принцип работы, как выбрать, схема подключения
Без этого электротехнического устройства потребители электроэнергии не смогли бы заряжать автомобильные аккумуляторы, подключать энергосберегающие источники света. Электротехническое изделие понижает стационарное напряжение до требуемого уровня. Прибор изготовлен на базе электромагнитной индукции. Продается в специализированных стационарных торговых предприятиях, интернет-магазинах.
Общее устройство и принцип работы
Понижающий трансформатор с 220 на 12 вольт покупают водители, дачники, владельцы загородных домов, коттеджей для устройства внутридомовой низковольтной осветительной сети. Временами использование электрического питания 220 вольт в домашнем обиходе экономически нерационально.
Изделие состоит из четырех главных деталей: двух стержней-сердечников и двух катушек из медной проволоки требуемого сечения и длины. Называются обмотками, содержащими неравное количество витков. Стержни-сердечники изготавливают из специальной стали, используемой в электротехнической отрасли.
В первичной обмотке начинается интенсивное движение электронов, создается электродвижущая сила. Образуется магнитное поле, пересекаемое второй обмоткой. В ней появляются электрические потенциалы, поскольку магнитное поле первой катушки вызывает во второй самоиндукцию (движение электронов). Возникает разность электрических уровней, стремящихся уравнять потенциальные значения до нуля.
Перелив электронов с высокого потенциала на конечный нулевой рождает электрический ток. Напряжение во вторичной обмотке зависит от того, во сколько раз в ней меньше витков, чем в первой. Следует помнить, что понижающее электротехническое устройство генерирует в концевой обмотке переменное напряжение с изменением полярности 50 раз в секунду. Получают и постоянный ток, подключая в систему выпрямитель, чтобы на выходе иметь 12 вольт прямого тока.
Существует большой ассортимент электронных понижающих изделий, не содержащих сердечников, катушек.
Понижающими устройствами являются микроскопические электронные схемы в соединении с конденсаторами, резисторами и другими важными элементами. Перед традиционными преобразователями тока имеют неоспоримые преимущества, заключающиеся:
- в компактности;
- в весе;
- в ручной регулировке пониженного напряжения;
- в бесшумной работе;
- в высоком КПД.
Покупатель может выбирать тот трансформатор, в котором нуждается. Это его право.
Изготовленный собственными руками трансформатор рекомендуется эксплуатировать, спрятав его за стенками металлического или деревянного корпуса, имеющего естественную вентиляцию.
Как выбрать понижающий трансформатор
В продаже появились импортные электроприборы, работающие от сети 110 вольт. Отечественные электросети подают ток напряжением в 220 вольт. Использовать иностранный бытовой или другого назначения прибор проблематично. Но есть выход. Можно приобрести трансформатор 220 с понижающими клеммами на 110 вольт.
Выбирая понижающее изделие, важно высчитать максимальную нагрузку, на которую оно рассчитано. Результат получают следующим методом. Умножают вольты на силу тока и получают мощность. Формула выглядит так: V x A=W. Выбирают мощный потребитель электрической энергии, высчитывают пиковую нагрузку по формуле, прибавляют к ее значению 20%.
Приведем пример. Домохозяйка приобрела импортный кухонный комбайн, работающий от сети 110 вольт, рассчитанный на силу тока 3 А. Умножаем показатели. Получим мощность 330 W. Это нормативная мощность, при которой работает комбайн. Но во время приготовления заправки, например для борща, в комбайн попала косточка, которую прибор должен измельчить. За секунду мощность подскочит до 1400 W. Производитель электроприборов в техническом паспорте указывает максимальную мощность.
Устройство, понижающее ток, несложно сделать самому. Алгоритм действий следующий: ассчитывают количество витков металлической проволоки на катушках. Расчет первичной начинают с обмотки на 220 вольт. После вычислений определяют число витков. Получают 2200 витков при сечении провода 0.3 мм и площади стержня в 6 кв. см.
После рассчитывают количество витков для катушки на 12 вольт. Вторая катушка, вырабатывая напряжение в 12 вольт, будет иметь 120 витков при сечении провода в 1 мм. Витки одной обмотки по количеству не должны равняться другой. В идеале могут, если медная проволока разного сечения.
Напряжением в двенадцать вольт питаются светодиодные ленты, лампы, освещение галогенное. Галогенным лампам требуется небольшая мощность. Важным моментом является изготовление сердечника. От его качества зависит мощность трансформатора.
Если под рукой нет специальной электротехнической стали, используют металлические емкости из-под пива, хлебного кваса, других жидких продуктов. Из банок нарезают полосы длиной 3 дм и шириной 0.2 дм. Заготовки подвергают обжигу, после удаляют налет окалины. Лакируют, обворачивают бумагой с одной стороны.
Вторую обмотку заполняют провода сечением 1 мм. Катушечную основу изготавливают из картонного материала повышенной прочности. Обворачивают картонную заготовку бумагой, пропитанной парафином. На приготовленные сердцевины наматывают проволоку, не забывая намотанные витки разделять бумагой. Готовые к использованию обмотки закрепляют на компактном деревянном или металлическом каркасе. Фиксируют скобами или другим крепежом.
Схема подключения понижающего трансформатора
Как подключить трансформатор 220 на 12 вольт, интересует многих. Делается все просто. Подсказывает алгоритм действий маркировка в местах подключения. Выведенные клеммы на панель соединения с контактными проводами потребительского прибора обозначены латинскими буквами. Клеммы, к которым подключают нулевой провод, помечены символами N или 0. Силовая фаза — обозначение L или 220. Выходные клеммы обозначены цифрами 12 или 110. Остается не перепутать клеммы и практическими действиями ответить на вопрос, как подключить понижающий трансформатор 220.
Заводская маркировка клемм обеспечивает безопасное подключение человеком, не знакомым с подобными действиями. Импортные трансформаторы проходят отечественный сертификационный контроль и не представляют опасности при эксплуатации. Подключают изделие на 12 вольт по описанному выше принципу.
Теперь понятно, как подключают понижающий трансформатор заводского изготовления. Сложнее определиться с самодельным устройством. Сложности возникают, когда при монтаже прибора забывают промаркировать клеммы. Чтобы совершить подключение без ошибки, важно научиться визуально определять толщину проводов. Первичная катушка изготовлена из проволоки меньшего сечения, чем обмотка концевого действия. Схема подключения простая.
Надо усвоить правило, согласно которому можно получать повышающее электрическое напряжение, прибор подключают в обратном порядке (зеркальный вариант).
Принцип работы понижающего трансформатора понять легко. Эмпирически и теоретически установлено, что связь на уровне электронов в обоих катушках следует оценивать как разность магнитного потокового воздействия, создающего контакт с обоими катушками, к электронному потоку, который возникает в обмотке с меньшим числом витков. Подключая концевую катушку, обнаруживают, что в цепи появляется ток. То есть получают электроэнергию.
И здесь возникает электротехническая коллизия. Подсчитано, что подаваемая энергия от генератора на первичную катушку равна энергии, направленной в созданную цепь. И это происходит, когда между обмотками нет металлического, гальванического контакта. Передается энергия путем создания мощного магнитного потока, имеющего переменные характеристики.
В электротехнике есть термин «рассеивание». Магнитный поток на пути следования теряет мощность. И это плохо. Исправляет положение конструктивная особенность устройства трансформаторов. Созданные конструкции металлических магнитных путей не допускают рассеивания магнитного потока по цепи. В результате магнитные потоки первой катушки равны значениям второй или почти равны.
ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220
Понадобился мне для некоторых целей повышающий преобразователь с 12В на стандартное сетевое напряжение 220 вольт. Поискав на форуме решил сделать из запчастей блока питания компьютера. Сразу замечу, что трансформатор лучше брать побольше — маленький может своеобразно мигать и обычно тянет в нормальном режиме порядка 20 ватт, а то и меньше. Радиаторы ставятся при нагрузке более 50 ватт, когда транзисторы нагреваются выше нормы.Схема электрическая преобразователя 12-220 вольт
Конструктивно плата устройства может крепится в любом корпусе, обеспечивающим защиту от прикосновения человеком. Рисунок смотрите на фото или ищите файл на форуме.
C1 – это 1 нанофарад, на корпусе кодировка 102;
R1 – задает ширину импульсов на выходе.
R2 (совместно с C1) задаёт рабочую частоту.
Уменьшаем сопротивление R1 – увеличиваем частоту. Увеличиваем емкость C1 – уменьшаем частоту. И наоборот.
Форум по инверторным источникам питания
Форум по обсуждению материала ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220
Радиосхемы. — Простой преобразователь 12
категория
Радиосхемы начинающим для самостоятельной сборки
материалы в категории
В настоящее время интернет пестрит всевозможными схемами инверторов 12-220 Вольт, которые построены на микросхемах серии TL и полевых транзисторах и нет ни одной схемы максимально простой, на отечественной элементной базе. Я решил заполнить этот пробел.
Предлагаю для повторения очень простую и надежную схему инвертора (преобразователя) напряжения из 12В в 220вольт, для энергосберегающей лампы. Схема до безобразия проста и вместе с тем очень надежна, запускается без каких либо проблем сразу, содержит всего два транзистора и три детальки в обвязке — проще не бывает.
Рис. 1. Принципиальная схема простого инвертора напряжения 12В — 220В на двух транзисторах.
В качестве трансформатора использовал ферритовые чашки с такимим размерами: диаметр — 35 мм, высота — 20мм. Намотка данного трансформатора не имеет никаких особенностей. Фото феррита, катушки и собранного трансформатора для инвертора напряжения прикладываю ниже.
Рис. 2. Ферритовые чашки для изготовления трансформатора к инвертору напряжения.
Сперва мотается первичная обмотка, она содержит 14 витков провода диаметром 0,5 мм, после намотки ее нужно обернуть изолентой в один слой. Вторичная обмотка трансформатора мотается проводом диаметром 0.2мм и содержит 220 витков, поверх ее также обматываем изолентой в один слой. Все, трансформатор готов, осталось только собрать половинки и посадить на болтик.
Рис. 3. Каркас трансформатора с намотанными катушками индуктивности.
Рис. 4. Готовый трансформатор для схемы простого инвертора напряжения 12В — 220В.
Методом проб и ошибок подобрал для схемы транзисторы, ориентируясь на минимальный ток потребления схемы. Получилась пара КТ814 и КТ940, затем были подобраны сопротивления и емкость. В результате моих опытов получилась вот такая схема с указанными номиналами, она приведена выше.
Данная конструкция простого инвертора напряжения отлично подходит для питания энергосберегающей лампы мощностью в 8,9,11 Ватт. Лампы мощностью в 20 ватт не хотят работать, скорее всего вторичка слабовата — переделывать я не стал. Лампа мощностью в 9 ватт светит так же ярко как и при питании напрямую от сети переменного тока 220В. Потребляемый ток схемы преобразователя напряжения колеблется в пределах 0.5 — 0.54 Ампера.
Рис. 5. Внешний вид готового устройства в сборе.
Рис. 6. Размеры конструкции в сравнении.
Примечание: пачка сигарет указана здесь лишь только с одной целью- показать сравнительные размеры устройства.
Курить вредно!!
Если использовать вместо транзистора КТ940 транзистор КТ817 и аналогичные то ток, потребляемый схемой инвертора напряжения и лампой, возрастает до величины 0,86 Ампера. Данная конструкция простого инвертора напряжения доступна к изготовлению всем радиолюбителям и начинающим. Преимущества данной конструкции очевидны: простота изготовления и надежность в работе.
Нужно отметить что очень много радиолюбителей проживает в сельской местности и не имеют возможности приобрести импортные детали, к тому же хоть и недорого но стоят денег те же полевые транзисторы, которые при ошибке тут же могут сгореть или выйти из строя, не говоря уже о микросхемах.
Рис. 7. Подключение инвертора напряжения к батарее и энергосберегающей лампе.
Рис. 8. Самодельный инвертор напряжения в работе — ярко горит энергосберегающая лампа.
А чаще всего у сельского радиолюбителя запасы радиодеталей ограничены старым советским телевизором. Вот так и появился простой инвертор напряжения, собранный из деталей, полученых из советского хлама. Имея в распоряжении аккумулятор емкостью в 7 Ампер-Часов нетрудно подсчитать на сколько времени его хватит — проверял лично.
От гелевого китайского аккумулятора эмкостью в 7 Ампер-Часов лампа горит на полной яркости в течении 6 часов, и горит практически до полного разряда аккумуляторной батареи (падение напряжения до 5.5 вольт). Схема надежно запускается и при питании от 9 Вольт. Применение в быту данной конструкции каждый найдет сам для себя.
Автор статьи и конструкции: Сэм ( dimka853[собачка]rambler.ru ).
Источник: http://radiostorage.net/
Простой преобразователь напряжение 12 — 220 схема
Наш инвертор или преобразователь предназначен для получения переменного тока 220 вольт с частотой 50 герц с автомобильного аккумулятора или любой батареи 12 вольт. Мощность инвертора составляет 150 Ватт и может быть увеличена до 300, но об этом поговорим попозже.
Схема крайне проста, я уверен, что справится любой, работает схема точно так, как любой двухтактный преобразователь типа «push pull», сердцем инвертора является микросхема CD4047, которая служит в качестве задающего генератора и одновременно управляет полевыми транзисторами.
Транзисторы работают в ключевом режиме, переключаясь, то есть в каждый момент времени открыт только один из транзисторов.
Если вдруг по каким-то причинам оба ключа откроются одновременно, то образуется короткое замыкание и оба транзистора сгорят моментально, это может случиться из-за неверного управления.
Микросхема CD4047 разумеется не заточена для высокоточного управления полевиками, но справляется с этой задачей достаточно неплохо.
Трансформатор в моем случае был взят от старого бесперебойника, если честно от этого бесперебойника уцелел только один трансформатор, он как раз для таких целей, поэтому домотывать или перематывать ничего не нужно.
Трансформатор в моём случае на 250-300 Ватт, имеет первичную обмотку со средней точкой, куда подключается плюс от источника питания.
Вторичных обмоток много и нам нужно найти именно сетевую обмотку на 220 вольт, с помощью мультиметра измеряем сопротивление всех отводов, которые имеются на вторичной цепи и находим отводы или контакты между которыми самое большое сопротивление.
В моём случае это около 17 Ом, как раз эти два контакта и есть выводы вторичной или сетевой обмотки, все остальные выводы можно откусить.
После того, как разобрались с трансформатором переходим к сборки схемы, это занимает очень малое время, особенно когда есть печатная плата. (скачать её можно в конце статьи)
Настоятельно рекомендую проверять все компоненты перед пайкой, подберите транзисторы аналогичных параметров из одной партии. Конденсатор в частотно-задающей цепи должен иметь малую утечку и узкий допуск.
