РазноеБлок питания на полевом транзисторе своими руками: МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ – Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Блок питания на полевом транзисторе своими руками: МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ – Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Содержание

МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ


   Используя в схеме стабилизатора мощный полевой транзистор, можно собрать простой стабилизатор, тем не менее имеющий очень хорошие параметры. В предлагаемом стабилизаторе БП стоит полевой транзистор IRLR2905. Он имеет в открытом состоянии сопротивление канала всего 0,02 Ома, а так-же обеспечивает ток до 30 А. Мощность, рассеиваемая транзистором, может превышать 100 Вт. Принципиальная схема одного из вариантов такого стабилизатора приведена на рисунке, клик - для увеличения. 

Работа БП на ПТ

   Переменное напряжение поступает на выпрямитель и сглаживающий фильтр, и далее на сток полевого транзистора и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через резисторный делитель подается на вход микросхемы, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе, таким образом, устройство входит в режим стабилизации. Чтобы получить плавную регулировку выходного напряжения (например для лабораторного блока питания) резистор R2 нужно заменить переменным.

Налаживание схемы

   Установить нужное выходное напряжение резистором. Проверить стабилизатор на отсутствие самовозбуждения с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам CI, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ.

Детали стабилизатора

   Микросхема КР142ЕН19 заменима на более современную TL431. Конденсаторы любые малогабаритные. Параметры трансформатора, выпрямителя - диодного моста и электролитического конденсатора фильтра выбирают исходя из необходимого напряжения и тока. Транзистор обязательно посадить на эффективный теплоотвод. Возможно потребуется использование кулера.


Поделитесь полезными схемами

РЕМОНТ ВСПЫШКИ

   Схему для ремонта не нашёл, но это не проблема - и так разберусь что к чему. Напряжение на конденсаторе оказалось в норме, про что косвенно свидетельствовал постепенно затихающий свист трансформатора преобразователя шести вольт от батареек в 300 В, после включения фотовспышки. В качестве мощного ключа стоит непонятная деталь с тремя ногами и таинственным обозначением CT40TMH.


ПРОСТОЙ РЕГУЛЯТОР МОЩНОСТИ

   Принципиальная электрическая схема простого регулятора мощности для электродвигателя, паяльника или другого бытового прибора. Приводятся возможные замены деталей.


ЧАСЫ БЕГУЩАЯ СТРОКА

   Самодельные электронные часы с термометром и календарём на светодиодах, работающие по принципу бегущей строки. Собраны на основе микроконтроллера PIC18F2550.


СТРОБОСКОП ДЛЯ ДИСКОТЕКИ

    Отражатель стробоскопа позволит направить максимум света. Изготовить его можно из алюминиевой полоски либо картона. 


АВТОМАГНИТОЛА Alpine

   Автомагнитола Alpine всем своим видом чётко показывает солидность и стиль, присущие линейке продукции фирмы Alpine. Характерные большие кнопки, размещённые на левой стороне панели, радуют глаз цветом подсветки. Эти кнопки регулируют выбор треков и папок, включение и выбор источника, переключение банков памяти. Символьный дисплей, расположенный чуть правее, выглядит довольно крупным на общем фоне. 


Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

В предыдущей статье мы рассматривали схемы ЗУ с использованием в качестве силового ключа мощные p-n-p или n-p-n транзисторы. Они позволяли получить достаточно большой ток при небольшом количестве радиодеталей, но  у используемых биполярных транзисторов имеется существенный недостаток…

— это большое падение напряжения коллектор-эмиттер в режиме насыщения, достигающее 2 … 2,5 В у составных транзисторов, что приводит к их повышенному нагреву и необходимости установки транзисторов на большой радиатор.

Гораздо экономичней вместо биполярных транзисторов устанавливать силовые МОП (MOSFET) транзисторы, которые при тех же токах имеют гораздо меньшее (в 5 -10 раз) падение напряжения на открытом переходе сток-исток. Проще всего вместо силового p-n-p транзистора установить мощный p-канальный полевой транзистор, ограничив с помощью дополнительного стабилитрона напряжение между истоком и затвором на уровне 15В. Параллельно стабилитрону подключается резистор сопротивлением около 1 кОм для быстрой разрядки ёмкости затвор-исток.

Гораздо более распространены и доступней силовые n- канальные МОП транзисторы, но принципиальная схема устройства с такими транзисторами несколько усложняется, т.к. для полного открытия канала сток-исток на затвор необходимо подать напряжение на 15 В выше напряжения силовой части. Ниже рассмотрена схема такого устройства.

Мощный лабораторный блок питания 1,5 -30В, 0-5А на MOSFET транзисторе

Основа конструкции мало отличается от ранее рассмотренных устройств на биполярных силовых транзисторах. С помощью конденсаторов С1-С3 и диодов VD1-VD5 в схеме формируется повышенное на 15 В напряжение, которое с помощью транзисторов VT2, VT3 подаётся на затвор полевого транзистора VT1.

