РазноеДизель принцип работы: Принцип работы и устройство дизельного двигателя

Дизель принцип работы: Принцип работы и устройство дизельного двигателя

Содержание

Дизельный двигатель — принцип работы

                                                                                                          Дизельный двигатель, наряду с бензиновым, является одним из двух самых распространенных типов поршневых двигателей внутреннего сгорания. Принцип его работы базируется на самовоспламенении воздушно-топливной смеси, которая подается в камеры сжигания под давлением.

Благодаря этому горючее нагревается и самовоспламеняется, что является главным отличием дизельного двигателя от бензинового и выступает основной причиной всех конструктивных и эксплуатационных изменений в силовом агрегате этого типа, а также напрямую влияет на сферу применения и частоту его использования. В статье подробно рассматривается история создания и совершенствования дизельного двигателя, устройство и принцип работы подобного оборудования, а также его основные отличия и преимущества по сравнению с бензиновой силовой установкой.

 

 

История создания и совершенствования

Первые научные разработки, касающиеся возможности использовать для воспламенения горючего в тепловой машине сжатого до высокого давления топлива, были осуществлены в 20-30-х годах 19-го века. На практике этот принцип был реализован выдающимся немецким изобретателем и инженером Рудольфом Дизелем, который в 1892 году оформил патент на изобретение двигателя оригинальной конструкции, получивший название дизель-мотор в честь его создателя. Через 3 года документ был признан США. В течение нескольких лет Дизель зарегистрировал еще несколько патентов на различные модификации дизельного двигателя.

Первый работающий агрегат был изготовлен в конце 1896 года, а его испытания прошли практически сразу – 28 января следующего года. В качестве горючего первые дизельные двигатели использовали растительные масла и легкие нефтепродукты. Силовая установка практически сразу же стала показывать высокий КПД, будучи еще и очень удобной в эксплуатации. Но в первые годы после изобретения дизельные двигатели применялись, главным образом, в тяжелых паровых машинах.

Существенно расширить сферу практического использования дизельных агрегатов позволили два ключевых усовершенствования. Первое заключалось в применении в качестве топлива керосина, что первым использовал в 1898 году другой великий инженер того времени – родившийся в России швед Рудольф Нобель. Вторым серьезным рационализаторским решением стало изобретение топливного насоса высокого давления (ТНВД), который заменил используемый ранее для сжатия горючего компрессор.

Серьезный вклад в усовершенствования ТНВД внес в 20-е годы 20-го века Роберт Бош. Он изобрел и внедрил модель встроенного насоса и бескомпрессорной форсунки, применение которых привело к существенному уменьшению габаритов дизельного двигателя, что, в свою очередь, позволило устанавливать его сначала на общественный и грузовой транспорт, а во второй половине 30-х годов – впервые использовать на легковых машинах. Дальнейшие улучшения рассматриваемого агрегата, в частности использование специального дизельного топлива, позволили силовой установке на этом типе горючего успешно конкурировать с бензиновыми двигателями, постоянно увеличивая занимаемую долю рынка.

Отличие от бензинового двигателя

Главное отличие дизельного двигателя от бензинового было упомянуто выше. Оно состоит в отсутствии системы зажигания, что объясняется использованием принципа самовоспламенения топливно-воздушной смеси в результате нагнетания давления и вызванного этим нагрева горючего. Необходимо отметить несколько ключевых следствий разницы между рассматриваемыми типами силовых установок.

Главные положительные для дизельного двигателя моменты состоят в следующем. Во-первых, отсутствие системы зажигания делает конструкцию агрегата заметно проще, повышая надежность и долговечность. Во-вторых, компрессионное воспламенение топлива обеспечивает более полное и эффективное сгорание, в результате чего повышается КПД силовой установки и снижается количество вредных выбросов.

Основным негативным следствием указанного выше отличия между двигателями внутреннего сгорания выступают более существенные требования к прочности и качеству изготовления клапанов и других деталей дизельных агрегатов. Это связано с тем, что они эксплуатируются под серьезной нагрузкой, связанной с повышенным давлением топливно-воздушной смеси.

Устройство

И дизельный, и бензиновый агрегаты относятся к поршневым двигателям внутреннего сгорания, а потому имеют сходное устройство. Основными конструктивными частями силовой установки на дизельном топливе являются такие:

1. Блок цилиндров. Основа любого двигателя. Используется для размещения всех систем и узлов силового агрегата. Различаются по трем основным параметрам – числу цилиндров, схеме их расположения и способу охлаждения. Как правило, количество цилиндров является четным, максимальное их число составляет 16. Чаще всего встречаются двигатели с 2-я, 4-я, 6-ю или 8-ю цилиндрами.

Важным элементом рассматриваемого узла является так называемая ГБЦ или головка блока цилиндров. Она создает закрытое пространство, в котором происходит непосредственное сжигание топливной смеси.

2. Кривошипно-шатунный механизм. Основное назначение этого узла двигателя – преобразование перемещения поршня внутри гильзы, являющегося возвратно-поступательным, в движение коленвала, которое относится к вращательным. Главной деталью механизма считается коленвал, подвижно соединенный с блоком цилиндров, что обеспечивает вращение вала.

Другая важная деталь – маховик, который крепится к одному из концов коленвала. Его задача – передать крутящий момент к другим узлам транспортного средства. Ко второму концу коленвала крепится шкив и приводная шестерня топливно-распределительной системы.

3. Цилиндропоршневая группа. Включает в себя цилиндры или гильзы, поршни или плунжеры, шатуны и поршневые пальцы. Отвечает за процесс сжигания топлива с последующей передачей образовавшейся энергии для дальнейших преобразований. Камера сжигания представляет собой пространство внутри гильзы, которое с одной стороны ограничивается ГБЦ, а с другой — поршнем. Главное требование к цилиндропоршневой группе дизельного двигателя – герметичность, прочность и долговечность.

4. Топливно-распределительная система

. Функциональное назначение – своевременная подача горючего в камеры сгорания и отвод из двигателя продуктов сжигания топливно-воздушной смеси. В дизельном агрегате основу системы составляют два насоса. Первый из них – низкого давления – отвечает за перемещение горючего из бака к двигателю.

Назначение второго – ТНВД – несколько шире и заключается в определении нужного количества и времени впрыска топлива, а также в обеспечении необходимого уровня давления в камере сгорания. Именно топливный насос высокого давления и соединенные с ним форсунки являются ключевыми элементами дизельного двигателя, обеспечивающими его впечатляющие эксплуатационные и технические параметры.

5. Система смазки. Предназначается для уменьшения показателей трения между отдельными узлами и деталями силовой установки. В качестве смазочного материала используются как различные масла, так и, что характерно для отдельных механизмов, непосредственно дизельное топливо. Устройство системы смазки предусматривает наличие масляного насоса, различных емкостей и соединяющих трубопроводов.

6. Система охлаждения. Основное функциональное назначение данного элемента дизельного двигателя очевидно и состоит в поддержании такого уровня температуры, который является оптимальным для работающего агрегата. Для этого используются два метода – принудительный отвод тепла от узлов двигателя и охлаждение их при помощи воздуха или жидкости. В качестве последней обычно используется вода или антифриз.

