руку, удерживающую неподвижную часть дрели, на столешницу, чтобы она была как можно более устойчивой.

     

    Как можно быстрее поверните ручку дрели, и лампочка должна загореться. Генерировать электричество действительно так просто!

Генераторы для велосипедов и автомобилей

Автомобили нуждаются в источнике постоянного тока для управления зажиганием, освещением, стеклоочистителями и т. д. Он генерируется генератором переменного тока, который механически соединен с двигателем.Устройство, называемое выпрямителем, используется для преобразования выходного переменного тока в постоянный. Регулятор также должен быть установлен для управления током, чтобы выходное напряжение генератора продолжало соответствовать напряжению аккумуляторной батареи автомобиля при изменении частоты вращения двигателя.

Динамо-машина на велосипеде, которая вырабатывает электричество во время езды, является еще одним примером генератора. Его основная конструкция точно такая же, как и у описанного выше самодельного генератора.

динамо-машина для велосипеда

 

 

Изучите бесплатный научный курс

  • Наука о ядерной энергии

    Этот бесплатный курс «Наука о ядерной энергии» углубится в науку, лежащую в основе ядерной энергетики, и объяснит, что происходит внутри ядерного реактора и что означает радиоактивность элемента.В нем будут рассмотрены некоторые риски производства ядерной энергии и рассмотрены аргументы за и против включения ее в будущее энергетическое планирование, а также рассмотрены другие потенциальные будущие решения.

    Узнать больше чтобы получить более подробную информацию о науке о ядерной энергии
  • Этика в науке?

    Этот бесплатный курс «Этика в науке»? обсуждает, как ученые несут моральную и этическую ответственность за рассмотрение вопроса о том, следует ли им проводить эксперимент.В этом кратком курсе вы узнаете о первых клинических испытаниях, предпринятых для цинге и оспе и понять, насколько более строгими являются сегодняшние клинические испытания. Вы проведете собственное онлайн-исследование неэтичного ученого и, наконец, рассмотрите некоторые современные моральные дилеммы в науке.

    Узнать больше получить доступ к более подробной информации об этике в науке?
  • Оценка современной науки

    В нем будут рассмотрены способы развития научных знаний, их рецензирования и распространения. Вторая половина курса будет более подробно посвящена конкретной научной теме — пластику — и даст вам возможность попрактиковаться в этих навыках, рассмотрев социальное влияние темы, составив глоссарий незнакомых терминов и оценив соответствующие источники информации.

    Узнать больше чтобы получить доступ к более подробной информации об оценке современной науки

Как спроектировать схему настольного источника питания

В этом посте мы обсуждаем, как любой любитель электроники может разработать эффективный и экономичный, но очень дешевый и стабилизированный настольный источник питания для безопасного тестирования всех типов электронных проектов и прототипов.

Основные характеристики, которыми должен обладать настольный блок питания:

  • Должен быть изготовлен из дешевых и легкодоступных компонентов текущие выходы.
  • Должен быть защищен от перегрузки по току и перегрузке.
  • Должен легко ремонтироваться в случае возникновения проблемы.
  • Должен быть достаточно эффективным с выходной мощностью.
  • Должен облегчить настройку в соответствии с желаемой спецификацией.

Общее описание

В настоящее время большинство конструкций источников питания содержат линейный последовательный стабилизатор. В этой конструкции настольного источника питания используется проходной транзистор, который работает как переменный резистор, регулируемый стабилитроном.

Последовательная система питания более популярна, возможно, из-за того, что она намного эффективнее. За исключением некоторых незначительных потерь в стабилитроне и питающем резисторе, заметные потери происходят только в последовательном транзисторе в течение периода, когда он подает ток на нагрузку.

Однако одним из недостатков систем последовательного питания является то, что они не обеспечивают никакого короткого замыкания выходной нагрузки. Это означает, что в условиях неисправности выхода проходной транзистор может пропустить через себя большой ток, в конечном итоге разрушив себя и, возможно, подключенную нагрузку.

Тем не менее, добавление защиты от короткого замыкания к последовательному источнику питания стенда может быть быстро реализовано с помощью других транзисторов, сконфигурированных как ступень регулятора тока.