В схеме желательно использовать MOSFET с наиболее низким сопротивлением открытого канала, но максимальное допустимое напряжение этих транзисторов должно быть в 1,5 — 2 раза выше напряжения силовой цепи. В качестве диода VD8 желательно использовать диоды с барьером Шоттки с рабочим напряжением выше максимального в силовой цепи, в крайнем случае можно использовать КД213А или КД2997, КД2799, но их придётся установить на небольшой радиатор. Требования к изготовлению накопительного дросселя DR1 такие же как и в зарядных устройствах с биполярными ключевыми транзисторами.

При отсутствии подходящего проволочного резистора, используемого в качестве токового шунта R17 схему можно доработать, используя небольшой отрезок манганинового провода диаметром 2 мм или мощные проволочные резисторы сопротивлением 0,01 …0,05 Ом.

Следующая схема имеет нормализацию напряжения на токовом шунте и усилителя на ОУ.

Лабораторный блок питания с усилителем-нормализатором напряжения шунта

Предлагаемая схема отличается от описанной, выше наличием операционного усилителя DA2, что позволяет можно использовать как любой проволочный резистор сопротивлением 0,01 … 0,05 Ом и мощностью 1 — 2 Вт, так и кусок подходящего нихромового или манганинового провода диаметром 1,5 … 2 мм.

Операционный усилитель усиливает напряжение шунта до уровня, необходимого для нормальной работы компаратора микросхемы DA1. Коэффициент усиления ОУ DA2 определяется соотношением сопротивлений резисторов R15 и R18 и определяется из условия получения на выходе ОУ напряжения 0,5 … 3 В при выбранном максимальном выходном токе устройства.

Выходной ток регулируется переменным резистором R4, максимальное напряжение на движке которого должно быть равно напряжению на выходе ОУ DA2 при максимальном рабочем токе. Сопротивление переменного резистора R4 может быть любым в пределах 1 … 100 К, а максимальное напряжение на его движке определяется сопротивлением резистора R6.

Схема позволяет получить гораздо больший выходной ток, чем выбранный автором — максимальная величина тока определяется мощностью силового трансформатора, элементами силовой цепи и настройкой узла ограничения выходного тока. В качестве DA2 может быть использован практически любой доступный операционный усилитель, например КР140УД1408, КР140УД608, КР140УД708, mA741 и т.д.

Конденсатор частотной коррекции C9 может отсутствовать при использовании ОУ, не требующих его использования. В случае использования ОУ типа КР140УД1408 (LM308) его припаивают между выводами 1 и 8, у других ОУ выводы могут быть иными.

Лабораторный блок питания отличается от ранее описанного зарядного устройства гораздо большим максимальным выходным напряжением. Автором выбрано напряжение 30В, но если использовать трансформатор с большим выходным напряжением и применить более высоковольтные силовые элементы, можно получить гораздо более высокие значения.

Регулировка выходного напряжения осуществляется переменным резистором R16, сопротивление которого может быть в пределах 3,3 … 100кОм. Верхний предел выходного напряжения определяется сопротивлением резистора R17 из расчёта получения напряжения 1,5 В на движке переменного резистора R16 в его нижнем, по схеме, положении.

Схему можно упростить, исключив регуляторы тока и напряжения, а также измерительную головку, если устройство будет использоваться только для зарядки одного типа аккумуляторов. Вместо переменного резистора — регулятора выходного напряжения на печатной плате установлен многооборотный подстроечный резистор R15, а ограничение выходного тока задаётся делителем на резисторах R4, R5.

Для исключения выхода из строя диода VD11 при случайной переполюсовке аккумулятора установлен предохранитель FU2. В качестве транзисторов VT2, VT3 можно использовать любые маломощные транзисторы соответствующей структуры на напряжение 60В и ток коллектора 100мА, например КТ209Е, КТ3102Б и т.д.

В авторском варианте схема настраивалась на выходной ток 3,0 А, но его легко повысить до 6А и более, уменьшив номинал резистора R13 до 5,0 кОм.

Внешний вид платы и расположение элементов:

Предложенная схема лабораторного блока питания можно дополнить узлом защиты нагрузки от неконтролируемого повышения выходного напряжения, например, при пробое выходного транзистора или неисправности в схеме. Смотрите следующую схему:

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

Предлагаемый лабораторный блок питания отличается от схемы, выше наличием узла защиты нагрузки от повышенного напряжения. При включении блока питания напряжение на его выходе отсутствует, что исключает случайный выход из строя подключенной нагрузки из-за начального несоответствия установленного напряжения и требуемого. Узел ручного включения / отключения нагрузки собран на транзисторах VT5, VT7 и реле K1.

Узел работает следующим образом: в исходном состоянии транзисторы VT5, VT7 заперты и реле К1 обесточено. При кратковременном нажатии на кнопку SB1 высокий потенциал на коллекторе VT7 через резистор R30 и конденсатор С11 открывает VT7 — реле К1 срабатывает, а протекающий через резистор R33 ток катушки реле открывает транзистор VT5, который через резистор R26 удерживает транзистор VT7 в открытом состоянии длительное время. На лицевой панели блока питания зажигается светодиод HL3 «НАГРУЗКА», а контакты реле К1 коммутируют выходное напряжение на выходные клеммы.