7. Дополнительные узлы турбина и интеркулер. Турбонаддув или турбонагнетатель позволяет увеличить давление в камере сгорания, что ведет к росту производительности двигателя. Интеркулер предназначен для дополнительного и более эффективного охлаждения горячего воздушного потока, который создается в процессе эксплуатации дизельного агрегата.

Отдельного упоминания заслуживает еще одна важная часть любого современного дизельного двигателя – электрооборудование и автоматика. Именно различные приборы управления и контроля над работой агрегата позволяют добиться главного преимущества, характерного для подобных силовых установок – высокого КПД.

Принцип работы

Дизельные двигатели делятся на двух- и четырехтактные. Первый вариант в сегодняшних условиях используется крайне редко, а потому детально рассматривать его попросту не имеет смысла. Стандартный принцип работы обычного четырехтактного двигателя предполагает, что вполне логично, 4 основных этапа:

1. Впуск. Коленвал поворачивается в диапазоне между 0 и 180 градусами. На этой стадии воздух подается в цилиндр.

2. Сжатие. Положение коленвала изменяется со 180 до 360 градусов. Это обеспечивает движение поршня к так называемой верхней мертвой точке (ВМТ), что приводит к сжатию воздуха в цилиндре в 16-25 раз.

3. Рабочий ход с последующим расширением. Коленвал осуществляет перемещение между 360 и 540 градусами. В камеру сжигания через форсунки впрыскивается топливо, которое при смешивании с воздухом воспламеняется. Это происходит чуть раньше, чем поршень достигает ВМТ.

4. Выпуск. Коленвал завершает оборот, перемещаясь между 540 и 720 градусами. В результате очередного перемещения поршня в верхнюю часть цилиндра из камеры сгорания удаляются отработанные газы. После этого цикл начинается заново.

Основные разновидности

Основным параметром, который используется для классификации дизельных двигателей, выступает конструкция камеры сжигания. По этому параметру различают два основных типа рассматриваемых силовых установок, на которых используется

· разделенная камера сгорания. Подача горючего производится в специальную камеру, которая называется вихревой и размещается в головке блока, соединяясь с цилиндром при помощи канала. Наличие такого дополнительного элемента позволяет добиться увеличения уровня нагнетания, что положительно сказывается на способности смеси к самовоспламенению;

· неразделенная камера сгорания. Более простая, а потому надежная конструкция, при использовании которой топливо подается непосредственно в пространство над поршнем, которое и выступает камерой сгорания. Это позволяет заметно снизить расход топлива, что, наряду с надежностью механизма, стало ключевой причиной широко распространения именно такого типа дизельных двигателей.

Особенно популярными дизельные агрегаты с неразделенной камерой сгорания стали после появления ТНВД системы Common Rail. Ее использование позволяет обеспечить оптимальный уровень давления, количества и времени впрыскивания топлива для последующего сжигания. Таким образом, достигаются все основные преимущества двигателей с разделенной камерой сгорания без присущих им недостатков.

Основные достоинства и недостатки

Широкое распространение и успешная конкуренция дизельных двигателей с бензиновыми объясняется рядом впечатляющих преимуществ. Главными из них выступают:

· КПД, достигающий 40% на обычных установках и 50% на дизельных двигателях с турбонаддувом. Такие показатели являются попросту недосягаемыми для агрегатов, использующих в качестве топлива бензин;

· мощность. Крутящий момент дизельного двигателя обеспечивается даже на малых оборотах, что гарантирует автомобилю уверенный и быстрый разгон;

· экологичность. Сгорание топлива под высоким давлением приводит к уменьшению количества образующихся в процессе эксплуатации двигателя выхлопных газов. В сегодняшних условиях этому плюсы дизелей придается все большее значение;

· надежность. Как правило, моторесурс дизельного агрегата примерно в полтора-два раза превосходит аналогичный показатель бензинового конкурента. Кроме того, отсутствие системы зажигания позволяет избавиться от многих традиционных проблем двигателей на бензине, например, слабой искры на свечах или их залива.

В числе недостатков, присущих дизельному двигателю, прежде всего, необходимо выделить два. Первый – это несколько более высокая стоимость транспортных средств, оборудованных этим типом силовой установки. Разница в цене обычно варьируется от 10 до 20%.

Второй минус – необходимость существенных эксплуатационных расходов. Это объясняется серьезными требованиями к качеству изготовления и уровню технического обслуживания автомобилей с дизельными двигателями. Однако, обращение в солидную компанию за приобретением, а также последующим обслуживанием, комплектованием и ремонтом сведет к минимуму недостатки агрегата, оставив в полной сохранности его впечатляющие достоинства.

Дизельные двигатели: устройство и принцип работы

Раньше дизельный двигатель отличался дымностью, шумностью, неприятными запахами и тихоходностью. Сегодня у него высокая топливная экономичность и завидная эластичность. Его динамика порой недоступна даже машинам на бензине.

Однако для них требуется качественное дизтопливо, а ремонтировать их совсем недешево. В чем принцип работы и устройство дизельного двигателя? Какими он обладает преимуществами? 

О типах дизелей

Получили распространение силовые установки, имеющие раздельную камеру сгорания, в которые горючее подается в объем особой камеры в головке блока сверху цилиндра.Эти объемы соединяет канал. 

Форма вихревой камеры энергично закручивает воздушный поток, обеспечивая лучшее смешение и воспламенение без внешних источников. Эти процессы продолжаются также в основной камере сгорания.

Дизели с раздельной камерой сгорания имеют меньшую шумность, поскольку вихревая камера гасит скорость роста давления в начале самовоспламенения. В дизелях без такого элемента самовоспламенение протекает прямо в объеме надпоршневого пространства. Поэтому они отличаются шумностью.

О работе дизельных моторов

Дизельный двигатель не нуждается в искровых свечах. Все начинается с заполнения цилиндров воздушной средой. При приходе поршня в верхнее положение(ВМТ) воздушная порция над цилиндром разогревается до 750 ± 50оС и туда производится впрыск горючего, самовоспламеняющееся в отсутствии искрового разряда.

Дизельная силовая установка все же обладает свечами накала, чтобы разогревать к/с, чтобы облегчить пуск мотора в морозы. Они выглядят как спирали из металла, возможно, керамики, помещаемые в вихревую камеру (форкамеру) при наличии раздельной к/с,а также прямо в объем нераздельной к/с.

При запуске двигателя свечи накаливания сразу же разогреваются до 1000оС и прогревают к/с для облегчения самовозгорания микста, образованного из топлива и воздуха.

Конструктивные отличия

По основному устройству дизели подобны бензиновым инжекторным моторам. Но вес подобных деталей дизеля по сравнению, с работающими на бензине, больше и лучше переносят высокое давление.

Дизели отличаются своими поршнями. Их форма диктуется разновидностью к/с и по ней просто выявить для какого двигателя предназначен этот поршень.К/с обычно располагается в поршне, верх которого, достигая ВМТ, выступает выше плоскости блока цилиндров.