Контроллер переменного напряжения достигается за счет простого транзистора с обратной связью потенциометра.

Вышеупомянутые два дополнения позволяют сделать блок питания последовательного действия очень универсальным, надежным, дешевым, универсальным и практически неразрушимым.

В следующих параграфах мы кратко изучим проектирование различных каскадов, используемых в стандартном стабилизированном настольном источнике питания.

Самый простой транзисторный регулятор напряжения

Быстрый способ получить регулируемое выходное напряжение — соединить базу проходного транзистора с потенциометром и стабилитроном, как показано на рисунке ниже.

В этой схеме T1 настроен как эмиттерный повторитель BJT, где его базовое напряжение VB определяет напряжение эмиттерной стороны VE. И VE, и VB будут точно соответствовать друг другу и будут почти равны, за вычетом его прямого падения.

Прямое падение напряжения любого биполярного транзистора обычно составляет 0,7 В, что означает, что напряжение на стороне эмиттера будет:

VE = VB — 0,7 очень дешевый, этот тип подхода не предлагает хорошего регулирования мощности на более низких уровнях напряжения.

Именно поэтому управление с обратной связью обычно используется для улучшения регулирования во всем диапазоне напряжений, как показано на рисунке ниже.

В этой конфигурации базовое напряжение T1 и, следовательно, выходное напряжение управляется падением напряжения на резисторе R1, в основном из-за тока, потребляемого T2.

Когда ползунок потенциометра VR1 находится на крайнем конце со стороны земли, T2 отключается, так как теперь его основание становится заземленным, что позволяет единственное падение напряжения на R1, вызванное базовым током T1. В этой ситуации выходное напряжение на эмиттере T1 будет почти таким же, как напряжение на коллекторе, и может быть задано как:

VE = Vin — 0,7 , где VE — напряжение на стороне эмиттера T1, а 0,7 — стандартное значение прямого падения напряжения для выводов базы/эмиттера BJT T1.

Таким образом, при входном напряжении 15 В можно ожидать, что на выходе будет:

VE = 15 — 0,7 = 14,3 В привести к тому, что T2 получит доступ ко всему напряжению на стороне эмиттера T1, что приведет к очень жесткой проводимости T2.Это действие напрямую соединит стабилитрон D1 с R1. Это означает, что теперь базовое напряжение VB T1 будет просто равно напряжению стабилитрона Vz. Таким образом, выход будет:

VE = Vz — 0,7

Следовательно, если значение D1 равно 6 В, можно ожидать, что выходное напряжение будет следующим:

VE = 6 — 0,7 = 5,3 В , поэтому напряжение стабилитрона определяет минимально возможное выходное напряжение, которое может быть получено от этого последовательного источника питания, когда потенциометр вращается в минимальном положении.

Хотя описанное выше просто и эффективно для изготовления настольного источника питания, у него есть существенный недостаток, заключающийся в том, что он не защищен от короткого замыкания. Это означает, что если выходные клеммы схемы случайно замкнуты накоротко или подается ток перегрузки, T1 быстро нагреется и сгорит.

Чтобы избежать этой ситуации, эту схему можно просто модернизировать, добавив функцию управления током, как описано в следующем разделе.

Добавление защиты от короткого замыкания при перегрузке

Простое включение T3 и R2 обеспечивает 100-процентную защиту от короткого замыкания и управление током.При такой конструкции даже умышленное замыкание на выходе не причинит Т1 никакого вреда.

Работу этой ступени можно понять следующим образом:

Как только выходной ток выходит за пределы установленного безопасного значения, возникает пропорциональная разность потенциалов на резисторе R2, достаточная для принудительного включения транзистора T3.

При включенном Т3 база Т1 соединяется с его эмиттерной линией, что мгновенно отключает проводимость Т1, и эта ситуация сохраняется до тех пор, пока не будет устранено короткое замыкание или перегрузка выхода.Таким образом, T1 защищен от любой нежелательной выходной ситуации.