В этом состоянии на коллекторе транзистора VT7 низкий потенциал, а на коллекторе VT5 высокий. Конденсатор C10 через резистор R19 заряжается до напряжения 35В, плюсом к нижней, по схеме, обкладке и минусом к базе транзистора VT7. При повторном нажатии кнопки SB1 через резистор R30 и конденсатор С10 к базе VT7 прикладывается отрицательное напряжение — транзистор запирается, отключается реле К1, снимая напряжение с нагрузки, запирается транзистор VT5 и схема приходит в исходное состояние до следующего нажатия кнопки SB1.

Защита от нештатного повышения выходного напряжения работает следующим образом: при нормальном режиме работы напряжение на движке переменного резистора R20 всегда будет равно 1,5 В, независимо от его положения, так как схема управления на микросхеме DA1 сравнивает его с опорным на выводе 15, которое определяется параметрами делителя напряжения на резисторах R13 и R8. При неисправности в схеме это напряжение может превысить уровень 1,5 В, транзистор VT4 через резисторный делитель R15, R16 откроется, а транзистор VT7 закроется, отключив выходное реле К1. При длительной аварийной ситуации будет гореть светодиод HL2 «АВАРИЯ», а реле К1 кнопкой SB1 включаться не будет.

Защита также сработает при быстром вращении оси переменного резистора R20 в сторону уменьшения выходного напряжения, что позволяет быстро отключить нагрузку, если случайно было установлено его недопустимо высокое значение.

Схема также защищает элементы устройства от протекания большого тока при переполюсовке заряжаемого аккумулятора. Если аккумулятор ошибочно подключен минусовым выводом к плюсовой клемме блока питания, то через диод VD15 и резистор R31 откроется транзистор VT6, загорится светодиод HL2 «АВАРИЯ», а реле К1 не будет включаться кнопкой SB1, что предотвращает выход из строя контактов реле К1, конденсатора С9, катушки дросселя DR1 и диода DV10.

Очень важно вначале подключить заряжаемый аккумулятор, а затем нажать кнопку «ПУСК» для начала зарядки, в противном случае, при переполюсовке аккумулятора, перегорит предохранитель FU2.

Перед нажатием кнопки «ПУСК» движком переменного резистора R20 следует установить выходное напряжение блока питания равным его значению при полностью заряженном аккумуляторе, например, для свинцового 12В аккумулятора следует установить 14,8В. Если напряжение на выходе блока питания установить ниже, чем напряжение заряжаемого аккумулятора, то, сразу после пуска, реле К1 обесточится, отключив нагрузку, а светодиод HL2 «АВАРИЯ» кратковременно загорится.

Настройка схемы управления описана на предыдущей странице, а конструктивное исполнение накопительного дросселя приведено в предыдущих публикациях раздела зарядных устройств. Транзистор VT1 и диоды VD7, VD10 следует установить на небольшие радиаторы, площадь которых зависит от выбранного максимального рабочего тока.

Параметры силового трансформатора полностью определяются максимальными значениями выходного тока и напряжения — его мощность должна быть не менее, чем на 20% выше максимальной выходной мощности блока питания на нагрузке.

Почти все элементы схемы размещены на печатной плате, внешний вид которой изображен на рисунке. Отдельно установлен силовой трансформатор, измерительный прибор, выключатель питания, регуляторы тока и напряжения, кнопка пуска, предохранители, выходные клеммы и светодиодные индикаторы. На плате предусмотрена установка различных типов диодов в качестве VD10, даже двойных.

Все предложенные схемы можно использовать также и в качестве зарядных устройств.

Источник:kravitnik.narod.ru



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Стабилизатор напряжения на LM2596
  • Импульсный стабилизатор напряжения 1,2 — 37 В, 3А на LM2596

    На микросхеме LM2596 можно собрать стабилизированный источник напряжения, на основе которого легко сделать простой и надёжный импульсный  лабораторный блок питания с защитой от короткого замыкания.

    Подробнее…

  • Зарядное устройство с автоматическим отключением от сети
  • Ещё одна схема зарядного устройства очень похожа на предыдущую, но отличается способом отключения при окончании зарядки. Пуск зарядного устройства производится нажатием кнопки «пуск» на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает «самоподхват». Подробнее…

  • Простой светодиодный фонарик
  • Светодиодный фонарик своими руками и зарядное устройство к нему.

    Уже давно известно, что фонарики на светодиодах очень экономичны, малогабаритны и имеют более продолжительный срок службы. Светодиодный фонарик можно легко сделать своими руками или переделать имеющийся ламповый. Для этого нужны яркие светодиоды повышенной мощности.

    Светодиоды потребляют меньший ток, долговечней и надежней по сравнению с лампочкой. К тому же они не боятся ударов и тряски.

    Подробнее…


Популярность: 9 365 просм.