Дизели характеризуется сжатием в 21±3 единицы, бензиновый – 10±1 единица. Он имеет принципиальную разницу над двигателем на бензине в формировании, воспламенении и сгорании горючей смеси.

Воздух и топливо в дизелях подается раздельно. Почти у всех современных дизелей имеется система наддува, повышающая его возможности. Чтобы оптимизировать наддув при любых оборотах, геометрия турбонагнетателей делается изменяемой. КПД, крутящий момент и вес агрегатов дизеля больше бензиновых.

Топливоподача в дизельном агрегате

В ДВС, включая дизели, очень важна подача топлива. Она обеспечивает подачу требуемой дозы горючего в нужное время и при необходимом значении давления в объем над цилиндром.

В прошлом был распространен механический впрыск горючего, затем появилась система на основе насоса-форсунки. Теперь более известен проект Common Rail.

ТНВД

Посредством топливного насоса высокого давления (ТНВД) в необходимом порядке нагнетается заданная доза горючего посредством гидромеханических форсунок, смонтированных в цилиндрах. Открытие таких форсунок происходит только тогда, когда давление достигнет наивысшего значения, а закрытие – после падения.

ТНВД делятся на рядные многоплунжерные и распределительные. Первый тип выглядит в виде отдельных секций. Причем одна секция приходится на один цилиндр. Она состоит из пары гильза-плунжер, а приводом для них служит кулачковый вал.Располагаются секции в таких узлах в ряд, поэтому они так и названы.

Рядные насосы сегодня устарели, поскольку не обеспечивают нормативов экологического и шумового характера. Стоит отметить следующее: величина давления впрыска связано с оборотами двигателя. 

Второй тип ТНВД в состоянии обеспечить большое давление впрыска по сравнению с первыми и после них токсичность выхлопа отвечает экологическим нормам. Создаваемый ими напор также связан с режимом работы дизельной силовой установки.

В данных ТНВД процесс нагнетания топлива выполняет всего единственный плунжерный распределитель, который при поступательном перемещении подает дизтопливо, а при вращательном распределяет по цилиндрам, используя форсунки.Этот компактный насос обеспечивает завидную равномерность дозирования горючего до форсунок и надежность работы при высоких оборотах. 

Но для них требуется совершенно чистое и качественное дизтопливо еще и потому, что оно является смазкой для всех трущихся частей, которые имеют очень малые зазоры.

Строгие экологические требования, введенные 30 лет назад для дизельных двигателей, заставили заводы улучшать технологию топливоподачи. Было понятно, что с устаревшей механической системой питания с этой задачей не справится.  

Кардинального изменения ситуации можно было ожидать лишь, оптимизировав процесс горения микста топливо-воздух, обеспечив воспламенение всего его объема почти мгновенно, но, чтобы такое произошло нужна высокая точность дозировки и периода впрыска.

А получить такое можно лишь увеличением давления впрыска горючего и наличием электронного управления ходом топливоподачи. С увеличением давления впрыска вместе с улучшением распыла становится лучше смешение дизтоплива с воздухом.

Такое позволяет добиться практически полного сгорания горючего и снижает загрязненность выхлопных газов. Обычная система с ТНВД с таким повышением давления не справится из-за волнового гидравлического давления. Дальнейшее его повышение приведет к поломке топливопроводов.

Топливоподача в насосах-форсунках и Common Rail

Понадобились новые системы топливоподачи. И их удалось создать: объединив форсунки с плунжерным насосом для получения системы насос-форсунка, а заставив ТНВД нагнетать напор в рампе, была создана топливоподача Common Rail, откуда форсунки получают горючее и производится впрыск, которым руководит электронный блок управления (ЭБУ).

Монтируется насосно-форсуночный симбиоз в головке блока цилиндров и действуют от толкателя с кулачковым распредвалом. Подающими и сливными магистралями являются сверления в головке блока. Поэтому величина напора, развиваемая ими, достигает 2200 бар.

Дозируется высоконапорное горючее и управляется угол опережения впрыска ЭБУ, подачей команд на запорные электромагнитные или пьезоэлектрические клапаны насоса-форсунок.

Им доступна многоимпульсная работа. Вначале подается малая доза, а затем основная, что способствует смягчению функционирования мотора и снижению токсичности выхлопа. Но показатель давления впрыска в насос-форсунках изменяется с оборотами мотора, и они довольно дороги.   

Систему топливоподачи Common Rail стали устанавливать на машины, выпускаемые серийно, 23 года назад. Система подает топливо под высоким напором в к/с независимо от изменения скорости вращения коленвала и не связано с нагрузкой. 

ТВНД в Common Rail применяется для накачки рампы горючим высокого давления и не занято функцией дозирования горючего и изменения начала впрыска. В состав Common Rail входит аккумулятор высокого давления (рампа), топливный насос, ЭБУ и набор форсунок, завязанных на аккумулирующую емкость.

Горючее в рампе всегда находится под постоянным давлением величиной 1,8±2 тыс. бар, которое поддерживается ЭБУ изменением производительности ТНВД, и на это не могут повлиять ни обороты, ни нагрузка на мотор, ни последовательность, по которой работают цилиндры.

Управление форсунками осуществляет ЭБУ путем расчета оптимума времени и периода впрыска, получая сигналы, которые посылают датчики о позиции педали газа, давлении в рампе, температуре мотора, нагрузке и др.

Форсунки делятся на электромагнитные и пьезоэлектрические. Последние отличаются быстротой функционирования и прецизионностью дозировки. Также они рассчитаны на многоимпульсный режим работы. Предварительно подается несколько капель, которые, сгорая, повышают температуру над цилиндром. А затем подается основная доза. 

Дизельному агрегату – мотору с самовоспламенением горючего при сжатии – такая ступенчатая подача топлива очень полезна, поскольку способствует плавному увеличению давления в цилиндрах. В результате наблюдается мягкое, тихое и экологичное функционирование.

Способ многократной подачи горючего также снижает температуру в цилиндрах и уменьшает образование NО в выхлопе дизельного двигателя.

Возможности агрегата с Common Rail определяет давление впрыска.У третьего поколения этой системы характерное давление составляет 2,0 тыс. бар. Четвертое поколение, готовое к серийному выпуску, будет выдавать давление 2,5 тыс. бар.

Дизельные двигатели: ремонт

Эти моторы чаще всего ломаются из-за следующих причин:

  • низкого качества солярки;
  • заводского брака или частностей мотора;
  • непрофессионального техобслуживания и недостаточно грамотного использования;
  • естественного износа мотора и системы питания;
  • низкого качества ремонта и запчастей.

В автосервисе Дизель-Моторс можно сделать ремонт дизельного двигателя любого типа. Причем мы гарантируем высокое качество ремонта, квалифицированное обслуживание и доступные цены. 

Дизельный двигатель — Википедия Переиздание // WIKI 2

Ди́зельный дви́гатель[1] (в просторечии — дизель) — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха[2]. Применяется в основном на судах, тепловозах, автобусах и грузовых автомобилях, тракторах, дизельных электростанциях, а к концу XX века стал распространен и на легковых автомобилях. Назван по имени изобретателя. Первый двигатель, работающий по такому принципу, был построен Рудольфом Дизелем в 1893 году.