Теперь собираем и паяем саму схему.
Пару слов о возможных заменах в схеме…
К сожалению микросхема CD4047 советских аналогов не имеет, поэтому нужно купить именно её. Полевые транзисторы можно заменить на любые -м- канальные с напряжением от 60 вольт и с током от 35 Ампер.
Если использовать ключи типа IRF 3205, то с инвертора можно стянуть 250-300 ватт чистой выходной мощности.
Кстати схема прекрасно работает также с биполярным транзисторами на выходе, правда мощность будет в разы меньше, чем с полевыми транзисторами.
Затворные, ограничительные резисторы могут иметь сопротивление от 10 до 100 Ом, советую ставить от 22 до 47 Ом, мощность 0,25 ватт.
Частотно-задающую цепь лучше не трогать, она настроена на частоту в 50 герц.
Несколько слов насчёт настройки…. В принципе правильно собранный инвертор заработает сразу, но первый запуск обязательно нужно делать со страховкой, то есть вместо предохранителя на схеме подключить резистор Ом на 5-10 или лампочку на 12 вольт 5 Ватт, чтобы в случае проблем не взорвать транзисторы.
Если инвертор работает нормально, то трансформатор издает своеобразный звук, при этом ключи не должны нагреваться вообще.
Если это так, то можно убрать резистор и питание уже подаём напрямую, но разумеется через предохранитель.
Среднее потребление инвертора может составлять от 150 до 300 миллиампер, но это будет зависеть конкретно от источника питания и от вашего трансформатора, это разумеется холостой ход без выходной нагрузки.
Дальше, нам нужно измерить выходное напряжение предварительно поставив мультиметр в режиме замера переменки на уровне 750 вольт.
В моём случае получилось 220-250 вольт, это в пределах нормы поскольку инвестор не стабилизированной и выходное напряжение может гулять в этом пределе.
Дальше уже можно подключать нагрузку, в моем случае это сетевая лампочка на 60 ватт.
Гоняем инвертор с такой нагрузкой примерно 10 секунд, при этом ключи чуток должны нагреваться, они без теплоотводов и нагрев на обеих ключах должен быть равномерным. Если один ключ нагревается гораздо сильнее ищите свой косяк.
Несколько слов о монтаже…
Корпус был позаимствован у компьютерного блока питания, вся начинка просто отлично в него влезла.
Транзисторы в моем случае были установлены на отдельные радиаторы
В случае использования общего теплоотвода не забываем изолировать корпуса транзисторов от радиатора.
Кулер был подключен непосредственно к шине 12 вольт.
Самый большой недостаток нашего инвертора — это отсутствие защиты в случае короткого замыкания на выходе, транзисторы сгорят,. . поэтому чтобы такого не случилось, на выход я поставил предохранитель на 1 Ампер.
Мало мощная кнопка подаёт плюс от источника питания на плату, то есть запускает инвертор в целом.
Силовые шины от трансформатора цепляются непосредственно к радиатором транзисторов, поэтому радиаторы нужно изолировать от общего корпуса.
Частота в пределах нормы, если же частота отличается от пятидесяти герц, то ее можно подстроить с помощью оборотного, переменного резистора R4, который присутствует на плате.
Отлично всё работает…
Архив к статье; скачать…
Автор; АКА КАСЬЯН
Преобразователь напряжения 12 — 220 вольт
Схема простого преобразователя напряжения 12 – 220 вольт, который нетрудно собрать своими руками и начинающему радиолюбителю
В этой статье, на сайте Радиолюбитель, мы рассмотрим простой преобразователь постоянного напряжения 12 вольт в переменное напряжение 220 вольт.
Это, относительно простое устройство, выполнено на специализированной микросхеме КР1211ЕУ1, предназначенной для схем именно такого назначения, и двух мощных ключевых полевых транзисторах IRL2505. Микросхема А1 представляет собой генератор импульсов для импульсных источников питания. У нее есть два выхода – прямой и инверсный (4 и 6), на которых формируются противофазные импульсы, которые поступают на выходные мощные ключи. В отличии обыкновенного мультивибратора или триггера. выходные импульсы формируются так, что между ними существует пауза, в течении которой на обеих выходах напряжение равно нулю. Эта пауза исключает возможность одновременного открывания двух ключей и протекания через них сквозного тока. Полевые транзисторы имеют очень малое сопротивление открытого канала (0,008 Ом) и допускают постоянный ток до 104А (импульсный – 360А). Это позволяет использовать трансформатор с низковольтной обмоткой мощностью до 1000Вт. Реально можно получить напряжение 220В для работы на нагрузку мощностью 400Вт. Питается А1 напряжением 9,5В от параметрического стабилизатора на VD1. Конденсатор С6 подавляет ВЧ-выбросы на выходе.
Детали. Стабилитрон можно заменить любым другим на 8-10В, конденсаторы С4 и С5 К50-35, если нет конденсаторов на 10000 мкФ, можно взять четыре штуки на 4700 мкФ и соединить их параллельно. Конденсатор С3 любой на емкость 100-500 мкФ и напряжение не ниже 10В. Трансформатор Т1 – любой готовый со вторичной обмоткой 2х12В. Мощность трансформатора может быть от 10 до 1000Вт, но она должна быть вдвое больше мощности которой надо получить на нагрузке. При выходной мощности не более 200Вт транзисторы на радиаторы можно не ставить.
Как своими руками получить из 220 — 12 вольт без трансформатора | Андрей Швадронов
Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.
1.Основные способы понижения
Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.
На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».
Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.
Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.
Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:
1. С помощью балластного конденсатора понижение напряжения.
2. При помощи балластного резистора гасится избыточное напряжение.
3. Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.
1.1 Балластный конденсатор
Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.
Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:
В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии. Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.
Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.
1.2 При помощи резистора
Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение. Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.
1.3 Автотрансформатор или дроссель с подобной логикой намотки
В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц. Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).
Схема автотрансформатора с фиксированным напряжением U2.
Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.
Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.
2. Технические требования к конденсатору
Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.
3. Бестрансформаторное электропитание: возможные схематические решения
1. Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц. Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:
2. Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети. В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.
4. Для чего может использоваться напряжение 12 или 24 вольт в быту
В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:
· аккумуляторные электродрели, шуруповерты и электропилы;
· стационарные насосы для полива огородов;
· аудио-видеотехника и радиоэлектронная аппаратура;
· системы видеонаблюдения и сигнализации;
· батареечные радиоприемники и плееры;
· ноутбуки (нетбуки) и планшеты;
· галогенные и LED-лампы, светодиодные ленты;
· портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
· паяльные станции и электропаяльники;
· зарядные устройства мобильных телефонов и повербанков;
· слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
· детские игрушки, елочные гирлянды, помпы аквариумов;
· различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.
Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.
Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.
Схема подключения точечных светильников 220В и 12В — RozetkaOnline.COM
В зависимости от типа используемых ламп, в точечным светильниках, существует две основных схемы подключения — это:
— схема подключения точечных светильников 220в
— схема подключения точечных светильников 12в
Два основных стандарта питания точечных светильников существует не просто так, каждый вариант подключения имеет свои положительные и отрицательные стороны и выбирается в зависимости от существующих условий.