Ключ на полевом транзисторе своими руками

Пожалуй, даже далёкий от электроники человек слышал, что существует такой элемент, как реле. Простейшее электромагнитное реле содержит в себе электромагнит, при подаче на который напряжения происходит замыкание двух других контактов. С помощью реле мы может коммутировать довольно мощную нагрузку, подавая или наоборот, снимая напряжение с управляющих контактов. Наибольшее распространение получили реле, управляющиеся от 12-ти вольт. Также встречаются реле на напряжение 3, 5, 24 вольта.
Ключ на полевом транзисторе
Однако коммутировать мощную нагрузку можно не только с помощью реле. В последнее время широкое распространение получили мощные полевые транзисторы. Одно из их главных предназначений – работа в ключевом режиме, т.е. транзистор либо закрыт, либо полностью открыт, когда сопротивление перехода Сток – Исток практически равно нулю. Открыть полевой транзистор можно подав напряжение на затвор относительно его истока. Сравнить работу ключа на полевом транзисторе можно с работой реле – подали напряжение на затвор, транзистор открылся, цепь замкнулась. Сняли напряжение с затвора – цепь разомкнулась, нагрузка обесточена.
При этом ключ на полевом транзисторе имеет перед реле некоторые преимущества, такие, как:
  • Большая долговечность. Довольно часто реле выходят из строя из-за наличия механически подвижных частей, транзистор же при правильных условиях эксплуатации имеет гораздо больший срок службы.
  • Экономичность. Обмотка реле потребляет ток, причём иногда весьма значительный. Затвор транзистора же потребляет ток только в момент подачи на него напряжения, затем он практически не потребляет тока.
  • Отсутствие щелчков при переключении.

Схема


Схема ключа на полевого транзистора представлена ниже:
Ключ на полевом транзисторе
Резистор R1 в ней является токоограничивающим, он нужен для того, чтобы уменьшить ток, потребляемый затвором в момент открытия, без него транзистор может выйти из строя. Номинал этого резистора можно спокойно изменять в широких пределах, от 10 до 100 Ом, это не скажется на работе схемы.
Резистор R2 подтягивает затвор к истоку, тем самым уравнивая их потенциалы тогда, когда на затвор не подаётся напряжение. Без него затвор останется «висеть в воздухе» и транзистор не сможет гарантированно закрыться. Номинал этого резистора также можно менять в широких пределах – от 1 до 10 кОм.
Транзистор Т1 – полевой N-канальный транзистор. Его нужно выбирать исходя из мощности, потребляемой нагрузкой и величины управляющего напряжения. Если оно меньше 7-ти вольт, следует взять так называемый «логический» полевой транзистор, который надёжно открывает от напряжения 3.3 – 5 вольт. Их можно найти на материнских платах компьютеров. Если управляющее напряжение лежит в пределах 7-15 вольт, можно взять «обычный» полевой транзистор, например, IRF630, IRF730, IRF540 или любые другие аналогичные. При этом следует обратить внимание на такую характеристику, как сопротивление открытого канала. Транзисторы не идеальны, и даже в открытом состоянии сопротивление перехода Сток – Исток не равно нулю. Чаще всего оно составляет сотые доли Ома, что совершенно не критично при коммутации нагрузки небольшой мощности, но весьма существенно при больших токах. Поэтому, чтобы снизить падение напряжения на транзисторе и, соответственно, уменьшить его нагрев, нужно выбирать транзистор с наименьшим сопротивлением открытого канала.
«N» на схеме – какая-либо нагрузка.
Недостатком ключа на транзисторе является то, что он может работать только в цепях постоянного тока, ведь ток идёт только от Стока к Истоку.

Изготовление ключа на полевом транзисторе


Собрать такую простую схему можно и навесным монтажом, но я решил изготовить миниатюрную печатную плату с помощью лазерно-утюжной технологии (ЛУТ). Порядок действий, следующий:
1) Вырезаем кусок текстолита, подходящий под размеры рисунка печатной платы, зачищаем его мелкой наждачной бумагой и обезжириваем спиртом или растворителем.
Ключ на полевом транзисторе
2) На специальной термотрансферной бумаге печатаем рисунок печатной платы. Можно использовать глянцевую бумагу из журналов или кальку. Плотность тонера на принтере следует выставить максимальную.
Ключ на полевом транзисторе
3) Переносим рисунок с бумаги на текстолит, используя утюг. При этом следует контролировать, чтобы бумажка с рисунком не смещалась относительно текстолита. Время нагрева зависит от температуры утюга и лежит в пределах 30 – 90 секунд.
Ключ на полевом транзисторе
4) В итоге на текстолите появляется рисунок дорожек в зеркальном отображении. Если тонер местами плохо прилип к будущей плате, можно подправить огрехи в помощью женского лака для ногтей.
Ключ на полевом транзисторе
5) Далее, кладём текстолит травиться. Существует множество способов изготовить раствор для травления, я пользуюсь смесью лимонной кислоты, соли и перекиси водорода.
Ключ на полевом транзисторе
После травления плата приобретает такой вид:
Ключ на полевом транзисторе
6) Затем необходимо удалить тонер с текстолита, проще всего это сделать с помощью жидкости для снятия лака для ногтей. Можно использовать ацетон и другие подобные растворители, я применил нефтяной сольвент.
Ключ на полевом транзисторе
7) Дело за малым – теперь осталось просверлить отверстия в нужных местах и залудить плату. После этого она приобретает такой вид:
Ключ на полевом транзисторе
Ключ на полевом транзисторе
Плата готова к запаиванию в неё деталей. Потребуются всего два резистора и транзистор.
Ключ на полевом транзисторе
На плате имеются два контакта для подачи на них управляющего напряжения, два контакта для подключения источника, питающего нагрузку, и два контакта для подключения самой нагрузки. Плата со впаянными деталями выглядит вот так:
Ключ на полевом транзисторе
Ключ на полевом транзисторе
В качестве нагрузки для проверки работы схемы я взял два мощных резистора по 100 Ом, включенных параллельно.
Ключ на полевом транзисторе
Использовать устройство я планирую в связке с датчиком влажности (плата на заднем плане). Именно с него на схему ключа поступает управляющее напряжение 12 вольт. Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Падение напряжение на транзисторе при этом составило 0,07 вольта, что в данном случае совсем не критично. Нагрева транзистора на наблюдается даже при постоянной работе схемы. Успешной сборки!
Ключ на полевом транзисторе
Ключ на полевом транзисторе
Ключ на полевом транзисторе
Скачать плату и схему:
plata.zip [4,93 Kb] (cкачиваний: 900)