Добавление функции переменного тока

В приведенной выше конструкции резистор датчика тока R2 может иметь фиксированное значение, если требуется, чтобы выход был выходом постоянного тока. Тем не менее, хороший настольный блок питания должен иметь переменный диапазон как напряжения, так и тока. Учитывая это требование, ограничитель тока можно сделать регулируемым, просто добавив переменный резистор с основанием T3, как показано ниже:

VR2 делит падение напряжения на R2 и, таким образом, позволяет T3 включаться при определенном желаемом выходном токе. .

Расчет значений деталей

Начнем с резисторов, R1 можно рассчитать по следующей формуле:

R1 = (Vin — MaxVE)hFE / Выходной ток

Здесь, начиная с MaxVE = Vin — 0,7

Таким образом, мы упрощаем первое уравнение как R1 = 0,7hFE / выходной ток

VR1 может быть потенциометром 10 кОм для напряжений до 60 В

Ограничитель тока R2 можно рассчитать, как указано ниже:

R2 = 0. 7 / Максимальный выходной ток

Максимальный выходной ток должен быть выбран в 5 раз ниже максимального Id T1, если требуется, чтобы T1 работал без радиатора. С большим радиатором, установленным на T1, выходной ток может составлять 3/4 Id T1.

VR2 может быть просто 1k pot или пресетом.

T1 следует выбирать в соответствии с требованием выходного тока. Номинал T1 Id должен быть в 5 раз больше требуемого выходного тока, если он будет работать без радиатора. При установке большого радиатора рейтинг T1 Id должен быть не ниже 1.в 33 раза больше требуемого выходного тока.

Максимальное значение коллектора/эмиттера или VCE для T1 в идеале должно в два раза превышать максимальное значение выходного напряжения.

Значение стабилитрона D1 может быть выбрано в зависимости от минимального или минимального требования к выходному напряжению настольного источника питания.

Рейтинг T2 будет зависеть от значения R1. Поскольку напряжение на коллекторе T2 всегда будет равно Vin, VCE T2 должно быть выше, чем Vin или входное напряжение.Id T2 должен быть таким, чтобы он мог выдерживать базовый ток T1, определяемый значением R1

Те же правила применимы и к T3.

В общем случае T2 и T3 могут быть любыми маломощными транзисторами общего назначения, такими как BC547 или 2N2222.

Практическая конструкция

Поняв все параметры для проектирования индивидуального настольного источника питания, пришло время реализовать данные в практическом прототипе, как показано ниже:

Вы можете найти несколько дополнительных компонентов, представленных в конструкции, которые просто для улучшения возможности регулирования схемы.

C2 вводится для устранения остаточной пульсации на основаниях T1, T2.

T2 вместе с T1 образуют пару Дарлингтона для увеличения усиления по току на выходе.

R3 добавляется для улучшения проводимости стабилитрона и, следовательно, для обеспечения лучшего общего регулирования.

Добавлены резисторы R8 и R9, позволяющие регулировать выходное напряжение в фиксированном диапазоне, который не является критическим.

R7 устанавливает максимальный ток, доступный на выходе, который равен:

I = 0.7 / 0,47 = 1,5 ампер, и это кажется довольно низким по сравнению с номиналом транзистора 2N3055. Хотя это может поддерживать охлаждение транзистора, возможно увеличить это значение до 8 ампер, если 2N3055 будет установлен над большим радиатором.

Уменьшение рассеяния для повышения эффективности

Самым большим недостатком любого линейного стабилизатора на основе последовательных транзисторов является большое рассеивание транзистора. И это происходит, когда дифференциал ввода/вывода высок.

Это означает, что когда напряжение регулируется в сторону более низкого выходного напряжения, транзистору приходится много работать, чтобы контролировать избыточное напряжение, которое затем выделяется в виде тепла от транзистора.

Например, если нагрузкой является светодиод на 3,3 В, а входное напряжение питания стенда составляет 15 В, то выходное напряжение необходимо снизить до 3,3 В, что на 15 — 3,3 = 11,7 В меньше. И эта разница преобразуется транзистором в тепло, что может означать потерю КПД более 70%.