Схема подключения точечных светильников 220в
Схема подключения точечных светильников 220в, при аналогичном стандарте бытового напряжении принятом в нашей стране, кажется наиболее естественной и правильной. Обычно, схема подключения через выключатели выглядит так (см. изображение ниже):
Электрический ток проходя через счетчик электроэнергии и защитную автоматику приходит в распределительную коробку, в которой рабочий ноль и земля (защитный ноль) идут напрямую к точечному светильнику, а вот фазный провод идет на выключатель. В зависимости от типа выключателя (одно-, двух- или трехклавишный) из него выходит соответствующее количество питающих проводов к группа точечных светильников. На изображениях ниже представлены схемы подключения точечных светильников 220в к одноклавишному и двухклавишному выключателю.
Схема подключения точечных светильников 220В к одноклавишному выключателю:
Схема подключения точечных светильников 220В к двухклавишному выключателю:
Основные преимущества использования точечных светильников 220в:
— Простая схема подключения, соответственно максимально надежная
— Отсутствие ограничений по длине цепи, точечные светильники одной группы могут располагаться на любом расстоянии друг от друга без потери эффективности освещения.
— Низкие токи в цепи с напряжением 220в позволяют использовать в проводке кабель меньшего сечения, чем в сетях 12в.
Минусы использования точечных светильников 220в:
— Высокое напряжение источник повышенной опасности, требует квалификации при монтаже и особой осторожности при обслуживании и эксплуатации
— Без дополнительных защитных устройств, лампы подвержены более быстрому разрушению, чем 12В.
Как видите, основной недостаток у точечных светильников 220в, это как ни странно их достаточно высокое напряжение, опасное для человека, как при непосредственном контакте, так и возможностью возникновения возгорания. Из-за этого накладывается множество ограничений при установке и эксплуатации, что достаточно неудобно.
Схема подключения точечных светильников 12в
Использование для питания точечных светильников напряжения 12 вольт, решает эту проблему. Ведь такое низкое напряжение считается условно безопасным и практически исключает возгорания и поражения человека электрическим током. Кроме этого, при напряжении 12 вольт, стало возможным сделать нити накаливания у ламп толще, рассчитанных на больший ток, а следовательно более надежных и долговечных.
Для работы точечных светильников на 12в, в схему добавляются трансформатор, преобразующий стандартное напряжения бытовой сети 220 Вольт в необходимые 12 Вольт. Чаще всего в продаже вы встретите электронные трансформаторы,
к их основным достоинствам относятся:
— малый габаритный размер и вес
— встроенные системы защиты такие как от короткого замыкания, плавный пуск значительно продлевающий срок жизни ламп и т.п.
— автоматическая регулировка напряжения
— постоянное напряжение на выходе
— низкий уровень шума
Выбор трансформатора (блока питания) для точечных светильников.
К основным характеристикам трансформаторов для точечных светильников относятся:
— Выходное напряжение
— Номинальная мощность
— Выходной ток
Выходное напряжение для галогенных ламп в точечных светильниках обычно должно быть 12В.
Номинальная мощность трансформатора рассчитывается исходя из суммарной мощности подключаемых к нему светильников, плюс небольшой запас.
Так например, при параллельном подключении к трансформатору трех точечных светильников по 50Вт каждый, номинальная мощность трансформатора должна быть больше 150Вт, значит берем 210Вт.
Следует отметить, что трансформаторы для точечных светильников на 12в выпускаются стандартных мощностей это: 60Вт, 70Вт, 105Вт, 150Вт, 210Вт, 250Вт, 400Вт.
Очень важная характеристика трансформатора для точечных светильников это выходной ток. Ведь малое напряжение предполагает высокий ток, который соответственно вызывает падение напряжения в проводах и если их неправильно подобрать, возможны очень неприятные последствия. Ниже представлена таблица выбора сечения кабеля для точечных светильников 12в в зависимости от его длины.
Таблица выбора сечения кабеля для точечных светильников 12в в зависимости от его длины
Если рассмотреть на нашем примере, описанном выше, где мы выбрали трансформатор на 210Вт, выходной ток такого трансформатора достигает 18 Ампер! В нашей таблице для такого тока, подбираем минимальное сечение кабеля, которое равно 1. 5 кв. мм., при этом максимальная длина его не должна превышать 3,4 метра.
Чтобы свечение было равномерное у всех точечных светильников на 12в, запитанных от одного трансформатора, при параллельном подключении длины всех проводов должны совпадать (последовательная схема подключения для точечных светильников 12В не применяется).
Даже если один точечный светильник расположен совсем близко к трансформатору, а два других дальше, все равно длины каждого из проводов идущих от трансформатора к точечному светильнику 12в должны быть равны.
Если же, допустим, расстояние оказывается большим, чем минимально возможное из таблицы, то необходимо брать провод большего сечения, так например если в нашем примере мы проложим кабель 2.5. кв.мм., то он может быть длинной уже до 5,7 метра.
Схема параллельного подключения точечных светильников на 12В выглядит так:
Самый оптимальный вариант подключения точечных светильников на 12В, это когда на каждую точку стоит свой понижающий трансформатор, это несколько повышает стоимость набора освещения, но несомненно стоит того. Отпадает проблема с расчетом длин и сечений проводов, а главное при выходе из строя одного трансформатора, остальные лампы группы продолжат гореть. Схема подключения точечных светильников 12 Вольт, каждый через свой трансформатор, представлена ниже.
Обе представленные схемы, верны как для светильников на 12В постоянного, так и переменного тока. В случае с лампами на 12 Вольт переменного тока, полярность подключения проводов не важна, пусть вас не смущает маркировка клемм на схеме «+» и «-«.
Основные преимущества точечных светильников 12В:
— Безопасность, низкая вероятность поражения током человека или возникновения возгорания
— Больший срок службы ламп, в связи с их особенностями, а так же с дополнительными защитами реализованными в трансформаторе.
Основные минусы точечных светильников на 12В:
— Необходимость установки в схему трансформатора и связанные с этим сложности.
— Необходимость точного расчета и подбора сечений и длин проводов, из-за высокого тока.
Решать, какие именно выбрать точечные светильники на 220В или на 12В вам, но сейчас общая тенденция выражается в отказе от схем с отдельными трансформаторами. У многих производителей уже есть в линейке продуктов надежные галогенные лампы с питанием 220В для точечных светильников, а производители диодных ламп пошли еще дальше, и встраивают преобразователи напряжения в корпуса ламп, так что для их работы не требуется никаких изменений в проводке, подробнее об этом мы уже писали в статье «Замена ламп на светодиодные».