Источник питания на полевых транзисторах типа IRF3205 — Меандр — занимательная электроника

Для питания различных транзисторных конструкций ре­шил собрать источник питания (далее — ИП) со стабилизато­ром на полевых транзисторах, так как они имеют малое па­дение напряжения при больших токах в нагрузке.

Собрал и проверил схему стабилизатора RK9UC [1], по­казанную на рис.1. Эта схема выбрана из-за того, что имеет узел ограничения тока в нагрузке (за это отвечают элементы R6 R7 и VT5, выделенные на рис.1 рамкой). Узел ограничения тока в нагрузку позволяет уменьшить послед­ствия аварийных ситуаций, поскольку надеяться только на один предохранитель не очень разумно. Правда, мне не понравилось место установки «датчика тока» R7 в схеме.

Рис. 1

Перед сборкой стабили­затора, показалось, что из-за него возможна про­садка выходного напря­жения. Так как из-за па­дения напряжения на «датчике тока» R7 «регу­лируемый стабилитрон» DA1 будет неправильно корректировать выходное напряжение.

При испытании ИП, уже при токе нагрузки всего 4 А напряжение на нагрузке проседало с 14,56 до 13,72 В. При закорачивании «датчика тока» R7 «просадка» значительно уменьшалась.

Чтобы спасти изготовленный мною ИП от радикальных переделок, было принято решение, перенести элементы R6, R7 и VT5 в цепь положительного напряжения, и поставить их перед стабилизатором, между выходом выпрямителя и сто­ками полевых транзисторов, так как сделал RA3WDK [2].

Работа устройства

Схема доработанного ИП показана на рис.2. Он обеспе­чивает выходное напряжение в пределах 9… 17 В, при токе в нагрузку до 14 А, это значение тока ограничено мощнос­тью примененного трансформатора Тр1 типа ТС-180. Если применить трансформатор типа ТС-270, максимальный ток может быть 20 А. При этом придется добавить еще один тран­зистор типа IRF3205, включенный параллельно транзисторам VT3 и VT4.

Рис. 2

Для работы стабилизатора на полевых транзисторах VT3 и VT4 необходимо, чтобы напряжение на входе выпрямите­ля было на 2…3 В больше чем на выходе.

Но для нормальной работы полевых транзисторов VT3 и VT4 типа IRF3205 напряжение на их затворах должно быть на 5…7 В больше чем на истоках. Для этого нужно либо поднять выпрямленное напряжение на входе всего стабили­затора или использовать дополнительный удвоитель напря­жения на элементах СЗ VD5 VD6 С6 для питания цепи за­творов транзисторов VT3 и VT4.

При увеличении тока нагрузки свыше расчетного, паде­ние напряжения на резисторе R2 превысит значение 0,7 В. Это напряжение, через резистор R3 будет приложено к пе­реходу база-эмиттер транзистора VT1, открывая его. Ток через открытый переход коллектор-эмиттер транзистора VT1 и резисторы R4 и R5, создает падение напряжения на ре­зисторе R5. Это напряжение, приложенное к переходу ба­за-эмиттер транзистора VT2, открывает его. Открытый пе­реход коллектор-эмиттер транзистора VT1 шунтирует «ре­гулируемый стабилитрон» DA1, вследствие чего выходное напряжение уменьшается на столько, на сколько это необ­ходимо для ограничения тока в нагрузке, согласно задан­ной величине.

Резисторы R7 и R9 предназначены для равномерного распределения тока между полевыми транзисторами VT3 и VT4. Стабилитрон VD8 служить для защиты цепи стоков полевых транзисторов VT3 и VT4. Конденсатор С7 служит для повышения помехоустойчивости узла ограничения тока в нагрузке.

Конструкция и детали

Детали для помехоподавляющего фильтра С1, L1, С2 взя­ты от импортного компьютерного монитора. Силовой транс­форматор Тр1 типа ТС-180, у которого смотаны вторичные обмотки, а вместо них намотано по одной обмотке на каж­дой катушке с выходным напряжением 9 В, которые вклю­чены последовательно.

Диодный мост VD1 — VD4 — диоды с барьером Шоттки, например КД2999, КД2997. Подстроенный резистор R12, для установки выходного напряжения, проволочный, установлен­ный на передней панели. Резистор R2 состоит из двух, со­единенных параллельно, резисторов 0,1 Ом 5 Вт.

Емкость конденсаторов С4 и С5 выбирается из расчета 1000 мкФ на каждый 1 А требуемого максимального тока нагрузки.