Спектр видов топлива для дизельных двигателей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизельный двигатель может с определённым успехом работать и на сырой нефти.

История

Патент, выданный Рудольфу Дизелю на его изобретение Стационарный одноцилиндровый дизельный двигатель, Германия, Аугсбург, 1906

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объёма», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года[3] (в США в 1895 году[4]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее[5]. После нескольких неудач первый практически применимый образец, названный дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной, практическое применение такого двигателя было ограниченным: он был больше и тяжелее паровых машин того времени.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль — Германия при больших запасах угля не имела нефти. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода дополнительного тепла. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении двигателей постройки «Дизель-мотора» и «Тринклер-мотора» русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более совершенной и перспективной. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. «Тринклер-моторы» не имели воздушного компрессора, а подвод тепла в них был более постепенным и растянутым по времени по сравнению с двигателем Дизеля. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой[6]. Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 году Эммануил Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. Двигатель приспособили для работы на нефти, а не на керосине. С 1899 году Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизельных двигателей. В 1900 году на Всемирной выставке в Париже дизельный двигатель получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель»[7]. Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой.[8]

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизельные двигатели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизельных двигателей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизельный двигатель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизельный двигатель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы, после резкого роста цен на топливо, на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за их экономичности и долговечности, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 3761 день]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

В России в 2007 году почти весь грузовой автотранспорт и автобусный парк работал на дизельном двигателе и только незначительная часть грузовиков и средних автобусов — на бензиновом двигателе[9].

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.

  • 1-й такт. Впуск. Соответствует 0°—180° поворота коленвала. Через открытый приблизительно на 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. При этом до 10—15° поворота коленвала одновременно открыт и выхлопной клапан. Время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух от 16 (в тихоходных двигателях) до 25 (в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360°—540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх. Наконец, оно вспыхивает и сгорает по мере поступления из форсунки, а продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном двигателе — величина постоянная и зависящая только от особенностей данной конкретной конструкции двигателя. Сгорание топлива в дизельном двигателе происходит, таким образом, столько времени, сколько длится подача порции топлива из форсунки, начинаясь вблизи ВМТ. Из этого следуют два важных вывода:
    • Процесс горения длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода. Это приводит к тому, что рабочий процесс протекает при постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Так как горение продолжается при постоянном давлении при любых условиях, а время инициации постоянно, изменение момента впрыска (аналогично изменению момента зажигания у карбюраторного двигателя) в процессе работы дизеля не требуется.
    • Соотношение топливо/воздух в цилиндре может существенно отличаться от стехиометрического, причём очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объёма камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей, (на сленге железнодорожников «тепловоз даёт медведя́»).

У двигателей с аккумуляторной топливной системой (Common Rail) за счет возможности управлять открытием форсунки независимо от работы ТНВД появляется возможность оптимизировать процесс впрыска и сгорания топлива за счет многоимпульсной подачи. Суть заключается в следующем:

    • Примерно за 20-40° до ВМТ в цилиндр впрыскивается небольшая порция топлива (5-30 % от основной цикловой подачи) — предвпрыск, что позволяет сформировать начальный фронт пламени. В результате температура и давление газов в цилиндре плавно повышаются, что способствует лучшему сгоранию основной порции топлива и снижает ударные нагрузки на детали двигателя. Предвпрыск стал повсеместно применяться на двигателях стандарта Евро-3, а начиная с Евро-4 предвпрыск может быть и многостадийным;
    • Примерно за 2-7° до ВМТ начинается подача первой части основной порции топлива, при этом процесс протекает как в обычном дизеле с механически ТНВД за исключением того, что не происходит резкого повышения давления в цилиндре (оно уже повысилось при начале сгорания предваряющей порции топлива), поэтому двигатель работает с меньшим шумом;
    • Затем подача топлива на некоторое время прекращается и происходит его более полное сгорание;
    • Подается вторая часть основной порции топлива, за счет разделения подачи на две части удается обеспечить с одной стороны более полное сгорание, а с другой — больший период времени работы цилиндра при постоянном давлении. В результате снижается токсичность отработавших газов, двигатель развивает больший крутящий момент при меньших ударных нагрузках и производит меньше шума. Разделение основной подачи топлива на две части стало применяться на двигателях стандарта Евро-4;
    • Наконец незадолго до открытия выпускного клапана подается небольшая завершающая порция топлива — поствпрыск, которая догорает уже в выпускном коллекторе и турбокомпрессоре. В результате этого обеспечивается с одной стороны эффективное дожигание частиц сажи, а с другой — повышение мощности турбокомпрессора, особенно на частичных режимах работы двигателя, что сглаживает эффект «турбоямы». Поствпрыск стал активно применяться на двигателях стандарта Евро-5 и выше.

Таким образом многоимпульсная подача топлива существенно улучшает практически все характеристики дизеля и позволяет приблизить его удельную мощность к бензиновым двигателям, а при наличии турбонаддува высокого давления — превзойти её. По этой причине с развитием систем Common Rail дизельные двигатели на легковых автомобилях становятся все более популярными.

  • 4-й такт. Выпуск. Соответствует 540°—720° поворота коленвала. Поршень идёт вверх, выталкивая отработавшие газы из цилиндра через открытый на 520—530° выхлопной клапан.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • С неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск (что описано выше).
  • С разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизельных двигателей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для лёгких двигателей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких двигателей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя

Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан вверху открыт

Кроме вышеописанного четырёхтактного цикла, возможно использование двухтактного цикла.

Такты сжатия и рабочий ход двухтактного цикла аналогичны таковым в четырёхтактном цикле, но несколько укорочены, а газообмен в цилиндре осуществляется в едином процессе — продувке, занимающей сектор между концом рабочего хода и началом сжатия.

При рабочем ходе поршень идёт вниз, через открывающиеся выпускные окна (в стенке цилиндра) или через выхлопные клапаны удаляются продукты горения, несколько позднее открываются впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Перед достижением поршнем ВМТ из форсунки распыляется воспламеняющееся топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является слабым звеном двухтактного цикла. Время продувки, в сравнении с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счёт его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — ещё — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой (11Д45, 14Д40, ЯАЗ-204, −206).

Каждый цилиндр ПДП-двигателей содержит два встречно-противоположно движущихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво). Дизельные двигатели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковые двигатели 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки и укорочения рабочего хода двухтактный двигатель мощнее такого же по объёму четырёхтактного не в два, а максимум в 1,6—1,7 раз.