Однако эту проблему можно легко решить, используя трансформатор с выходной обмоткой с ответвлениями по напряжению.

Например, трансформатор может иметь отводы на 5 В, 7,5 В, 10 В, 12 В и т. д.

В зависимости от нагрузки могут быть выбраны отводы для питания цепи регулятора. После этого потенциометр регулировки напряжения схемы можно было использовать для дальнейшей регулировки выходного уровня точно до желаемого значения.

Этот метод повысит эффективность до очень высокого уровня, позволяя радиатору транзистора быть меньше и компактнее.

Прецизионный настольный источник питания, управляемый операционным усилителем

Принцип работы схемы настольного источника питания, управляемого операционным усилителем, довольно прост, поскольку регулируемые источники питания могут быть просто отдельными формами усилителя с обратной связью.В этой концепции резисторы R1 и R2 генерируют опорный сигнал от выходного источника питания, который создается другим опорным напряжением, создаваемым D2. Результирующий корректирующий сигнал подается обратно через 741 на последовательный транзистор Q1.

Обратите внимание, что стабильность схемы была повышена за счет подачи опорного источника R3-D2 через стабилизированный выход, а не через нестабилизированный вход, как это обычно делается в других настольных источниках питания. Чтобы гарантировать, что цепь инициируется сразу после включения, сопротивление утечки R4 помещается параллельно устройству последовательного прохода.Это означает, что петля обратной связи начинает работать, как только включается питание.

Абсолютно никакой регулировкой не жертвуется из-за R4, так как это общий выход, который оцифровывается резисторами R1-R2, поэтому влияние пульсирующего тока, проходящего через R4, регулируется обратной связью.

Создание регулируемого выхода

Выходной сигнал вполне можно сделать регулируемым путем изменения R1-R2 с помощью потенциометра, однако в существующей схеме схему нельзя принудительно регулировать при значении напряжения стабилитрона D2.При необходимости плавной регулировки выходного напряжения источник опорного напряжения R3-D2 следует подавать через нерегулируемый вход, что сопровождается незначительной нестабильностью. Количество мощности, которую может предложить схема, будет ограничено в первую очередь пропускной способностью по току транзистора Q1 и максимальной мощностью нерегулируемого источника питания.

Более сложная схема настольного источника питания

Регулируемый настольный источник питания обычно является полезным гаджетом для любого любителя или инженера.Несмотря на то, что стабилизаторы напряжения на основе ИС стали очень доступными, схема, в которой используются только обычные дискретные компоненты, может быть привлекательной. В целях экономии энергии и ограничения рассеяния на последовательном стабилизаторе весь диапазон регулирования 0–30 В дополнительно разделен на 3 уменьшенных диапазона напряжения.

Все 3 диапазона соответствуют подходящему вторичному напряжению питания (определяется положением S1a) и соответствующему опорному напряжению (определяется S1b). Чтобы вы могли получить постоянный контроль выходного напряжения до минимума 0 В, необходимо добавить отрицательный вспомогательный источник питания.

В этой цепи питания стенда это извлекается (с помощью D5 и C2) через другую обмотку 12 В через сетевой трансформатор. Другим вариантом может быть включение дополнительного отдельного сетевого трансформатора.

Окончательные результаты, полученные на стендовом прототипе, довольно приличные: размах сетевого напряжения ±35 В вызывает размах выходного напряжения всего ±25 мВ при полной нагрузке 1 А, подключенной к выходу. Пульсации переменного тока на выходе (гул) были ниже 15 мВ.

Как это работает

Схема работает следующим образом.

Опорное напряжение, снятое через стабилитрон(ы) D6-D9 и зафиксированное с помощью потенциометра P1, направляется на базу транзистора T2 с помощью D10 и TI.

Т2 и Т3 работают как дифференциальный усилитель; при этом база T3 получает выходное напряжение посредством DI2. Выход этого дифференциального усилителя подается через D11 на базу комбинированного последовательного регулятора, состоящего из транзисторов T4, T5 и T6.

Хотя конфигурация может показаться немного сложной, она работает как обычная схема регулятора; он поддерживает выходное напряжение практически фиксированным в широком диапазоне выходных токов.