Транзистор VT1 — маломощный p-n-p, например КТ361 с любым буквенным индексом. Транзистор VT2 – n-p-n, на­пример КТ815, КТ817 с любым буквенным индексом. Транзисторы VT3 и VT4 установлены на радиатор, площадью 200…250 см2. Стабилитрон VD8 — симметричный, на напря­жение 8… 12 В, например КС210А, КС213А,

Микроамперметр РА1 на 150 — 200 мкА от кассетных маг­нитофонов, например М68501, М476/1. Родная шкала снята, вместо нее установлена самодельная шкала, изготовленная с помощью программы FrontDesigner_3.0.

Настройка источника питания

Изменяя сопротивление резисторов R11 и R13, устанав­ливаем пределы регулировки выходного напряжения. При ука­занных сопротивлениях резисторов R11 — R13 выходное на­пряжение регулируется в пределах 9… 17 В.

Нагружаем ИП на эквивалент нагрузки, мощный резис­тор с сопротивлением 1… 1,5 Ом. Последовательно с экви­валентом подключаем образцовый амперметр. Подбором сопротивления резистора R1 калибруем амперметра РА1. Движком резистора R12 увеличиваем напряжение на выхо­де, тем самым увеличиваем ток в нагрузку сверх расчетно­го уровня. Смотрим, есть ли ограничение тока, работает ли стабилизация тока?

Результаты после переделки ИП:

  • Напряжение Uxx = 14,64 В;
  • При токе нагрузки 12 А напряжение на нагрузке 14,52 В.

Изготовленный ИП мною часто используется для пита­ния аккумуляторного шуруповерта, у которого вышла из строя аккумуляторная батарея.

Литература;

  1. Стабилизатор RK9UC //http://vprl.ru/staty/nachinayushi/tl/bp13v22a.gif.
  2. Блок питания «POWER ICE ЗОА v.3» // http://ra3wdk.qrz.ru/tech.htm.

Автор: Василий Мельничук, г. Черновцы

КАЧЕР НА ПОЛЕВОМ ТРАНЗИСТОРЕ

   В хорошее время мы живём - в магазинах электроники и радиотехники есть всё. Даже как-то стало неинтересно. Только загоришься собрать какой-нибудь лабораторный блок питания или многоканальную зарядку - а оказывается китайцы всё уже сделали, причём за недорогую цену. Но к счастью, не всюду ещё проникли их маркетинговые умы. Такой девайс, как качер (генератор высокого напряжения - молний), они ещё запустить в продажу не додумались, но думаю это дело времени. Значит можно попробовать собрать такую штуку самому, тем более схема настолько проста и надёжна, что паяется за час. Конечно не считая намотки катушки.

Принципиальная схема качера на одном транзисторе

Принципиальная схема качера на одном транзисторе

Цоколёвка полевого транзистора мосфет

Цоколёвка полевого транзистора мосфет

   Всего 7 деталек отделяют вас от интереснейшего устройства, рождающего реальные молнии длинной 5-10 сантиметров (а у кого-то и все 15). Схема может смело рекомендоваться для начинающих радиолюбителей, которые уже умеют обращаться с напряжением 220В. Именно от него, напрямую, и питается качер. С одной стороны это упрощает дело, а с другой увеличивает риск.

Не буду в сотый раз писать о том, что если устройство имеет сетевое питание, то надо глядеть в оба и перестраховываться. Скажу только одно - эксперименты при первом запуске проводите с предохранителем 2-5 ампер и лампочкой накаливания на 100-200 ватт, включенной последовательно с 220в. С ней качер работает слабее, но уже можно понять что работает. Зато при случайных замыканиях не будет взрывов, а просто лампа загорится на полную мощность.

   Полевой транзистор - любой высоковольтный Мосфет. Нашёл в коробке SSH5N90 (900В 5А) - его и поставил. Прежде чем засунуть всё это дело в корпус, нужно спаять навесным монтажом на столе и добиться надёжной работы с максимальной искрой. Заодно узнаете, рабочие выбранные детали или нет.

КАЧЕР НА ТРАНЗИСТОРЕ - настройка

   Сама схема паяется за час (с перекурами), а вот катушка - подольше. Первичная обмотка 4-5 витков медного провода 1,5-2 мм. Можно и ещё толще, для устойчивости, ведь она будет висеть в воздухе. Направление намотки не важно, расположение на оси тоже - и у основания, и в центре вторички хорошо запускалось. Вторичка, то есть высоковольтная - 500-1000 витков ПЭЛ 0,3. Я мотал 500 и прекрасно заработало, даже эпоксидкой покрывать не стал. Диаметр трубы - 30 мм.

Все детали для КАЧЕРА НА ТРАНЗИСТОРЕ

Куда это всё засунуть

   Извечная проблема - хороший корпус. Несмотря на пару компьютерных БП, в которые некоторые устанавливают такие схемы, решил не использовать металл. Для лучшей электробезопастности. Всё-таки не мигалку собираем!

высоковольтная катушка - основание пластиковое

   После недолгих размышлений, взял за основу обрезок пластиковой трубы 120х200 мм, от кухонной вытяжки. Она круглая и неплохо смотрится. В ней будет схема, полевой транзистор с радиатором, первичный контур. А сверху будет торчать вторичка с острым медным набалдашником.