Ранее двухтактные дизели были широко распространены на всех видах транспорта по причине высокой удельной мощности при небольшом числе оборотов, которое ограничивалось как несовершенством моторных материалов (например, поршни дизелей приходилось делать чугунными), так и несовершенством коробок передач (прямозубые с малыми передаточными числами), тяговых генераторов (недостаточная прочность ротора и ненадежная работа коллекторно-щеточных узлов на высоких оборотов). Однако по мере совершенствования как самих моторов, так и приводимых ими агрегатов, более выгодной является форсировка двигателей за счет повышения числа оборотов, чего добиться на двухтактных двигателях достаточно сложно. Поэтому высокооборотистые четырёхтактные дизели уже к 1960-м годам вытеснили двухтактные сначала в автомобильном транспорте, затем на тепловозах, а потом и на судах среднего тоннажа и в стационарных установках. И лишь на больших морских судах с непосредственным (безредукторным) приводом гребного винта, ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается особенно выгодным при невозможн

Коммон рейл дизель принцип работы системы впрыска

Топливная система Common Rail

Топливная система Common Rail применяется в дизельных двигателях и считается наиболее прогрессивной на текущий момент.

В сравнении с другими схемами она обеспечивает более экономичный расход топлива, повышает экологическую безопасность автомобиля, отличается низким уровнем шума, но главное — создает более высокое давление подачи в камеру сгорания. 

Принцип действия системы впрыска Common Rail

На основании сигналов, поступающих от датчиков, блок управления двигателем определяет необходимое количество топлива, которое топливный насос высокого давления подает через клапан дозирования топлива.

Насос накачивает топливо в топливную рампу. Там оно находится под определенным давлением, обеспечиваемым регулятором давления топлива. В нужный момент блок управления двигателем дает команду соответствующим форсункам на начало впрыска и обеспечивает определенную продолжительность открытия клапана форсунки.

В зависимости от режимов работы двигателя блок управления двигателем корректирует параметры работы системы впрыска. С целью повышения эффективной работы двигателя в системе Common Rail реализуется многократный впрыск топлива в течение одного цикла работы двигателя.

Различают: предварительный, основной и дополнительный впрыск.

Предварительный впрыск небольшого количества топлива производится перед основным впрыском для повышения температуры и давления в камере сгорания, чем достигается ускорение самовоспламенения основного заряда, снижение шума и токсичности отработавших газов.

В зависимости от режима работы двигателя производится:

2 предварительных впрыска — на холостом ходу;

1 предварительный впрыск — при повышении нагрузки;

0(предварительный впрыск не производится) — при полной нагрузке.

Основной впрыск обеспечивает стабильную работу двигателя.

Дополнительный впрыск производится для повышения температуры отработавших газов и улучшения сгорания частиц сажи в сажевом фильтре (регенерация сажевого фильтра).

Преимущества и недостатки

Плюсы:

  1. Расход горючего снижается на 15%, при этом мощность силового агрегата увеличивается на 40%.
  2. Снижение уровня шума и вибраций.
  3. Значительное снижение выхлопа, соответствие экологическому стандарту Евро-4.
  4. Давление для подачи горючего не зависит от скорости вращения коленвала. Благодаря этому удалось добиться стабилизации горения на холостом ходу и малых оборотах.
  5. Топливо подаётся несколькими порциями за цикл, что обеспечивает его полное сгорание.
  6. Простота конструкции.

Недостатки:

  1. Форсунки имеют более сложную конструкцию и требуют более частой замены.
  2. Высокое требование к качеству топлива.
  3. Нарушение герметизации выводит из строя всю систему.

Разновидности систем common rail

Тип 1. С  электромагнитным клапаном

Тип 2. С пьезоэлектрическим приводом

Оба типа могут устанавливаться на дизельные двигатели как легкового, так и грузового транспорта.

Профилактика работы системы common rail

Очистка форсунок от нагара и загрязнений

Эту работу надо проводить не реже 1 раза в сервисный интервал. Оптимальная частота очистки форсунок – каждые 3-5 тыс км. пробега. 

Использование защитной (комплексной) топливной присадки

Функция присадки — защита от коррозии.

Защита топливного фильтра дизельных автомобилей

Топливный фильтр присутствует на любом дизельном автомобиле. Крайне важным является его правильная замена. 

Особенности эксплуатации системы common rail в зимний период

Дизельное топливо зимой должно обладать такими же характеристиками, как и в летний период.

Для улучшения низкотемпературных свойств топлива и бесперебойной работы системы common rail рекомендуется использовать только качественные антигели. 

Секрет эффективности Common Rail

  1. Разделение цикловой подачи на такты.
  2. Впрыск горючего под высоким давлением.

Причины и признаки поломки Common Rail

  • ухудшение пуска мотора после долгого простоя;
  • падение мощности силового агрегата, что заметно при большой нагрузке или высокой скорости;
  • увеличение шума работы двигателя;
  • нехарактерные вибрации движка;
  • нехарактерный цвет выхлопа (черный или белый).

Основная причина неисправностей — низкое качество топлива.

Обычно выходят из строя форсунки, ТНВД или насосы топливной подкачки.

  • неисправность форсунок — мотор глохнет даже при наборе скорости;
  • выход из строя датчиков или инжекторов ТНВД;
  • загрязнение насоса высокого давления;
  • подъём форсунки;
  • разгерметизация насоса или его поломка.

Как работает?

На основании сигналов от контролирующих датчиков система формирует нужное количество топлива, которое подается через дозирующий клапан в насос, а затем под давлением на рампу. Нужное давление удерживается специальным регулятором.

В определенный момент от ЭБУ поступает сигнал на форсунки, они открывают каналы на определённый промежуток времени. 

Коммон рейл состоит из трех главных элементов:

  • участок низкого давления;
  • участок высокого давления;
  • датчики, передающие сигналы от системы на ЭБУ.

Участок высокого давления включает в себя:

  • насос высокого давления, служащий заменой обычному ТНВД;
  • трубку-аккумулятор, которая служит для поступления горючего с определенным давлением;
  • патрубки высокого давления;
  • форсунки двигателя.

Участок низкого давления представлен:

  • топливным баком;
  • патрубками соединения;
  • насосом подкачки;
  • топливным фильтром.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Принцип работы четырехтактного дизельного двигателя

— Engihub

Все студенты-инженеры, особенно инженеры-механики, прошли через слово «Дизельный двигатель». Эти люди могут лучше знать принцип работы дизельного двигателя, а также автомобильного двигателя.

Если у вас нет степени бакалавра в области машиностроения, вы все равно можете легко понять работу двигателя внутреннего сгорания. Вам просто нужно прочитать статью полностью.

Дизельный двигатель широко используется в автомобильной, автомобильной и автомобильной промышленности.Может также использоваться в дизель-генераторе и на кораблях. В настоящее время сельскохозяйственный насос также работает на небольшом дизельном двигателе.

Если вы — механик по дизельному оборудованию или хотите стать техником и механиком по обслуживанию дизельных двигателей, этот пост для вас.

Diesel engine working

Вы также можете посмотреть и подписаться на наш канал YouTube для инженерных образовательных видео, нажав здесь https://goo.gl/4jeDFu

  • Итак, как работает четырехтактный дизельный двигатель

Я хотел бы поделиться деталями в очень простой форме, поэтому вы лучше поймете работу двигателя.

В дизельном двигателе дизельное топливо, легкое и тяжелое масло используются в качестве топлива. Это топливо воспламеняется путем впрыска в цилиндр двигателя, содержащий сжатый воздух до очень высокого давления.

Температура этого сжатого воздуха достаточно высокая, чтобы воспламенить топливо. Следовательно, в дизельном двигателе не используется свеча зажигания.