Транзисторы T7 и T8 вместе с соединенными частями образуют каскад ограничения тока. Как только напряжение на R10 достигает определенного значения (установленного P2), T7 начинает проводить ток. Следовательно, это приводит к смещению транзистора T8 и его открытию; что уменьшает базовый привод до транзистора T4, и ситуация снижает выходное напряжение, поэтому выходной ток продолжает оставаться в пределах заданной границы.

Когда S1 выбран в положении 1, это соответствует выходному диапазону 0-10 В, установка в положении 2 позволяет использовать 10-20 В, а настройка в положении 3 обеспечивает выходной диапазон 20-30 В. P1 используется для настройки диапазон, установленный S1.

Максимальная величина выходного тока может быть установлена ​​с помощью потенциометра P2. Этот потенциометр P2 может быть либо предварительно запрограммирован на подачу максимального выходного тока 1 А, либо использоваться как регулятор переменного выходного тока.

Настольный источник питания ATX

Следующее схематическое изображение настольного источника питания ATX и изображения прототипа были предоставлены одним из заядлых читателей этого блога, Mr.V.

5V Regulator Design Tutorial — Как это работает, как спроектировать печатную плату Altium

Регулятор напряжения. Узнайте, как сделать стабилизатор на 5 В с помощью конденсаторов, регулятора LM7805 и диода Шоттки, узнайте, как работает схема, а также как собрать печатную плату самостоятельно, как заказать печатную плату и как спаять электронные компоненты платы вместе.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube

Вот что происходит, когда мы подаем большое напряжение на наши электронные компоненты.

Компоненты сгорят и даже взорвутся. Чтобы остановить это, нам нужен один из них.

Регулятор напряжения. И мы собираемся показать вам, как это работает, как спроектировать и даже превратить его в полностью работающую, профессионально выглядящую печатную плату, которую можно использовать в качестве источника питания и даже заряжать с ее помощью телефон. Вы даже можете скачать копию нашей печатной платы ЗДЕСЬ .

Проектирование схемы

Регулятор напряжения предназначен для поддержания постоянного выходного напряжения даже при изменении входного напряжения.Почему это важно? Потому что электронные компоненты рассчитаны только на определенное напряжение.

Возьмем, к примеру, этот светодиод, если мы подключим его к 9-вольтовой батарее, он мгновенно разрушится навсегда. Это из-за этого тонкого провода внутри светодиода. Глядя под микроскопом, мы видим, что напряжение протолкнуло через провод слишком много электронов, что привело к его перегоранию. Для защиты светодиода нам нужен резистор. Это уменьшит ток.

Это всего лишь резистор на 10 Ом, который подключен к нашему регулируемому источнику постоянного тока.Когда мы подаем небольшое напряжение, мы видим, что светодиод в порядке, но когда мы увеличиваем его, резистор сгорает, и светодиод разрушается. Таким образом, использование резистора работает хорошо, но напряжение должно оставаться достаточно постоянным. Поэтому нам нужен способ обеспечить постоянное выходное напряжение даже при изменении входного напряжения. Допустим, мы хотим поддерживать постоянный источник постоянного тока 5 вольт и ток, достаточный для зарядки простого дешевого телефона. Мы хотим иметь возможность подключать его к нескольким источникам напряжения, таким как 9-вольтовые или, возможно, 12-вольтовые батареи.Для этого нам нужно использовать компонент интегральной схемы. Есть из чего выбрать, и все они могут работать при разном напряжении, но в результате небольшого исследования мы нашли этот вариант. ЛМ7805.