Сверху корпус закрывается крышечкой от коробочки

   Сверху корпус закрывается крышечкой от коробочки, в которых продают морскую капусту 🙂 Она идеально подошла по диаметру.

В крышке делается прорезь под катушку теслы

   В крышке делается прорезь под катушку, а чтоб не заглядывали внутрь - обклеивается чёрной самоклейкой.

Катушки крепил к корпусу через ДВП планку

   Катушки крепил к корпусу через ДВП планку, оставшуюся от ремонта балкона, с монтажными стойками для подключения трёх нужных проводов.

Катушки качера - крепление

   При проектировке учтите, что радиатор на транзистор требуется больше чем пачка сигарет, на небольшом будет сильно греться, так что долго качер вы не погоняете. Остановился на 50х100х5 мм, но через 10 минут он становится горячий.

Как сделать качер - высоковольтный генератор

   Вторая по важности, после катушки, вещь - дроссель. От него зависит очень много. Необходима индуктивность дросселя более 1 Генри и ток 1 ампер. Пробовал первички от сетевых трансформаторов: до 50 ватт вообще не работает, 50-100 ватт - хорошо, 100-200 - отлично. Только жалко было ставить такие мощные, ограничился 60-ти ваттным ТН42.

Теслу размещаем в корпусе на металлическом основании

   Всё размещаем в корпусе на металлическом основании, к которому привинчен дроссель, радиатор, и, если кто захочет, печатная плата. Её делать не стал - собрал навесняком.

размещаем в корпусе детали Теслы

   Корпус снаружи тоже обклеен самоклейкой, а катушка обмотана чёрной изолентой. Боялся что с ней будет работать плохо, но обошлось.

 Корпус снаружи обклеен самоклейкой

 КорпусКачера обклеен самоклейкой

   После размещения в корпус опять включаем не напрямую к 220В, а через лампу-предохранитель. С ней искр может и не быть, но урчание схемы и свечение неонки вблизи катушки скажет, что всё олл райт.

КАЧЕР НА ПОЛЕВОМ ТРАНЗИСТОРЕ - катушки

КАЧЕР НА ТРАНЗИСТОРЕ

Как сделать КАЧЕР НА ТРАНЗИСТОРЕ

Лучше один раз увидеть

   Окончательно собираем корпус, дожидаемся темноты, и смотрим изумительное зрелище, не доступное простым смертным 🙂 Искры - прямо как электроцветок. Красота! Друзья пришли и втыкали с благоговейным ужасом :))

Качер и Тесла

   Одно обидно, что при такой простоте, качер на одном несчастном полевике работает лучше, чем целая Тесла на мощной лампе. Хотя может она просто была плохо настроена...

   Форум по качерам

   Обсудить статью КАЧЕР НА ПОЛЕВОМ ТРАНЗИСТОРЕ


Импульсные блоки питания своими руками

Если нет желания устанавливать громоздкий трансформатор или создавать намотку, можно своими руками собрать блок питания импульсного типа, который требует трансформатора всего с несколькими витками.

импульсный блок питания

При этом, потребуется небольшое количество деталей, а работу можно выполнить за 1 час. В данном случае, основой для блока питания используется микросхема IR2151.

Для работы понадобятся следующие материалы и детали:

  1. PTC термистор любого типа.
  2. Пара конденсаторов, которые выбираются с расчетом 1мкф. на 1 Вт. При создании конструкции подбираем конденсаторы так, чтобы они вытянули 220 Вт.
  3. Диодная сборка типа «вертикалка».
  4. Драйвера типа IR2152, IR2153, IR2153D.
  5. Полевые транзисторы типа IRF740, IRF840. Можно выбрать и другие, если у них хороший показатель сопротивления.
  6. Трансформатор можно взять из старых компьютерных системных блоков.
  7. Диоды, устанавливаемые на выходе, рекомендуется брать из семейства HER.

Кроме этого, понадобятся следующие инструменты:

  1. Паяльник и расходные материалы.
  2. Отвертка и плоскогубцы.
  3. Пинцет.

Также, не стоит забывать и о необходимости хорошего освещения на месте работы.

Пошаговая инструкция

импульсный блок питания

принципиальная схема

импульсный блок питания

структурная схема

Сборка проводится согласно составленной схеме цепи. Микросхема была подобрана согласно особенностям цепи.

Сборка проводится следующим образом:

  1. На входе устанавливаем PTC термистор и диодные мосты.
  2. Затем, устанавливается пара конденсаторов.
  3. Драйвера необходимы для регулирования работы затворов полевых транзисторов. При наличии у драйверов индекс D в конце маркировки устанавливать диод  FR107 не нужно.
  4. Полевые транзисторы устанавливаются без закорачивания фланцев. При проведении крепления к радиатору, используют специальные изоляционные прокладки и шайбы.
  5. Трансформаторы устанавливаются с закороченными выводами.
  6. На выходе диоды.

Все элементы устанавливаются в отведенные места на плате и припаиваются с обратной стороны.

Проверка

проверка импульсного блока питанияДля того, чтобы правильно собрать блок питания, нужно внимательно отнестись к установке полярных элементов, а также следует быть осторожным при работе с сетевым напряжением. После отключения блока от источника питания, в цепи не должно оставаться опасного напряжения. При правильной сборке, последующая наладка не проводится.