Схема для источника питания постоянного тока от 220 до 12 В без трансформатора
В этом руководстве мы узнаем о схеме для источника питания постоянного тока от 220 вольт до 12 вольт без трансформатора
Схема для источника питания постоянного тока от 220 до 12 В без трансформатора
В соответствии со схемой мы берем первую спецификацию, которая требуется для схемы для источника питания постоянного тока от 220 вольт до 12 вольт без трансформатора
Ниже спецификации для цепи для источника питания постоянного тока от 220 до 12 В без трансформатора
№Кол-во Расположение Номер детали Описание
1 1 C1 155 к400 В (неполяризованный, полиэфирный пленочный конденсатор)
2 1 C2 47 мкФ / 50 В (электролитный конденсатор)
3 1 D1 KBL406 (мостовой выпрямитель 50 В, 4 А)
4 1 J1 AC220V (Molex 5MM разъем)
5 1 J2 12 В постоянного тока (разъем Molex 3MM)
6 2 R1R3 560K / 1 / 4W (нормальный резистор 1 / 4W)
7 1 R2 1E / 1W (нормальный резистор 1W)
8 1 R4 2. 2E / 1W (нормальный резистор 1W)
Строительство источника постоянного тока от 220 до 12 В без трансформатора
В соответствии с принципиальной схемой мы можем видеть первый входной разъем переменного тока J1, который подключен к резистору 1E / 1 Вт последовательно после той же цепи, подключенной последовательно к конденсатору C1 400 В, который имеет резистор 560 кОм параллельно, который подключен к клемме входного моста переменного тока и второе соединение клеммы переменного тока моста подключены к входу переменного тока напрямую, выход моста напрямую подключен к параллельному контакту C2 (47U / 50 В), который имеет параллельный резистор R3 на 560 кОм, а отрицательный вывод конденсатора подключен последовательно 2.Резистор 2E / 1 Вт, подключенный к отрицательному выводу отрицательного вывода 12 В, а положительный вывод C2 напрямую подключен к выходной нагрузке положительного вывода 12 В. Теперь станет полной цепью источника питания постоянного тока от 220 вольт до 12 вольт без трансформатора.
Работа цепи для источника питания постоянного тока от 220 до 12 В без трансформатора
Сначала мы проверим, что значение всех компонентов должно совпадать с нашей спецификацией, затем мы подтвердили, что спецификация в порядке, затем проверим схему, теперь мы увидим, как она будет работать, сначала нам понадобится источник питания 220 В переменного тока, который мы можем взять обычную вилку питания дома, Теперь при включении переменного тока источник переменного тока сначала поступает на полифленовый конденсатор через резистор 1E, который контролирует переменный ток, подключенный к мосту, и получает мостовой выход постоянного тока, который поступает на электролит, отрицательный вывод подключается к сопротивлению 1E / 1W, которое управляет выходом. нагрузка.
Конструкция печатной платы для источника питания постоянного тока от 220 до 12 В без трансформатора
В соответствии с конструкцией печатной платы источника питания постоянного тока от 220 до 12 В без трансформатора, мы видим, что все компоненты располагаются в соответствии с потоком схемы, когда мы проектируем любые типы печатных плат, затем сначала размещаем компоненты в соответствии с потоком схемы, затем Печатная плата будет иметь лучшую конструкцию, как мы и хотели бы, здесь видно, что все трассы четкие и правильно подключены к каждому соединению, секция питания переменного тока отделена от секции постоянного тока, поскольку это может мешать компонентам с низким уровнем сигнала.
Ниже представлена конструкция печатной платы.
- Входной разъем питания 220 В переменного тока –J1
- Мостовой выпрямитель D1
- Выходной электролитный конденсатор C2
- Выходной разъем нагрузки J2
О EEE
У нас есть опыт проектирования на протяжении последних 40 лет.Преобразователь 12–220 В
Преобразователь 12–220 В
Цепи инвертораочень полезны для выработки высокого напряжения с использованием источника постоянного тока низкого напряжения или батареи.Здесь схема инвертора от 12 до 220 вольт разработана с использованием нескольких легко доступных компонентов, а также может быть легко построена на печатной плате общего назначения.
Основная работа инвертора этого типа — это импульсный импульсный и повышающий трансформатор, следовательно, IC CD4047 действует как импульсное генераторное устройство, а n-канальный силовой полевой МОП-транзистор IRFZ44n действует как переключатель, а затем вторичный трансформатор 12-0-12 В, обратно используемый как повышающий трансформатор. .
Принципиальная схема
Необходимые компоненты
- IC CD4047
- силовой полевой МОП-транзистор IRFZ44 = 2.
- Вторичный трансформатор 12-0-12 В 1 ампер
- Переменный резистор 22 кОм
- Резисторы 100 Ом / 10 Вт = 2
- конденсатор 0,22 мкФ
- 12-вольтная аккумуляторная батарея
Строительство и работа
Эта простая инверторная схема от 12 до 220 вольт состоит из переключающего устройства и повышающего трансформатора. Поскольку мы знаем, что импульс высокой частоты переключения достигает повышающего трансформатора, выходное напряжение достигает высокого значения из-за взаимной индуктивности.
IC CD 4047 настроена в режиме нестабильного мультивибратора с помощью переменного резистора RV1 и конденсатора C1, изменяя значение переменного резистора, мы можем получить разный диапазон выходного импульса на выводах Q и Q ‘, что приводит к изменению выходного напряжения на трансформатор.
Силовые МОП-транзисторы каналаN IRFZ44 Дренажные контакты подключены к контактам вторичной обмотки трансформатора, а общий контакт вторичной обмотки подключен к положительному смещению батареи, оба контакта источника МОП-транзистора подключены к отрицательному смещению батареи, и эти МОП-транзисторы управляются Q и Q ‘вывод микросхемы CD4047.Когда чередующиеся прямоугольные импульсы приводят в действие полевой МОП-транзистор, тогда вторичная обмотка вынуждена индуцировать переменное магнитное поле, и это магнитное поле индуцирует большую (первичную) обмотку трансформатора и создает высокое переменное напряжение. (Здесь обычный трансформатор на 1 ампер 12-0-12В используется как повышающий трансформатор).
Примечание. Эта схема используется при обращении с рукояткой высокого напряжения переменного тока с особой осторожностью.
ПИТАНИЕ И ХРАНЕНИЕ НА 12 Вольт 220 В (PDF)
Этот проект предназначен для создания сети 220 А.Источник питания постоянного тока от C до 12 В, который также может сохранять мощность в течение длительного времени. Используемая схема является эффективной и внесла множество улучшений в существующие источники питания постоянного тока, такие как регулирование напряжения и устранение пульсаций на выходе. Напряжение 220 АС сначала преобразуется в 12 В переменного тока с помощью понижающего трансформатора, затем используется двухполупериодный выпрямительный мост (на основе моста пшеничного камня) для преобразования переменного тока в постоянный ток.Затем этот выходной сигнал дважды фильтруется двумя механизмами.
> Для устранения ряби в форме волны мостовой схемы.
> Создайте регулируемый и эффективный источник питания.
NPN-транзистор с базой, подключенной к стабилитрону, также используется в качестве коммутирующей цепи. Затем на выходе получается 12 В. Схемы и формы сигналов создаются с помощью PSpice. Благодаря регулировке напряжения и устранению пульсаций на выходе этот источник питания также можно использовать в качестве «разрядника батареи», который обеспечивает постоянный и эффективный выход на нагрузку без необходимости в батарее.
В области электротехники всегда есть потребность в источниках питания постоянного тока. Основными преимуществами этих источников питания постоянного тока являются портативность и экономичность по сравнению с источниками питания переменного тока, но иногда дешевизна этих источников питания постоянного тока приводит к недостаточной эффективности их выхода. То есть выход большинства имеющихся на рынке источников питания постоянного тока имеет пульсации и не является чистым постоянным током.Кроме того, выходное напряжение неточно из-за потерь в цепи.Чтобы устранить эти недостатки в источниках питания постоянного тока, мы создали эффективную схему, которая не только устраняет пульсации выходного напряжения, чтобы получить чистый сигнал постоянного тока, но также регулирует напряжение до постоянного и желаемого значения. Это достигается за счет использования схемы фильтра и транзистора, который используется в качестве переключателя. Мы использовали мостовой выпрямитель вместо двухдиодного выпрямителя (который также производит двухполупериодное выпрямление), потому что мостовой выпрямитель не требует высокого «пикового обратного напряжения», поскольку он использует большую часть обмоток трансформатора.Мы также использовали простой трансформатор вместо центрального ответвителя, потому что он дешевле и обеспечивает компактную и дешевую передачу энергии. Использование схемы RL в качестве фильтра повысило эффективность схемы за счет устранения пульсаций в постоянном токе, которые устраняются мостом. Использование транзистора в качестве переключателя привело к еще одному усовершенствованию схемы, т.е. он отрегулировал напряжение до постоянного значения, что спасло нашу нагрузку от повреждений, вызванных колебаниями напряжения. Используются перезаряжаемые никель-металлогидридные батареи, которые в наши дни широко используются в бытовой электронике.Они также имеют меньшее время зарядки и очень долговечны. Благодаря эффективному сочетанию значений элементов схемы к выходной цепи можно подключить множество нагрузок, то есть любой элемент схемы, имеющий напряжение 12 В и сопротивление более 10 Ом.
ПРИМЕНЕНИЕ
> Схема может использоваться в качестве «разрядника батареи», поскольку она обеспечивает постоянное регулируемое напряжение и отсутствие пульсаций на выходе. Его можно использовать для вывода мощности непосредственно на нагрузку, а не сначала на батарею.Это снижает стоимость аккумулятора.
> Может использоваться как зарядное устройство. Его можно отсоединить от схемы и затем использовать для подачи питания на различные электронные устройства.
> Его можно использовать в качестве регулятора напряжения постоянного тока, который может обеспечивать напряжение без пульсаций.
> Для подзарядки аккумуляторной батареи электромобиля.
> Для подзарядки стартерной батареи топливного транспортного средства, где используется модульное зарядное устройство.
СвязанныеКак сделать схему преобразователя / инвертора с 12 В постоянного тока в 220 В переменного тока?
Инверторы часто необходимы в местах, где невозможно получить питание переменного тока от сети. Схема инвертора используется для преобразования мощности постоянного тока в мощность переменного тока. Инверторы могут быть двух типов: истинные / чистые синусоидальные инверторы и квази или модифицированные инверторы. Эти инверторы истинной / чистой синусоидальной волны дороги, в то время как модифицированные или квазиинверторы недороги.
Эти модифицированные инверторы генерируют прямоугольную волну и не используются для питания чувствительного электронного оборудования. Здесь построена простая схема инвертора, управляемая напряжением, использующая силовые транзисторы в качестве переключающих устройств, которая преобразует сигнал 12 В постоянного тока в однофазный 220 В переменного тока.
Принцип, лежащий в основе этой схемы
Основная идея, лежащая в основе каждой схемы инвертора, состоит в том, чтобы создавать колебания с использованием заданного постоянного тока и передавать эти колебания через первичную обмотку трансформатора путем усиления тока.Это первичное напряжение затем повышается до более высокого напряжения в зависимости от количества витков в первичной и вторичной катушках.
Также получите представление о схеме преобразователя постоянного тока с 12 В в 24 В
Схема преобразователя с использованием транзисторов
Преобразователь с 12 В постоянного тока в 220 В переменного тока также может быть разработан с использованием простых транзисторов. Его можно использовать для питания ламп мощностью до 35 Вт , но его можно использовать для управления более мощными нагрузками, добавив больше полевых МОП-транзисторов.
Инвертор, реализованный в этой схеме, представляет собой преобразователь прямоугольной формы и работает с устройствами, которым не требуется чистый синусоидальный переменный ток.
Принципиальная схема
Необходимые компоненты
- Аккумулятор 12 В
- МОП-транзистор IRF 630-2
- 2N2222 Транзисторы
- 2,2 мкФ конденсаторы-2
- Резистор
- с повышенным напряжением, повышенный трансформатор 12 В-220 В .
Рабочий
Схему можно разделить на три части: генератор, усилитель и трансформатор. Требуется генератор на 50 Гц, так как частота переменного тока составляет 50 Гц.
Этого можно достичь, сконструировав нестабильный мультивибратор, который генерирует прямоугольную волну с частотой 50 Гц. В цепи R1, R2, R3, R4, C1, C2, T2 и T3 образуют генератор.
Каждый транзистор генерирует инвертирующие прямоугольные волны. Значения R1, R2 и C1 (R4, R3 и C2 идентичны) будут определять частоту. Формула для частоты прямоугольной волны, генерируемой нестабильным мультивибратором:
F = 1 / (1,38 * R2 * C1)
Инвертирующие сигналы генератора усиливаются силовыми полевыми МОП-транзисторами T1 и T4.Эти усиленные сигналы подаются на повышающий трансформатор, центральный отвод которого подключен к 12 В постоянного тока.
Выходное видео
Коэффициент трансформации трансформатора должен быть 1:19, чтобы преобразовать 12 В в 220 В. Трансформатор объединяет оба инвертирующих сигнала для генерации переменного выходного сигнала прямоугольной формы 220 В.К с использованием батареи 24 В , нагрузки до 85 Вт могут питаться , но конструкция неэффективна. Чтобы увеличить мощность инвертора, необходимо увеличить количество полевых МОП-транзисторов.
Чтобы спроектировать инвертор на 100 Вт, прочтите Простой инвертор на 100 Вт
Схема преобразователя 12 В постоянного тока в 220 В переменного тока с использованием нестабильного мультивибратораВ схемах инвертора можно использовать тиристоры в качестве переключающих устройств или транзисторов. Обычно для приложений малой и средней мощности используются силовые транзисторы. Причина использования силовых транзисторов заключается в том, что они имеют очень низкий выходной импеданс, позволяющий протекать на выходе максимальному току.
Одно из важных применений транзистора — это переключение.В этом случае транзистор смещен в области насыщения и отсечки.
Когда транзистор смещен в области насыщения, переходы коллектор-эмиттер и коллектор-база смещены в прямом направлении. Здесь напряжение коллектор-эмиттер минимально, а коллекторный ток максимален.
Еще одним важным аспектом этой схемы является генератор. Важное применение 555 Timer IC — это использование в качестве нестабильного мультивибратора.
Нестабильный мультивибратор генерирует выходной сигнал, который переключается между двумя состояниями и, следовательно, может использоваться в качестве генератора.Частота колебаний определяется номиналами конденсатора и резисторов.
[Также прочтите: Как сделать регулируемый таймер]
Принципиальная схема
Принципиальная схема преобразователя 12 В постоянного тока в 220 В переменного тока — ElectronicsHub.OrgКомпоненты цепи
- V11 = 12 В 900 R1 = 10K
- R2 = 150K
- R3 = 10 Ом
- R4 = 10 Ом
- Q1 = TIP41
- Q2 = TIP42
- D1 = D2 = 1N4007
- C3 = 2200 мкФ
- T1 = повышающий трансформатор 12 В / 220 В
Конструкция осциллятора: В качестве генератора можно использовать нестабильный мультивибратор.Здесь сконструирован нестабильный мультивибратор с таймером 555. Мы знаем, что частота колебаний таймера 555 в нестабильном режиме определяется выражением:
f = 1,44 / (R1 + 2 * R2) * C
, где R1 — сопротивление между выводом разряда и Vcc, R2 — сопротивление. сопротивление между разрядным выводом и пороговым выводом, а C — это емкость между пороговым выводом и землей. Также рабочий цикл выходного сигнала определяется следующим образом:
D = (R1 + R2) / (R1 + 2 * R2)
Так как наше требование составляет f = 50 Гц и D = 50% и предполагается, что C равно 0.1 мкФ, мы можем рассчитать, что значения R1 и R2 составляют 10 кОм и 140 кОм соответственно. Здесь мы предпочитаем использовать потенциометр 150K для точной настройки выходного сигнала.