Это может поддерживать постоянное выходное напряжение 5 вольт постоянного тока и ток до 1,5 ампер. Этот компонент может быть подключен к любому источнику постоянного напряжения от 7 до 35 вольт. Так что он идеально подходит для наших нужд. Он имеет три контакта. Первый контакт является входом для нерегулируемого напряжения. Контакт 2 — это контакт заземления, а контакт 3 — регулируемый выход 5 вольт.Производитель рекомендует конденсатор на входе и выходе. Отмечается, что входной конденсатор необходим, если регулятор находится далеко от фильтра источника питания. Мы собираемся использовать несколько длинных проводов для подключения батареи, поэтому мы будем использовать рекомендуемый конденсатор 0,22 мкФ. Это электролитический конденсатор. Мы можем использовать версию с немного большей емкостью, но мы не хотим использовать версию с меньшей емкостью. Конденсатор поможет сгладить перебои в подаче питания, а также низкочастотные искажения.В этом простом примере вы можете видеть, что светодиод мгновенно выключается при отключении питания. Но если мы поместим конденсатор параллельно светодиоду, светодиод останется включенным, потому что теперь конденсатор разряжается и питает светодиод.

Итак, на светодиод практически не влияют прерывания. Мы собираемся добавить еще один конденсатор параллельно на стороне входа. Это шунтирующий конденсатор. Он расположен очень близко к входному контакту регулятора. Это будет небольшой керамический конденсатор, обычно равный 0.1 микрофарад. Назначение этого конденсатора — отфильтровывать шумы и высокочастотные искажения от источника питания. Поскольку мы не всегда можем получить идеально ровный источник постоянного тока. Мы также добавим еще один обходной конденсатор на 0,1 мкФ на выходной стороне, а также электролитический конденсатор на 10 мкФ. Это просто типичное значение, используемое для этой цели. Мы могли бы использовать версию с немного более высоким конденсатором, если бы захотели, но это будет работать нормально. Это поможет обеспечить чистый выход на нашей подключенной схеме.Мы также добавим защитный диод на входной стороне. Это поможет защитить схему, если мы неправильно подключим источник питания. Чтобы показать, что это работает, если мы подключим эту лампу накаливания к источнику питания, она загорится. Мы можем поменять местами провода, и он тоже загорится. Если мы поместим диод на красный провод и подключим его к плюсу, он снова загорится. Но теперь, когда мы меняем местами провода, диод блокирует ток, и лампа остается выключенной. Таким образом, мы можем использовать это для защиты цепи.Мы можем использовать выпрямительный диод или диод Шоттки. Здесь вы можете видеть, что мы разместили два светодиода, каждый из которых подключен к диоду другого типа. Когда мы медленно увеличиваем напряжение, мы видим, что светодиод, подключенный к диоду выпрямителя, не такой яркий. Это потому, что этот тип диода имеет большое падение напряжения. Если мы измерим на диоде Шоттки, у нас будет падение напряжения около 0,3 вольта, а на выпрямителе около 0,66 вольта. Поэтому для этого приложения лучше использовать диод Шоттки. Теперь мы можем разместить все эти компоненты на макетной плате, чтобы протестировать их, как мы сделали здесь.И как только мы будем довольны тем, что он работает, мы можем превратить его в печатную плату.

Проектирование печатной платы

Мы будем использовать Altium Designer для этого руководства, так как они любезно спонсировали эту статью. Все наши зрители могут получить бесплатную пробную версию этого программного обеспечения, используя ссылку ЗДЕСЬ . Поэтому откройте Altium Designer и нажмите «Файл», «Новый проект», затем дайте проекту имя. Щелкните правой кнопкой мыши проект и добавьте схему, затем щелкните правой кнопкой мыши еще раз и добавьте плату.Теперь щелкните правой кнопкой мыши схему и сохраните ее. Дайте ему то же имя, что и проект. Затем также щелкните правой кнопкой мыши плату и сохраните ее под тем же именем. Теперь нам нужно добавить компоненты. Мы можем использовать инструмент компонентов справа, но мы собираемся использовать надстройку, которая немного упростит задачу. Итак, мы находим нужные нам детали, мы используем Mouser, но вы можете использовать кого хотите. Мы нашли конденсатор на 22 микрофарад, поэтому берем этот номер детали, вставляем его в загрузчик библиотеки и нажимаем поиск.Затем он находит компонент, поэтому мы нажимаем «добавить в дизайн». Он поместит компонент в нижний угол, поэтому нам просто нужно переместить его на место. Затем мы переименовываем компонент, чтобы нам было проще. Теперь мы делаем то же самое для другого входного конденсатора, копируем номер детали и ищем его, затем добавляем, перемещаем и переименовываем. Затем мы находим регулятор и добавляем его в нашу конструкцию, а затем находим защитный диод и добавляем его в нашу конструкцию. Кстати, мы используем этот, но мы рекомендуем вам выбрать тот, у которого более высокий предел тока.