Этот высокотемпературный сжатый воздух, используемый в виде очень мелкой струи, впрыскивается с контролируемой скоростью. Так что сгорание топлива происходит при постоянном давлении.

Топливная форсунка или топливный насос, распылитель топлива используется для этой операции. Мощность генерируется путем завершения рабочего хода.

  • Рабочие такты дизельного двигателя

Ход всасывания

suction stroke diesel engine

В этом такте поршень движется вниз от верхней мертвой точки к нижней мертвой точке. В результате впускной клапан открывается и воздух втягивается в цилиндр.

После подачи достаточного количества воздуха под давлением всасывающий клапан закрывается в конце хода.Выпускной клапан остается закрытым во время этого хода.

ход сжатия

compression stroke diesel engine

В этом такте поршень движется вверх от нижней мертвой точки к верхней мертвой точке. Во время этого хода оба впускных и выпускных клапана закрыты.

Воздух, всасываемый в цилиндр во время такта всасывания, захватывается внутри цилиндра и сжимается благодаря движению поршня вверх.

В дизельном двигателе используемая степень сжатия очень высокая, в результате воздух, наконец, сжимается до очень высокого давления до 40 кг / см² при этом давлении, и температура воздуха достигает 1000 ° С, что достаточно, чтобы зажечь топливо.

Ход постоянного давления

В этом такте топливо впрыскивается в горячий сжатый воздух, где оно начинает гореть, при постоянном давлении. Когда поршень движется к своей верхней мертвой точке, подача топлива прекращается.

Следует сказать, что топливо впрыскивается в конце такта сжатия, и впрыск продолжается до точки отсечки, но на практике зажигание начинается до конца такта сжатия, чтобы позаботиться о метке зажигания. ,

Рабочая или Power Stroke

working stroke diesel engine

В этом такте впускной и выпускной клапаны остаются закрытыми.

Горячие газы (которые образуются из-за воспламенения топлива во время такта сжатия) и сжатый воздух теперь расширяются адиабатически, в цилиндре, толкающем поршень вниз, и, следовательно, работа выполнена.

В конце хода поршень наконец достигает нижней мертвой точки.

Ход выхлопных газов

exhaust stroke diesel engine

В этот ход поршень снова движется вверх.Выпускной клапан открывается, а впускной и топливный клапан закрыты. Большая часть сгоревших топливных газов выходит за счет собственного расширения.

Движение поршня вверх выталкивает оставшиеся газы через открытый выпускной клапан. В камере сгорания остается только небольшое количество выхлопных газов.

В конце такта выпуска выпускной клапан закрывается, и цикл таким образом завершается.

Поскольку при работе во впускном и выпускном клапанах имеется некоторое сопротивление, и некоторая часть отработавших газов остается внутри цилиндра в течение цикла, что приводит к потерям при перекачке.

Эти потери при перекачке рассматриваются как отрицательная работа и поэтому вычитаются из фактической работы, выполненной в течение цикла. Это даст нам сеть, сделанную из цикла.

На самом деле все эти удары выполняются с такой высокой скоростью; Вы не можете видеть это шаг за шагом, но это происходит в каждом четырехтактном двигателе.

Помимо этой информации, вам предлагается прочитать что-то еще из инженерных книг

Итак, здесь вы найдете лучшие инженерные ресурсы для более подробной информации

Чтобы получить более подробную информацию о теме, я рекомендую прочитать

Если вам понравился пост, поделитесь им с друзьями, а также на социальных сайтах.Нажмите на колокольчик, чтобы подписаться

,

Как работает дизельный двигатель?

Когда люди думают о дизельном двигателе, они часто думают о большом грузовике, который перевозит много предметов. Хотя дизельные двигатели обычно встречаются в более крупных транспортных средствах, они действительно могут быть в автомобилях любого размера. Преимущество дизельного двигателя заключается в улучшении миль на галлон. Поскольку водители грузовиков постоянно находятся в пути большую часть дня, им выгоднее водить автомобиль с дизельным двигателем, чем автомобиль с бензиновым двигателем. Причина, по которой дизельные двигатели обеспечивают лучший расход топлива, заключается в том, что у них меньше оборотов в минуту.

В отличие от бензинового двигателя, воздух — это единственное, что сжимается в камере. Этот сильно сжатый воздух затем используется для зажигания дизельного топлива. Это отличается от бензинового двигателя, который требует отдельных свечей зажигания, чтобы генерировать искру для зажигания. Дизельный двигатель не требует такой искры. Он полагается исключительно на сильно сжатый воздух, чтобы генерировать достаточно тепла для правильного воспламенения своего топлива.

Читайте также: Принцип работы бензинового двигателя

Четыре такта дизельного двигателя

Существуют два типа дизельных двигателей; четырехтактный двигатель и двухтактный двигатель.Типичный дизельный двигатель будет иметь четыре такта, как бензиновый двигатель. Тем не менее, процесс ударов отличается от бензиновых ударов. Основное различие между этими двумя процессами связано с тем, как топливо подается и зажигается.

По иронии судьбы, был еще один немецкий инженер, который изобрел четыре такта дизельного двигателя. Этого изобретателя звали Рудольф Дизель, который изобрел процесс под названием «Дизельный цикл». Это цикл, который основывается на более высоком коэффициенте сжатия воздуха.Тепло, выделяемое этим сжатым воздухом, может доходить до 400 — 800 ° C. Иногда температура даже поднимется выше этой температуры. Но необходимо, чтобы температура поднялась до этого уровня, потому что, если бы этого не произошло, дизельное топливо не могло бы воспламениться.

Ниже приведены 4 такта дизельного двигателя.

Ход № 1 — Первый ход цикла дизельного двигателя практически идентичен циклу бензина. Впускной клапан открывается и пропускает наружный воздух внутрь.Цилиндры ниже принимают этот воздух из-за движения поршней вниз, которые втягивают в них воздух.

Stroke # 2 — Второй ход включает сжатие. После закрытия впускного клапана воздух сжимается, когда поршни начинают двигаться вверх. В этом регионе есть небольшое ограниченное пространство, которое обеспечивает более высокое сжатие.

Ход № 3 — Третий ход будет включать сгорание. Когда воздух становится сильно сжатым, он начинает сильно нагреваться.Топливные инжекторы затем распыляют дизельное топливо в камеру сгорания, где находится весь этот горячий сжатый воздух. Как только топливо касается этого сжатого воздуха, оно сразу же воспламеняется. Результатом этого воспламенения является тепловая энергия, которая создает энергию, необходимую для движения транспортного средства.

Ход № 4 — Четвертый ход касается выхлопа. Все образующиеся выхлопные газы будут выталкиваться из открытого выпускного клапана из-за поршней. Это создает печально известный черный дым, которым известны дизельные автомобили.Этот дым выйдет из стеков и / или выхлопной трубы.

Читайте также: Дизельный двигатель VS Сравнение бензиновых двигателей

Заключение

Опять же, для дизельных двигателей не нужно беспокоиться о свечах зажигания. Это может быть меньше, чем обслуживание, о котором вам придется беспокоиться. С другой стороны, вы все равно должны продолжать поддерживать свой двигатель, регулярно доставляя свое транспортное средство в автомагазин для техосмотров. Это будет гарантией того, что вы получите максимально возможный срок службы дизельного двигателя.

Как работают дизельные двигатели?

Крис Вудфорд. Последнее обновление: 29 января 2020 г.

Вы когда-нибудь смотрели в изумлении, когда гигантский грузовик медленно ползет вверх по холму? Возможно нет! Такие вещи случаются каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднял против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться То, что ты видишь, довольно примечательно.Дизельные двигатели — это мощь наших самых больших машин — грузовиков, поезда, корабли и подводные лодки. На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но они генерируют больше энергии, более эффективно, работая немного по-другому. Давайте возьмем пристальный взгляд!

Фото: дизельные двигатели (как в этом железнодорожном локомотиве) идеально подходят для тяги тяжелых поездов. Это великолепно сохранившийся (и отлично отполированный!) Британский железнодорожный класс 55 («Deltic»), номер 55022, названный Royal Scots Grey 1960 года.Вот картинка из Дизельный двигатель Napier Deltic, который приводит его в действие.

Что такое дизельный двигатель?

Фото: типичный дизельный двигатель (из пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США.

Как и бензиновый двигатель, дизельный двигатель — это тип внутреннего сгорания. двигатель. Горение это еще одно слово для горения, и внутреннее значит внутри, поэтому двигатель внутреннего сгорания просто тот, где топливо сгорает внутри главной части двигателя (цилиндры) где производится энергия.Это очень отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровом двигателе есть большой пожар на одном конце котел, который нагревает воду для приготовления пара. Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень назад и вперед для перемещения колес. Это внешний сгорание, потому что огонь находится за пределами цилиндра (действительно, обычно 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих цилиндров.Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно течь откуда он производится в цилиндр: все происходит одинаково место. Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

Как дизельный двигатель отличается от бензинового двигателя?

Бензиновые и дизельные двигатели работают как от внутреннего сгорания, но в немного по-другому.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, что делает его взрывоопасным, и небольшая электрическая искра от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерируя энергию, которая толкает поршень вниз по цилиндру и (через коленвал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели

похожи, но проще.Во-первых, воздух допускается в цилиндр и поршень сжимает его, но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжатый примерно до десятой части своего первоначального объема. Но в дизеле двигатель, воздух сжимается на что-нибудь от 14 до 25 раз. Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали чем горячее в ваших руках, тем дольше вы его используете. Это потому что сжатие газа генерирует тепло. Представьте себе, сколько тепла генерируется путем нагнетания воздуха в 14–25 раз меньше пространства, чем обычно занимает.Так много тепла, как это бывает, что воздух становится действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда и очень горячее. Как только воздух сжат, туман топлива распыляется в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает немного как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от того, сколько энергии водитель хочет, чтобы двигатель работал.) Воздух настолько горячий, что топливо мгновенно воспламеняется и взрывается без искры подключи.Этот контролируемый взрыв заставляет поршень вытолкнуть цилиндр, производящий энергию, которая приводит в движение автомобиль или который двигатель установлен. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется сотни или тысячи раз минут!

Что делает дизельный двигатель более эффективным?

Дизельные двигатели в два раза эффективнее бензиновых двигателей — около 40 процентов эффективный, то есть.Проще говоря, это означает, что вы можете пойти гораздо дальше на том же количестве топлива (или получите больше миль за свои деньги). Есть несколько причин этот. Во-первых, они сжимают больше и работают при более высоких температурах. Фундаментальная теория о том, как работают тепловые двигатели, известный как правило Карно, говорит нам, что эффективность двигателя зависит на высоких и низких температурах, между которыми он работает. Дизельный двигатель с большим перепадом температур (более высокая температура или самая низкая температура) более эффективна.Во-вторых, отсутствие системы зажигания с зажиганием делает более простая конструкция, которая может легко сжать воздух намного больше — и это делает топливо более горячим и более полным, высвобождая больше энергии. Есть еще одна экономия эффективности слишком. В бензиновом двигателе, который не работает на полную мощность, вам нужно подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на меньшей мощности. Другим важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, блокируя их атомы вместе (другими словами, дизель имеет более высокую плотность энергии, чем бензин).Дизель тоже лучше смазка, чем бензин, так дизельный двигатель будет естественно работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совсем разные. Вы будете знать это очень много, если вы когда-либо слышал страшные истории людей, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель является низкосортный, менее рафинированный продукт из нефти, полученный из более тяжелых углеводороды (молекулы построены из большего количества углерода и водорода атомов).Сырые дизельные двигатели, которым не хватает сложного впрыска топлива Теоретически, системы могут работать практически на любом углеводородном топливе, поэтому популярность биодизеля (вид биотоплива, сделанного, среди прочего, вещи, отработанные растительные масла). Изобретатель дизельного двигателя, Рудольф Дизель, успешно запустил свои ранние двигатели на арахисовом масле и думал, что его двигатель сделает людям одолжение, освободив их от зависимость от топлива, как уголь и бензин. Если бы он только знал!

Фото: смазка будет путешествовать: Джошуа и Кайя Тикелл, пара защитники окружающей среды, используйте этот трейлер (Green Grease Machine) для производства биодизельного топлива для своего фургона (прикрепленного к передней части) с использованием отработанного растительного масла, выбрасываемого ресторанами быстрого питания.Топливо стоит внушительные $ 0,80 за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, на сегодняшний день, нашел во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, более эффективный и более экономичный. Они также безопаснее, потому что дизельное топливо меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей, они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо больше напряжения и деформации, чем в бензиновом двигателе. Поэтому дизельные двигатели должны быть сильнее и тяжелее и почему долго В то время они использовались только для питания больших транспортных средств и машин. Пока это может показаться недостатком, это означает, что дизельные двигатели, как правило, более Прочный и прослужит намного дольше, чем бензиновые двигатели.

Фото: дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они шумят, и они производят много несгоревших частиц сажи, которые являются грязными и опасными для здоровья. В теории, дизели более эффективны, поэтому они следует использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и вносить меньший вклад в глобальное потепление.На практике есть спор о том, действительно ли это так. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива только немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно выходят лучше. Другой Недавние исследования показывают, что даже новые дизельные автомобили очень загрязняющие. Как насчет выбросов CO2? По данным Британского общества автопроизводителей и трейдеры: «Дизельные автомобили внесли огромный вклад в сокращение выбросов CO2.С 2002 года покупатели, выбирающие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу «. Дизельные двигатели, как правило, стоят дороже, чем бензиновые двигатели, хотя их более низкие эксплуатационные расходы и длительный срок службы обычно компенсирует это. Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор произошло значительное падение продаж скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязняют окружающую среду.

Нет сомнений, что дизельные двигатели будут продолжать работать на тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы зависят от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный импульс для того, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти усовершенствованные газовые двигатели подрывают некоторые из очевидных преимуществ использования дизелей в автомобилях. В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться выдавленными вообще.Опять же сами дизели постоянно развиваются; в 2011 году министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизель может остаться претендент на меньшие транспортные средства в течение многих лет, особенно если их выбросы сажи может быть правильно решена.

Кто изобрел дизельный двигатель?

Произведение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, который он нарисовал в своем патенте 1895 года.Цилиндр (1) находится сверху. 2) «Плунжер» (как его называл дизель) крепится кривошипом и шатуном (3) к маховику (4). Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную частоту вращения двигателя (отключение подачи топлива, если двигатель работает слишком быстро, затем его включение, когда двигатель снова замедляется). Иллюстрации любезно предоставлены Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: «Способ и устройство для преобразования тепла в работу» Рудольфа Дизеля.

Не удивительно, что это был немецкий инженер Рудольф Дизель (1858–1913). Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Рошас (1815–1893) описывает основную теорию четырехтактного двигателя и подает патент на эту идею 16 февраля 1862 года, но ему не удается собрать работающую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: в возрасте 22 лет, Рудольф Дизель переходит на работу к инженеру-холодильнику Карлу фону Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как сделать улучшенное внутреннее сгорание двигатель использует более высокое давление и температуру, для чего не требуется свеча зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы другие не могли ими воспользоваться.
  • 1893: Дизель строит огромный, стационарный двигатель, который работает целую минуту под своей собственной власть, 17 февраля 1894 г.
  • 1895: патент на дизельное топливо выдан в США 16 июля 1895 года.
  • 1898: с помощью Дизеля, первый коммерческий двигатель построен в завод в Сент-Луисе, штат Миссури, США, Адольф Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На дизельном заводе в Аугсбурге начинается производство дизельных двигателей. Дизель начинает лицензировать свои идеи другим фирмам и вскоре становится очень богатый
  • 1903: Petit Pierre, один из первых дизельных кораблей, начинает работу над каналом Марн-Рейн во Франции.
  • 1912: MS Selandia, первый океанский дизельный корабль, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, по-видимому, падая за борт с корабля Дрезден во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или совершил самоубийство, но ничего не происходит доказана.
  • 1931: Clessie Cummins, основатель Cummins Engine Co., строящий один из первых успешных автомобилей с дизельным двигателем и демонстрирующий его эффективность, перевозя его из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Caterpillar совершил революцию в сельском хозяйстве, представив Diesel Sixty, первый дизельный гусеничный трактор на базе популярного Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и это остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой мощный дизель-электрический локомотив EMD FT и отправляет первый (номер 103) в путешествие на протяжении года, чтобы продемонстрировать свою ценность.Несомненно, это доказывает превосходство дизельного двигателя.
  • 1970-х годов: глобальный топливный кризис вызывает новый интерес к использованию небольших, эффективных дизельных двигателей в автомобилях.
  • 1987: Всемирно известный корабль Queen Elizabeth 2 (QE2) оснащен девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что делает его самым мощным торговым судном с дизельным двигателем в то время.
  • 2000: Peugeot представляет первый в мире фильтр частиц (PF) для дизельных двигателей на своей модели 607, утверждая, что выбросы сажи на 99 процентов ниже.
  • 2015: Volkswagen погрузился в огромный глобальный скандал после систематического обмана на тестах на выбросы дизельного двигателя. Продажи дизельных автомобилей резко упали впервые за многие годы.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявив, что все новые автомобили будут гибридами или полностью электрическими с 2019 года.
,Дизельный двигатель
: как работает четырехтактный дизельный двигатель ИЛИ цикл зажигания от сжатия?
Объяснение принципа и рабочего цикла дизельного двигателя

:

В основном, есть два типа дизельных двигателей — Четырехтактный и Двухтактный. «Дизельный цикл» использует более высокий коэффициент сжатия. Он был назван в честь немецкого инженера Рудольфа Дизеля, который изобрел и разработал первый четырехтактный дизельный двигатель. Четыре такта дизельного цикла аналогичны бензиновому двигателю. Тем не менее, «Дизельный цикл» значительно отстает от того, как топливная система снабжает дизель двигателем и зажигает его.

Обычный дизельный двигатель внутреннего сгорания работает в режиме «Дизельный цикл». В простых дизельных двигателях инжектор впрыскивает дизель в камеру сгорания непосредственно над поршнем. «Двигатель с воспламенением от сжатия» — это еще одно название дизельного двигателя. Это происходит главным образом потому, что он сжигает дизель горячим и сжатым воздухом. Температура воздуха внутри камеры сгорания поднимается выше 400–800 ° C. Это, в свою очередь, зажигает дизель, впрыскиваемый в камеру сгорания.Таким образом, «Дизельный цикл» не использует внешнего механизма, такого как свеча зажигания, для зажигания воздушно-топливной смеси.

Четырехтактный дизельный двигатель работает по следующему циклу:

1. Ход всасывания — При перемещении поршней вниз и открытии впускного клапана создается всасывание чистого воздуха в цилиндры.

Diesel Suction Stroke дизельный всасывающий ход

2. Сжатие — При закрытии впускного клапана область над поршнем закрывается.Поршень движется вверх, что приводит к сжатию воздуха в ограниченном пространстве при более высокой степени сжатия.

Diesel Compression Stroke дизельный компрессионный ход

Процесс сгорания — На этом этапе инжектор распыляет дизельное топливо в камеру сгорания. Повышение температуры воздуха вызвано его сжатием; приводит к мгновенному сгоранию дизеля при взрыве. Это приводит к выделению тепла, которое генерирует расширяющиеся силы, известные как сила.

Дизельный двигатель Diesel Engine Combustion

3.Рабочий ход — Кроме того, эти силы снова толкают поршни вниз, приводя их в возвратно-поступательное движение.

Diesel Power Stroke дизельный силовой ход

4. Ход выхлопного газа — На пути вверх поршни выталкивают выхлопные газы над собой через выпускной клапан, который открывается во время такта выпуска.

Diesel Exhaust Stroke Ход дизельного выхлопа

Этот цикл повторяется до тех пор, пока двигатель не выключится, что приведет к продолжению работы двигателя.

4 Stroke Diesel Engine Animation 4-тактный дизельный двигатель анимация

Дизельный двигатель в основном подразделяется на два типа — с косвенным впрыском (IDI) и с непосредственным впрыском (DI).Дизельный цикл с прямым впрыском был технологией более раннего поколения. Позже он превратился в своего преемника и более продвинутые CRDi. Грузовые автомобили, автобусы и генераторы предыдущего поколения все еще широко используют простые двигатели DI. Кроме того, сложные и усовершенствованные двигатели CRDi стали очень популярными в седанах, MPV, внедорожниках и роскошных автомобилях в недавнем прошлом.

Для получения дополнительной информации, пожалуйста, нажмите здесь:

https://www.cummins.com

Подробнее: Как работает двухтактный двигатель с воспламенением от сжатия? >>

О CarBikeTech

CarBikeTech — технический блог.Его участники имеют опыт работы более 20 лет в автомобильной сфере. CarBikeTech регулярно публикует специальные технические статьи по автомобильной технике.

Просмотреть все сообщения от CarBikeTech

,

Отправить ответ

avatar
  Подписаться  
Уведомление о