Также между выводом управления и землей используется керамический конденсатор емкостью 0,01 мкФ.
Схема коммутации: Наша главная цель — разработать сигнал переменного тока напряжением 220 В. Это требует использования мощных транзисторов, чтобы обеспечить прохождение максимального количества тока к нагрузке. По этой причине мы используем силовой транзистор TIP41 с максимальным током коллектора 6 А, где ток базы равен току коллектора, деленному на коэффициент усиления постоянного тока.Это дает ток смещения около 0,4 А * 10, то есть 4 А. Однако, поскольку этот ток больше максимального тока базы транзистора, мы предпочитаем значение меньше максимального тока базы. Предположим, что ток смещения равен 1А. Тогда резистор смещения равен
R b = (V cc — V BE (ON) ) / I bias
Для каждого транзистора V BE (ON) равен около 2В. Таким образом, R b для каждого рассчитывается как 10 Ом.Поскольку диоды используются для смещения, прямое падение напряжения на диодах должно быть равно прямому падению напряжения на транзисторах. По этой причине используются диоды 1N4007.
Конструкция транзисторов PNP и NPN одинакова. Мы используем силовой транзистор PNP TIP42.
Конструкция выходной нагрузки: Поскольку выходной сигнал схемы переключения является выходом с широтно-импульсной модуляцией, он может содержать гармонические частоты, отличные от основной частоты переменного тока.По этой причине необходимо использовать электролитный конденсатор, чтобы пропускать через него только основную частоту. Здесь мы используем электролитный конденсатор емкостью 2200 мкФ, достаточно большой, чтобы отфильтровать гармоники. Поскольку требуется выходное напряжение 220 В, предпочтительно использовать повышающий трансформатор. Здесь используется повышающий трансформатор 12 В / 220 В.
Работа цепи преобразователя постоянного тока 12 В в переменный ток 220 В- Когда это устройство питается от батареи 12 В, таймер 555, подключенный в нестабильном режиме, выдает прямоугольный сигнал с частотой 50 Гц.
- Когда на выходе высокий логический уровень, диод D2 будет проводить, и ток пройдет через диоды D1, R3 на базу транзистора Q1.
- Таким образом, транзистор Q1 будет включен. Когда выход находится на низком логическом уровне, диод D1 будет проводить, и ток будет течь через D1 и R4 к базе Q2, вызывая его включение.
- Это позволяет создавать постоянное напряжение через первичную обмотку трансформатора с чередующимися интервалами. Конденсатор обеспечивает требуемую основную частоту сигнала.
- Этот сигнал 12 В переменного тока на первичной обмотке трансформатора затем повышается до сигнала 220 В переменного тока на вторичной обмотке трансформатора.
- Эта схема может использоваться в автомобилях и других транспортных средствах для зарядки небольших аккумуляторов.
- Эту схему можно использовать для управления двигателями переменного тока малой мощности.
- Ее можно использовать в солнечной энергетической системе.
- Поскольку используется таймер 555, выходной сигнал может незначительно изменяться в пределах требуемого рабочего цикла 50%, т.е.е. Трудно достичь точного сигнала 50% рабочего цикла.
- Использование транзисторов снижает КПД схемы.
- Использование переключающих транзисторов может вызвать перекрестные искажения выходного сигнала. Однако это ограничение было до некоторой степени уменьшено за счет использования смещающих диодов.
Note
Вместо таймера 555 можно использовать любой нестабильный мультивибратор. Например, эти схемы также могут быть построены с использованием нестабильного мультивибратора 4047, выходной ток которого усиливается и подается на трансформатор.
[Читать: Солнечный инвертор для дома ]
Преобразователь 220В в 12В — Обмен электротехнического стека
Вы могли бы использовать эту цепь . Он утверждает, что обеспечивает 12 В при 100 мА — это соответствует вашим требованиям.
Но я бы этому не поверил.
Это плохо регулируется. Выход 12 В может достигать 15 В, потому что единственное регулирование во всем этом — стабилитрон на 15 В.
Я бы не хотел его использовать.
Он обеспечивает 12 В между выходными контактами, но если вы измеряете между выходными контактами и землей под ногами, вы найдете полное линейное напряжение переменного тока.Он может обеспечить ток, достаточный для того, чтобы убить вас, если вы коснетесь выхода, стоя на земле. Это также приведет к выходу из строя любого заземленного устройства, к которому вы его подключаете.
Я бы не хотел, чтобы эта штука была подключена к розетке в моем доме 24/7. В нем нет предохранителя, и в нем есть резисторы, которые могут нагреваться.
Здесь не упоминается, что вам нужен конденсатор с безопасным номиналом для C1. Вам нужен конденсатор с номиналом Y. Если конденсатор с номиналом Y выходит из строя, он переключается в разрыв цепи.Обычный конденсатор или конденсатор X выйдет из строя, в результате чего на остальную часть цепи попадут полные 220 В переменного тока, что также может выйти из строя и загореться или спокойно ждать, пока вы дотронетесь до него, чтобы он мог поджечь вас 220 В переменного тока.
Если вы используете эту вещь, вы должны поместить ее в изолированную коробку. Металлические части цепи не должны находиться в таком положении, чтобы вы могли прикоснуться к цепи во время ее работы. Единственное соединение с этой цепью — это подключение к источнику питания — никакие другие устройства не могут быть подключены или управляться с его помощью, потому что эти устройства будут находиться под линейным напряжением.
Я НЕ БЫЛ использовать эту цепь. Слишком много способов причинить им вред себе или кому-то другому.
Когда я был ребенком, для первого проекта было обычным делом быть источником энергии. Настенные бородавки не были обычным явлением, поэтому, если вы хотели отказаться от батарей, вам приходилось покупать лабораторный блок питания или строить что-то самостоятельно.
Все источники питания были классического типа «трансформатор-выпрямитель».
Блок линейного напряжения был тщательно построен, чтобы быть безопасным (и обычно заключался в коробку.)
Низковольтная часть изолирована трансформатором и абсолютно безопасна для прикосновения — никаких проблем, связанных с тем, что источник питания на 12 В постоянного тока перестанет попадать в сетевое напряжение.
Достаточно безопасно. Свой первый я построил примерно в 15 лет в заземленном металлическом корпусе.
Планыбыли общедоступными, и в большинстве всегда упоминалось, как построить устройство безопасно.
Вы могли бы сделать то же самое сегодня, если хотите узнать о строительных источниках питания.
Если вам нужен только один, потому что вам нужен проект, то вам стоит подумать о его покупке.Или просто используйте адаптер, который у вас есть дома. Если вам нужно питание для микроконтроллера, используйте адаптер USB на 5 В. Многие микроконтроллеры работают на 5V
Всего не построит смертельную ловушку цепи, которую вы нашли.
Принципиальная схема инвертора мощностью 100 Вт — от 12 до 220 вольт
Вот простейшая схема для инвертора мощностью 100 Вт для выработки 220 В переменного тока из 12 В постоянного тока. Я говорю «самый простой», потому что здесь, в этой схеме инвертора, для разработки схемы используется минимальное количество компонентов, что довольно сложно создать такую схему с меньшим количеством компонентов.Принципиальная схема инвертора 100 Вт
Рис. Принципиальная схема инвертора мощностью 100 Вт |
Четыре транзистора 2N3055 используются для усиления последовательностей импульсов, которые предварительно усиливаются двумя транзисторами TIP122. Использовались по три транзистора для каждой стороны (полупериод), один TIP122 и два транзистора 2N3055 для управления выходным трансформатором (TX в цепи). В качестве управляющего транзистора используются четыре транзистора 2N3055. Максимальная выходная мощность инверторов зависит от двух факторов; один — это максимальный номинальный ток первичной обмотки трансформатора, а другой фактор — это номинальный ток транзисторов драйвера.
Трансформатор: Используйте понижающий трансформатор 12 В-0-12 В, 10 А в обратном направлении. Это означает, что вторичная обмотка (12 В-0-12 В) будет первичной, а первичная обмотка (сторона 220 В переменного тока) будет вторичной (выходной). Чтобы он работал как повышающий трансформатор. Вы также можете использовать трансформатор на 5А вместо 10А, если у вас не может быть 10А. Но выходная мощность снизится до 60 Вт.
+ 12VDC: Автомобильный аккумулятор 12 В хорошего качества может использоваться для питания 12 В постоянного тока.
Список запчастей инвертора мощностью 100 Вт:
VR1 = 250K (переменный резистор / POT)
R1, R2 = 4.Резистор 7K-1 / 4W
R3, R4, R5, R6 = 0,1R-5W
C1 = 0,022 мкФ
C2 = 220 мкФ-25V
D1 = BY127 Диод
D2 = 9,1 В стабилитрон
Q1, Q4 = TIP122 транзистор
Q2, Q3, Q5, Q6 = 2N3055 Транзистор
F1 = 10A Предохранитель
IC1 = CD4047
TX = 12-0-12V, понижающий трансформатор 10A
Источник питания переменного тока от 220 В до 12 В постоянного тока Шаг за шагом Проект
Блок питания от 220 В до 12 В постоянного тока является наиболее часто используемой и распространенной схемой. Существует так много применений проекта преобразователя переменного тока в постоянный.Источник питания постоянного тока от 220 В до 12 В предназначен для преобразования входного переменного тока в выходное напряжение 12 В постоянного тока. Проект преобразователя переменного тока в постоянный полезен для фиксированных приложений постоянного тока, таких как двигатели постоянного тока, насосы, зарядные устройства и многие другие приложения. Здесь мы собираемся обсудить, что такое источник питания постоянного тока и схема для питания на выходе 12 вольт.
Сильноточный источник питания постоянного тока довольно просто протестировать и собрать. Этот преобразователь переменного тока в постоянный ток проекта источника питания представляет собой схему уровня новичка для основных проектов электроники.Мы собираемся определить, как сделать блок питания на 12 В. Схема может использоваться во многих полезных приложениях, поскольку она потребляет ток 2 А. Проект преобразователя переменного тока в постоянный — лучший способ сделать этот легкий и простой проект источника питания. Это схема адаптера на 12 В постоянного тока.
Источник питания от 220 В до 12 В постоянного тока
- Источник питания 220В переменного тока — 12В постоянного тока Цель
- Необходимые компоненты для проекта электроснабжения
- Принципиальная схема источника питания постоянного тока
- Проектная рабочая
- Результаты вывода
01.Цель:
Что такое источник питания постоянного тока и как мы можем определить нашу цель — как сделать источник питания на 12 В. Для преобразования 220 В переменного тока на выходе 12 В постоянного тока. 12-вольтный фиксированный выход постоянного тока полезен для многих приложений с постоянным током, таких как двигатели постоянного тока, цепи постоянного тока, насосы, зарядные устройства и многие другие полезные приложения.
02. Необходимые компоненты:
S.No | Список компонентов | Кол-во |
1 | 2-амперный трансформатор (12В-0-12В) CT | 1 |
2 | Diod (1N5402) — 3 усилителя | 2 |
3 | Конденсатор (2200 мкФ) | 1 |
4 | Резистор (1.2 кОм) -0,5 Вт | 1 |
5 | светодиод (КРАСНЫЙ) | 1 |
6 | Переключатель (SPST) | 1 |
7 | Предохранитель (1 ампер) | 1 |
03. Цепь для подачи питания:
.Блок питания от 220 В переменного тока до 12 В постоянного тока прост и довольно прост.Входное напряжение — 220 вольт переменного тока. Это также проект преобразователя переменного тока в постоянный. Подключите вилку провода переменного тока к входу, а затем выключатель и предохранитель. Схема построена на трансформаторе. Трансформатор снижает напряжение переменного тока с 220 до 12 вольт. Как мы знаем, всякий раз, когда мы преобразуем переменный ток в постоянный, нам нужна выпрямительная схема. Диоды используются для выпрямления выхода. Выходное напряжение — 12 В постоянного тока.
04. Принцип работы преобразователя переменного тока в постоянный. Проект:
.- Основная цель проекта источника питания переменного тока от 220 В до 12 В постоянного тока состоит в создании выходного напряжения 12 В постоянного тока для работы приложений постоянного тока.
- Предохранитель используется для защиты цепи.
- Подключите вход цепи к сети 220 В переменного тока 50/60 Гц.
- Трансформатор переменного тока с 220 вольт на 12 вольт постоянного тока используется для преобразования переменного напряжения в постоянный. Номинальный ток трансформатора составляет 2 ампера.
- Диодный выпрямитель используется для преобразования входного переменного тока в 12 В постоянного тока. Диод 1N5402 используется для создания схемы выпрямителя.
- Конденсатор здесь используется для фильтрации выходного сигнала.
- Светодиод показывает выпрямленное отфильтрованное выходное напряжение 12 В постоянного тока.
- Теперь вы можете подключить любую схему с постоянным током к выходу 12 В постоянного тока.
05. Результат:
Генерируется отфильтрованный выходной сигнал 12 В постоянного тока. Выходной сигнал схемы источника питания на основе простого трансформатора составляет 12 В постоянного тока. Выход не переменный. Это фиксированное напряжение постоянного тока 12 вольт. Эти напряжения постоянного тока можно использовать в любом проекте преобразователя 12 В постоянного тока в постоянный. Как двигатель на 12 В, любая схема, которая требует 12 В постоянного тока, вентилятор постоянного тока, зарядное устройство и т. Д. Это можно использовать как адаптер постоянного тока. Проект электроснабжения от 220В переменного тока до 12В постоянного тока.Их так много
06. Применение источников питания постоянного тока.
Вы также можете получить этот проект в формате PDF. Это самый простой и легкий источник питания постоянного тока от 220В до 12В. Краткое учебное пособие о том, что такое источник питания постоянного тока. Это может быть лучше семестровый проект в качестве проекта преобразователя переменного тока в постоянный ток базовой электроники. Проект блока питания — лучшая демонстрация основных компонентов электроники.
Мы обсудим проект схемы переменного постоянного тока в следующих постах.Подпишитесь на наш канал YouTube, чтобы получить больше уроков и идей. Сохраняйте мотивацию и всегда верьте в себя….
.