Затем мы находим выходной конденсатор, добавляем его и затем переименовываем. Теперь нам нужно найти клеммы подключения, и мы их тоже добавим. Теперь нам нужен еще один конденсатор на выходе, поэтому мы выбираем существующий, копируем и вставляем его, а затем перемещаем на место. И мы делаем то же самое для типа разъема на входной стороне. Теперь мы просто вращаем компоненты, поэтому выберите входной разъем и нажмите пробел, чтобы повернуть его. Затем мы поворачиваем диод, затем мы можем вращать конденсаторы, но убедитесь, что символ «плюс» всегда указывает на положительный источник питания.Другие керамические конденсаторы не имеют полярности, поэтому эти могут быть обращены в любую сторону, но мы сохраним этот порядок. Затем мы вращаем регулятор, и мы также будем перемещать текст, затем мы вращаем следующий конденсатор и другой конденсатор. А теперь мы просто перемещаем компоненты на место. Теперь щелкните проводной инструмент и начните соединять компоненты вместе, протягивая заземляющий провод к регулятору. Затем мы добавляем к этому проводу символ заземления. Теперь используйте проводной инструмент, чтобы соединить выходную сторону.Теперь добавьте аннотацию для входного источника питания, который является VCC, затем добавьте аннотацию для 5 вольт на стороне выхода и переименуйте это. Затем мы можем добавить текст для «входного напряжения», а также «выходного напряжения». Теперь нам нужно пронумеровать компоненты, поэтому нажмите Tools, Annotation, Annotate Schematic. Затем выберите «Вниз», затем «Вдоль», а затем обновите список изменений, нажмите «ОК», примите изменения и подтвердите их. Затем выполните изменения и закройте. Теперь мы видим, что все компоненты пронумерованы.Далее нам нужно проверить дизайн. Поэтому нажмите «Проект», а затем «Проверить проект». Если мы нажмем «Вид», «Панели», а затем «Сообщения», это сообщит нам, что компиляция прошла успешно и без ошибок. Итак, теперь нажмите на плату и нажмите «Дизайн», а затем импортируйте изменения. Затем подтвердите изменения и нажмите «Выполнить изменения». Компоненты размещены в нижнем углу, просто нажмите на поле и удалите его. Глядя на нашу схему, у нас есть разъем J1 на входе, поэтому мы переместим его. Затем у нас есть диод и конденсатор 1 и конденсатор 2, так что мы также переместим их на место.Затем у нас есть регулятор, затем у нас есть конденсаторы 3 и 4, а затем у нас есть выходной разъем. Теперь мы вращаем компоненты, чтобы проложить маршрут для нашего электричества. Мы можем переключиться в режим 3D, чтобы проверить, как это выглядит. Затем мы можем выровнять компоненты, чтобы улучшить внешний вид. Теперь щелкните здесь и в новом окне выберите механический слой. Щелкните правой кнопкой мыши и создайте новый слой и назовите его Cut Out. Измените настройки, а затем закройте. Теперь выберите свой слой внизу, затем нажмите Edit, Origin и Set.Затем щелкните верхний угол печатной платы. Теперь нажмите Place и Choose Line. Нарисуйте линию вокруг компонентов. Затем, удерживая Shift, нажмите на 4 линии. Затем нажмите «Дизайн», «Форма платы» и «Определить форму». Затем мы также можем увидеть это в 3D. Теперь я просто изменю размер текста, чтобы он не печатался слишком большим. Теперь нажмите на верхний слой и вставьте какой-нибудь текст, и мы назовем это 5 вольт, и мы можем просто повернуть это. Мы также сделаем то же самое для основного текста. Глядя на входную сторону платы, мы только что поняли, что входной разъем расположен неправильно, мы можем видеть это в 3D-виде, мы просто пропустили это ранее, поэтому мы просто исправим это сейчас.Затем мы добавляем землю и текст VCC на плату. Теперь нажмите Route, Auto Route и выберите All. Затем он добавляет наш маршрут на доску. Мы также можем изменить маршрут, если захотим. Теперь мы переходим к инструментам и проверке правил. Нажмите «Выполнить», он загрузит отчет и сообщит нам, что у нас есть две проблемы с зазором между шелком и паяльной мачтой. Мы идем Design, Rules, Silk to Mask, затем меняем значение, нажимаем Apply, Ok, затем снова запускаем проверку правил. Теперь мы видим, что ошибок нет. Теперь мы можем видеть маршрут и в 3D-дизайне.Так что давайте сохраним это. Нажмите на свою схему, а затем нажмите «Файл», «Smart PDF», затем выберите схему. Мы отключаем спецификацию материалов, но вы можете оставить ее включенной, если хотите. Нажмите «Готово», и он сгенерирует PDF-файл с нашим дизайном, закройте его, а затем нажмите «Вывод изготовления», выберите файлы Gerber, а затем выберите проект. Теперь щелкните его и измените его на «Миллиметры», затем на слоях вы можете оставить все как есть, но мы собираемся выбрать все слои и нажать «ОК». Нажмите на структуру папок, а затем свяжите файл, нажмите «Создать», и все.Были сделаны! Мы готовы к печати нашей печатной платы.

Производство печатной платы.

Теперь нам нужно заказать нашу плату. Мы используем JLCPCB, который также любезно спонсировал эту статью. Они предлагают исключительную ценность с 5 печатными платами всего за 2 доллара, посмотрите ЗДЕСЬ . Мы просто меняем пункт назначения и валюту доставки на Великобританию, поскольку именно там мы находимся, но вы можете выбрать свою страну и валюту. Теперь мы просто загружаем наши файлы Gerber, и он произведет предварительный просмотр.У нас есть несколько вариантов настройки продукта, мы выберем количество, а затем оставим все остальное по умолчанию. Затем мы сохраним это в корзину и сразу перейдем к оформлению заказа. Мы можем выбрать вариант доставки по почте, чтобы снизить стоимость, но мы хотим, чтобы это было очень быстро, поэтому мы собираемся заказывать через DHL Express. Затем мы просто отправляем наш заказ, оплачиваем и все. Просто, сделано. Через несколько дней наша печатная плата прибывает по почте из JLCPCB, готовая для сборки. Мы должны сказать, что это выглядит довольно потрясающе, мы очень довольны этой услугой.Не забывайте, что вы также можете бесплатно скачать копию нашей печатной платы ЗДЕСЬ .

Сборка печатной платы

Сборка печатной платы довольно проста. Мы просто раскладываем наши компоненты, и нам нравится размещать их по порядку на этом коврике для пайки. Мы также используем этот держатель, чтобы с ним было немного легче работать. Затем вставляем компоненты и начинаем их паять по одному. Просто слегка согните ноги, чтобы зафиксировать их на месте. Когда вы припаиваете компоненты на место, просто осмотрите паяные соединения, чтобы убедиться, что все в порядке, а затем вы можете обрезать выводы.И затем, через несколько минут, мы получим готовую печатную плату, готовую к тестированию.

Тестирование печатной платы

Для проверки печатной платы мы подключили к источнику питания 9-вольтовую батарею. А мультиметр показывает 5 вольт на розетке. Если мы перевернем батарею, мы увидим 0 вольт на мультиметре. Итак, диод защищает нашу цепь. Мы довольны этим, поэтому мы немного загружаем его, и он отлично работает. Теперь для реального теста подключаем USB-порт в розетку и втыкаем дешевый телефон.Мы видим, что 9-вольтовая батарея теперь заряжает устройство. Используя USB-тестер, мы видим, что он подает 4,6 вольта и потребляет ток 0,26 ампер. Так что работает отлично.


.
Добавить комментарий

Ваш адрес email не будет опубликован.