Проверить правильность работы блока питания можно следующим образом:

  1. Включаем в цепь, на выходе лампочка, к примеру,12 Вольт. При первом кратковременном пуске, лампочка должна гореть. Кроме этого, следует обратить внимание на то, что все элементы не должны нагреваться. Если что-то греется, значит, схема собрана неправильно.
  2. При втором пуске замеряем значение тока при помощи тестера. Даем проработать блоку достаточное количество времени для того, чтобы убедиться в отсутствии нагревающихся элементов.

Кроме этого, нелишним будет проверка всех элементов при помощи тестера на наличие высокого тока после выключения питания.

Рекомендации по сборке:

  1. Как ранее было отмечено, работа импульсного блока питания основана на обратной связи. Рассматриваемая схема не требует специальной организации обратной связи и различных фильтров по питанию.
  2. Особое внимание следует уделить выбору полевых транзисторов. В данном случае, рекомендуются полевые транзисторы IR, которые славятся устойчивостью к тепловому разрешению. Согласно данным производителя, они могут стабильно работать до 150 градусов Цельсия. Однако, в этой схеме они не сильно нагреваются, что можно назвать весьма важной особенностью.
  3. Если нагрев транзисторов происходит постоянно, следует устанавливать активное охлаждение. Как правило, оно представлено вентилятором.

Достоинства и недостатки

импульсный блок питания

Импульсный преобразователь имеет следующие достоинства:

  1. Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
  2. Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
  3. Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
  4. Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
  5. Малые габариты и вес, также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
  6. Организация дистанционного управления.
  7. Меньшая стоимость.

Есть и недостатки:

  1. Наличие импульсных помех.
  2. Необходимость включения в цепь компенсаторов коэффициента мощности.
  3. Сложность самостоятельного регулирования.
  4. Меньшая надежность из-за усложнения цепи.
  5. Тяжелые последствия при выходе одного или нескольких элементов цепи.

При самостоятельном создании подобной конструкции, следует учитывать то, что допущенные ошибки могут привести к выходу из строя электропотребителя. Поэтому нужно предусмотреть наличие защиты в системе.

Устройство и особенности работы

принцип работы импульсного блока питания

При рассмотрении особенностей работы импульсного блока, можно отметить следующие:

  1. Сначала происходит выпрямление входного напряжения.
  2. Выпрямленное напряжение в зависимости от предназначения и особенностей всей конструкции, перенаправляется в виде прямоугольного импульса высокой частоты и подается на установленный трансформатор или фильтр, работающий с низкими частотами.
  3. Трансформаторы имеют небольшие размеры и вес при использовании импульсного блока по причине того, что повышение частоты позволяет повысить эффективность их работы, а также уменьшить толщину сердечника. Кроме этого, при изготовлении сердечника может использоваться ферромагнитный материал. При низкой частоте, можно использовать только электротехническую сталь.
  4. Стабилизация напряжения происходит при помощи отрицательной обратной связи. Благодаря использованию данного метода, напряжение, подаваемое к потребителю, остается неизменным, несмотря на колебание входящего напряжения, и создаваемой нагрузки.

Обратная связь может быть организована следующим образом:

  1. При гальванической развязке, используется оптрон или выход обмотки трансформатора.
  2. Если не нужно создавать развязку, используется резисторный делитель напряжения.

Подобными способами выдерживается выходное напряжение с нужными параметрами.

Стандартные блоки импульсного питания, который может использоваться, к примеру, для регулирования выходного напряжения при питании светодиодной лампы, состоит из следующих элементов:

  1. Часть входная, высоковольтная. Она, как правило, представлена генератором импульсов. Ширина импульса – основной показатель, оказывающий влияние на выходной ток: чем шире показатель, тем больше напряжение, и наоборот. Импульсный трансформатор стоит на разделе входной и выходной части, проводит выделение импульса.
  2. На выходной части стоит PTC термистор. Он изготавливается из полупроводника, имеет положительный показатель коэффициента температуры. Данная особенность означает, что при повышении температуры элемента выше определенного значения, значительно поднимается показатель сопротивления. Используется в качестве защитного механизма ключа.
  3. Низковольтная часть. С низковольтной обмотки проводится снятие импульса, выпрямление происходит при помощи диода, а конденсатор выступает в качестве фильтрующего элемента. Диодная сборка может провести выпрямление тока до значения 10А. Следует учитывать, что конденсаторы могут быть рассчитаны на различную нагрузку. Конденсатор проводит снятие оставшихся пиков импульса.
  4. Драйвера проводят гашение возникающего сопротивления в цепи питания. Драйвера во время работы проводят поочередное открытие затворов установленных транзисторов. Работа происходит с определенной частотой
  5. Полевые транзисторы выбирают с учетом показателей сопротивления и максимального напряжения при открытом состоянии. При минимальном значении, сопротивления значительно повышается КПД и уменьшается нагрев во время работы.
  6. Трансформатор типовой для понижения.

С учетом выбранной схемы, можно приступать к созданию блока питания рассматриваемого типа.

Статья была полезна?

0,00 (оценок: 0)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *