РазноеДвигатель водородный принцип работы: Водородный транспорт — Википедия – что это, как работает, схема, фото, безопасность,

Двигатель водородный принцип работы: Водородный транспорт — Википедия – что это, как работает, схема, фото, безопасность,

Содержание

что это, как работает, схема, фото, безопасность,

Водородный автомобиль считается самым экологичным транспортом наряду с электрокарами. Заправка авто на водородном топливе занимает считанные минуты, а «горючего» хватит на 400 км и более. А баллон водорода после использования оставляет после себя полведра чистой воды.

Почему же автомобильные концерны неохотно переходят на этот альтернативный источник энергии? Вопрос в стоимости и производстве этого газа.

В автомобилях с водородным двигателем применяются специальные топливные ячейки. Называются такие авто FCEV, что расшифровывается как Fuel Cell Electric Vehicles — электрокары с топливным элементом вместе батареи. Самая известная модель – это Toyota Mirai. А вообще многие модели есть только в виде концепта, серийно пока выпускается немного экземпляров.

водородный автомобиль grove

В статье расскажу что это такое — водородный автомобиль, принцип работы и устройство, что такое водородный двигатель, плюсы и минусы авто на водороде, список моделей, ждёт ли будущее эта технология. Обещаю, будет интересно!

Немного истории

Впервые двигатель внутреннего сгорания придумал Франсуа Исаак де Риваз в 1806 г. Этот изобретатель извлёк чистый водород при помощи такой технологии, как электролиз воды. Он изобрёл поршневой двигатель, который назвали в его честь — машина де Риваза. Через пару лет изобретатель сконструировал передвижное устройство с настоящим водородным двигателем. Таким образом, первый водородный автомобиль появился гораздо раньше, чем думают многие.

автомобили на водородном топливе Риваз и его машина

А самые первые водородные топливные элементы создал в 1863 году английский учёный Вильям Гроув. При помощи опыта он выявил, что при разложении воды на кислород и водород высвобождается энергия. В дальнейшем он создал водородные ячейки, которые стали называть Fuel Cell. Их можно было объединить для получения необходимого количества энергии для автомобиля.

водородный автомобиль grove цена

Во время блокады Ленинграда был высокий дефицит бензина, а вот водорода было немало. Техник Б. Шелищ предложил вместо стандартного топлива применять смесь воздуха и водорода для двигателей. Таким образом, в городе работало на водороде более 500 автомобилей ГАЗ-АА.

как работает водородный двигатель на автомобиле

Первый водородный автомобиль на топливных ячейках создала компания General Motors в 1966, и назывался он GM Electrovan. Гораздо позже, в 1980-х годах, одновременно во многих развитых странах (Япония, США, Канада, Германия и СССР) запустили эксперимент по созданию автомобилей, которые использовали в качестве топлива водород, а также его смеси с бензином и природным газом.

водородный двигатель для автомобиля принцип Фото GM Electrovan

После этих экспериментов в 2000-х годах крупные автоконцерны стали разрабатывать коммерческие автомобили на водородном двигателе. Самым продвинутым и популярным автомобилем стал Toyota Mirai, в котором находится многоячеистый топливный генератор.

На данный момент создание автомобиля на водородном топливе – это дорогое удовольствие, поэтому многие производители ищут способы для снижения этих расходов.

А что значит водородное топливо на самом деле?

Что такое водородное топливо?

Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.

На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.

Водород для топлива добывают следующими способами:

  1. Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.водородные автомобили принцип работы
  2. Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.водородная ячейка на автомобиль
  3. Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.как работает водородный автомобиль

В чём преимущество этого альтернативного источника энергии?

  • Топливные элементы не выделяют вредных выбросов.
  • Огромный потенциал и возможные прибыли.
  • Моментальная заправка автомобилей (3 минуты).
  • Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.

Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Toyota Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.

Плюсы и минусы водородной установки для автомобиля

Расскажу про плюсы и минусы топлива, которым заправляют водородный автомобиль.

водородный двигатель для автомобиля ссср

Недостатки водородного топлива:

  • Нет эффективного способа добычи газа, к тому же производство загрязняет окружающую среду.
  • Для создания сети водородных заправок требуются внушительные средства (около 2 млн. долл. на одну среднюю заправку). Поэтому очень сложно найти заправки, их практически нет.
  • Высокая стоимость автомобиля.
  • Передвигаться можно лишь в тех местах, где имеются заправки.
  • Стоимость заправки будет стоить столько же, как и бензин. В этом смысле электрокар гораздо выгоднее.
  • Водородный автомобиль тяжёлый из-за сложной конструкции: много топливных ячеек, аккумулятор, электропреобразователь, большие баллоны для водорода, где давление целых 700 атм. В электромобиле всё проще – требуется только место под большой АКБ.

Плюсы водородного топлива:

  • Нет вредных выбросов в атмосферу.
  • Водородные двигатели практически не шумят.
  • Быстрая заправка – менее 5 минут.
  • Есть большой потенциал для развития.
  • Водород даёт в 3 раза больше энергии, чем бензин.
  • Высокий крутящий момент при начале движения.
  • Водорода очень много на планете – 1% от массы Земли. При сгорании он просто превращается в воду, поэтому – это неиссякаемый источник энергии по сравнению с другим ископаемым топливом.
  • Водород безопаснее бензина, он воспламеняется в 15 раз меньше. Но если на водород попадёт искра, то он моментально воспламенится.
  • Хороший запас хода водородного авто – 400-1000 км.

Опасен ли водород для человека?

Водород очень летуч, а также это легковоспламеняющийся газ, который хранить и перевозить следует предельно аккуратно. Сгорает он тоже довольно быстро. Например, газ в дирижабле «Гинденбург» полностью сгорел за полминуты, поэтому погибло только треть пассажиров.

водородное топливо для автомобилей что это

Когда на дорогах появится большое количество водородных автомобилей, то надо будет ввести новые меры безопасности. Ведь при пробитии бака с водородом и наличием искр рядом газ может загореться. Поэтому в водородных автомобилях баки делают очень прочные, которые даже могут выдержать выстрел из крупнокалиберного пистолета. Поэтому при соблюдении правил безопасности, авто на водороде не опаснее бензиновых и дизельных моделей.

Чем водородные авто лучше электромобилей?

Этот вопрос не совсем правильный, поскольку автомобили на водородных ячейках и электробатарее считаются электромобилями. Всё зависит от того, чем заправляют машину – водородом или электричеством.

Водород в автомобиле применяют в двух вариантах: сжигание топлива в цилиндрах или подзарядка топливных элементов.

Главное отличие водородных топливных ячеек от батарей в том, что они служат очень много лет и не нуждаются в обслуживании. А батарея в электромобиле выходит из строя уже через 5 лет.

принцип работы водородного двигателя автомобиля grove Как выглядит батарея в электрокаре

На холоде водородное транспортное средство включится без проблем, а аккумулятор электрического авто может полностью потерять заряд. Стоимость электрокаров дешевле, чем водородного: Toyota Mirai стоит 57 тыс. долл., а Tesla – от 45 тыс. долл. Водородные машины заправляются за считанные минуты, а электрокары – пару часов.

Теперь перейдём к устройству и принципу работы водородного авто, как он обеспечивает работу двигателя?

Как работает водородный автомобиль

Расскажу про то, как устроен автомобиль на примере популярной модели Toyota Mirai.

Не так давно, в 2013 году Тойота представила миру первый в мире серийный водородный автомобиль Mirai, который сам вырабатывает для себя электричество. В нём находится электрический двигатель, который имеет мощность 154 л. с. В Mirai находятся 370 топливных элементов, постоянный ток которых преобразуется в переменный, а напряжение при этом повышается до 650 В. Максимальная скорость Toyota Mirai 175 км/ч. Дополнительный аккумулятор собирает лишнюю энергию, который может при необходимости обеспечить питание небольшого дома. Запас хода этого автомобиля 500 км, а по факту – примерно 350 км. Для сравнения — электрокар Tesla Model S может пройти на одном заряде целых 540 км, но, к сожалению, зарядка занимает целых 1,5 часа.

водородный автомобиль на чем ездит

Всё про водородный автомобиль: что это такое, принцип работы, как устроен, цена, чем заправляют, список водородных авто, фото

За несколько км пробега автомобиль Mirai вырабатывает стакан дистиллированной воды, которая вполне пригодна к употреблению (она с лёгким привкусом пластика).

А как работает топливный элемент, простыми словами? Автомобиль заправляется водородом. Он смешивается с платиновым катализатором и кислородом в электрохимической системе. В результате этой реакции вырабатывается электрический ток, который питает двигатель и аккумуляторную батарею. В результате реакции образуется вода или пар.

автомобили с водородным двигателем в россии

Всё про водородный автомобиль: что это такое, принцип работы, как устроен, цена, чем заправляют, список водородных авто, фото

Топливные ячейки с протонообменными мембранами сразу же производят энергию, обеспечивают очень высокую мощность и мало нагреваются. Максимальный срок службы водородных ячеек 250 тыс. км пробега, которые при необходимости можно заменить.

А какое устройство и принцип работы водородного двигателя? Для работы применяют роторные ДВС, потому что стандартные поршневые двигатели быстро выходят из строя из-за влияния водорода на смазку и детали ДВС. Из-за высокой разницы между бензином и водородом перевести обычный двигатель непросто, особенно если это делать своими руками. Водород при горении вызывает перегрев клапанов, масла, поршней. Если нагрузку сделать очень высокую, то возникает детонация.

Решили эту задачу заменой чистого водорода на его смесь с бензином. Подача газа уменьшается при повышении крутящего момента, чтобы предотвратить перегрев деталей силового агрегата. Это применяется в таких моделях, как Mazda RX-8 Hydrogen RE и BMW Hydrogen 7, который был выпущен всего в 100 экземплярах. Здесь переключение между 2 типами топлива происходит автоматически. Но, несмотря на успешность эксперимента, всё равно имелись проблемы: сильно падала мощность авто, запаса водорода хватало всего на 200 км, а также из-за наличия бензина автомобиль не был признан экологически чистым.

электро или водородные автомобили Mazda RX-8 Hydrogen RE

Зачем в водородных автомобилях платина? Этот дорогой металл использовался в качестве катализатора, цена которого очень высока, что не может не отражаться на стоимости автомобиля. Хотя американские учёные уже создали катализатор на основе углеродных трубок, который стоит в 650 дешевле платины.

Таким образом, механизм работы водородного автомобиля похож на работу электромобилей. Всё дело только в источнике энергии.

Где заправляют водородные автомобили?

К сожалению, заправочных водородных станций в мире совсем мало. В 2018 г. их около 300, половина которых находится в Северной Америке, а другие – в Японии, Германии и Китае.

Кроме этого, существуют домашние и мобильные заправки. Они могут производить около тонны чистого водорода в год. Этого вполне хватит для заправки нескольких автомобилей в день. Топливо производится при помощи гидролиза воды, установку запускают только ночью, чтобы не нагружать электрическую сеть.

чем заправляется водородный автомобиль

Автозаправки бывают 3 типов:

  1. Малые. Они производят около 20 кг водорода в 24 часа. Хватит для полной заправки 5 легковых автомобилей.
  2. Средние. Вырабатывают от 50 до 1250 кг топлива в сутки. Могут в день заправлять 250 стандартных машин или 25 грузовиков.
  3. Промышленные. Производят более 2500 кг чистого водорода. Могут заправлять больше 500 легковушек в сутки.

водородные батареи для автомобиля

Заправка состоит из компрессора, диспенсера, системы очистки, электрического лизёра, система хранения водорода. Топливо может производиться как при помощи электролиза воды, так и с помощью паровой конверсии метана.

Для того, чтобы заменить большую сеть бензиновых заправок на водородные, понадобится примерно 1,5 трлн. долларов. А стоимость одной водородной станции обойдётся в 2-3 млн. долл., но окупаемость её быстрее, чем для электрической станции из-за быстрой зарядки.

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

как работает водородный двигатель на автомобиле grove

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

что значит водородный автомобиль

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

водород автомобиль

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

стоимость водородного топлива для автомобиля

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina h3 Speed

водородные элементы для автомобиля

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

существует ли автомобиль на водородном топливе

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

как устроен водородный автомобиль

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

устройство водородного автомобиля

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

Ограниченно выпускают:

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.

Испытывают:

  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.

Водородный двигатель: принцип работы и устройство

Водородный двигатель: принцип работы и устройство

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

История создания водородного двигателя

Содержание статьи:

Водородный двигатель: принцип работы и устройство

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Водородный двигатель: принцип работы и устройство

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют  роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Сейчас читают

Правда, никаких отдельных установок для получения водорода из воды  на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода  на полном баке водорода составляет около 300  км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Водородный двигатель: принцип работы и устройство

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Водородный двигатель: принцип работы и устройство

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы  и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных  легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Водородный двигатель: принцип работы и устройство

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород  весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для  авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Водородный двигатель: принцип работы и устройство

Рекомендуем также прочитать статью о том, что нужно знать о двигателях Range Rover на вторичном рынке авто. Из этой статьи вы узнаете, какие нюансы и особенности касательно ДВС следует учитывать при покупке Рендж Ровер б/у, а также какой подержанный Рейндж Ровер лучше выбрать и с каким мотором.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

  • Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Двигатель без коленвала: миф или реальность

    Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы. Читать далее

  • Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    GDI двигатель: что это такое?

    Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI. Читать далее

  • Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    FSI двигатель: что это такое, недостатки и преимущества

    Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора. Читать далее

  • Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Какие бывают двигатели внутреннего сгорания: виды…

    Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры. Читать далее

  • Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    TDI двигатель: что это такое?

    Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации. Читать далее

  • Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Водородный двигатель: принцип работы и устройство

    Двигатель Рендж Ровер: полезная информация

    Что нужно знать о моторах на Рендж Ровер перед покупкой такого автомобиля б/у. С каким двигателем лучше взять данный автомобиль и почему. Читать далее

Источник

Водородный двигатель

Водородный двигатель — поршневой двигатель внутреннего сгорания, в котором в качестве топлива используется водород.

 

История водородных двигателей

Около 45% добываемых в мире нефтепродуктов используется в качестве топлива для автомобилей. Запасы нефти ограничены и не возобновляются, поэтому поиск универсального источника энергии, которую можно получать в условно неограниченных количествах, задача, безусловно, актуальная.

Водород как топливо для двигателей рассматривается в числе наиболее перспективных веществ. Запасы водорода на Земле практически неисчерпаемы, так как его легко выделить из обыкновенной воды. Хранение и транспортировка этого газа хоть и связаны с определенными сложностями, но осуществимы. И, что самое важное, при равных массах, при сжигании водорода выделяется в 3 раза больше энергии, чем при сжигании бензина.

Первый патент на водородную силовую установку был выдан в Англии еще в 1841 году. В 1852 году в Германии был построен двигатель внутреннего сгорания, работающий на смеси водорода и воздуха, а на печально известном дирижабле Гинденбург компании Zeppelin были установлены ходовые двигатели, работавшие на светильном газе – смеси газов с пятидесятипроцентной долей водорода.

Интерес к водородным двигателям возобновился в семидесятые годы, с приходом топливно-энергетического кризиса.

По окончании нефтяного кризиса, интерес к альтернативным источникам энергии не исчез. В настоящее время его интенсивно подогревают защитники экологии, борющиеся за снижение вредных выбросов в атмосферу. Кроме того, постоянно растущие цены на энергоносители и желание многих стран обрести топливную независимость способствуют продолжению теоретических и практических исследований способов применения водорода в транспортных средствах.

Наиболее активные исследования по разработке водородных двигателей ведут компании General Motors, Honda Motor, Ford Motor, BMW и другие.

                                          

Типы и принцип работы водородных двигателей

Современные силовые установки подразделяются по принципу работы на два типа: электромоторы с питанием от водородных топливных элементов и двигатели внутреннего сгорания на водороде.

 

Силовые установки на основе водородных топливных элементов

Принцип работы топливных элементов построен на физико-химической реакции. По сути, топливные элементы напоминают обычные свинцовые аккумуляторы. Разница в том, что КПД топливного элемента существенно выше КПД аккумулятора и составляет 45% и более.

В корпусе водородно-кислородного топливного элемента установлена мембрана, проводящая только протоны. Она разделяет две камеры с электродами — анодом и катодом. В камеру анода подведен водород, а в камеру катода кислород. Каждый электрод покрыт слоем катализатора, к примеру, платиной. Молекулярный водород под воздействием катализатора, нанесенного на анод, теряет электроны. Протоны проводятся через мембрану к катоду, и под воздействием катализатора соединяется с электронами (поток электронов подводится извне), в результате чего образуется вода. Электроны из камеры анода уходят в электрическую цепь, подсоединенную к двигателю, то есть, на бытовом языке, образуется электрический ток, питающий электромотор.

Действующими образцами автомобиля с силовой установкой на основе топливных элементов являются «Нива» с энергоустановкой «Антэл-1» и «Лада 111» с «Антел-2», разработанные уральскими инженерами. На одной подзарядке первая машина может преодолеть 200 км, вторая — 350 км.

 

Водородные двигатели внутреннего сгорания

При использовании водорода в обычном двигателе внутреннего сгорания возникает ряд проблем. Во-первых, при высокой температуре и сжатии водород вступает в реакцию с металлом, из которого сделан двигатель, и даже с моторным маслом. Кроме того, в случае даже небольшой утечки при контакте с раскаленным выпускным коллектором он неизбежно загорится. Поэтому, кстати, для работы на водороде используют роторные двигатели, конструкция которых подразумевает удаленность впускного коллектора от выпускного, что позволяет ументьшить риск возгорания. Однако все эти проблемы, включая необходимость изменения системы зажигания, так или иначе удается обойти, что позволяет инженерам считать водород перспективным топливом.

ДВС на водороде имеет КПД ниже, чем у двигателей на топливных элементах, однако тот факт, что для получения 1 кВт энергии водорода нужно меньше, чем бензина, позволяет смириться с пониженным коэффициентом полезного действия. 

Отличным примером автомобиля с водородным двигателем может служить экспериментальный седан BMW 750hL, выпускающийся ограниченной серией и доступный покупателям. В нем установлен 12-ти цилиндровый двигатель, работающий на ракетном топливе (водород + кислород), позволяющий разогнаться до 140 км/ч.

Сжиженный водород хранится в специальном баке при низкой температуре. Запаса водорода хватает примерно на 300 километров. В случае если он израсходован, двигатель автоматически переключается на питание от дополнительного бака с бензином. Цена BMW Hydrogen 7 сопоставима со стоимостью обычной «семерки» и составляет около 93 тысяч долларов.

                                                                    

Проблемы и задачи развития водородных двигателей

Для массового перехода на водород в качестве топлива существует целый ряд технологических и экологических препятствий.

Производство водородного топлива на сегодняшний день обходится в 4 раза дороже, чем производство бензина.  

Да и сам процесс получения водорода из воды пока еще обходится слишком дорого. Поэтому основной его объем в настоящее время производится из метана.  С большими затратами связана его транспортировка и хранение.

В случае массового внедрения таких силовых установок, резко увеличится количество водорода в атмосфере, что может привести к разрушению озонового слоя Земли, так как водородные двигатели выделяют значительно больше оксидов азота, чем бензиновые.

Уровень коммерческой окупаемости таких силовых установок просматривается лишь в отдаленной перспективе.

Однако точно такие же проблемы в свое время возникали в период развития бензиновых, электрических и газовых двигателей. Остается надеяться, что через 15-20 лет ситуация измениться, и появление водородного автомобиля на дорогах станет обычным делом.

Как работают водородные автомобили » 1Gai.Ru

Водородные автомобили: Принцип действия.

Как работают водородные автомобили

В мире в последние годы наблюдается повышенный интерес к альтернативным источникам энергии. Не обошла эта тенденция и автопромышленность, которая является главным источником загрязнения атмосферы Земли. Именно поэтому большинство стран мира планируют к 2030 году отказаться от использования автомобилей с традиционными двигателями внутреннего сгорания.

 

Смотрите также: Автомобили и экология: Запретят ли автомобили?

 

Мы знаем, что на смену обычным бензиновым автомобилям скорее всего придут гибриды и электрокары. Но не стоит сбрасывать со счетов и другие автомобили, которые могут работать на альтернативных источниках энергии. Давайте рассмотрим например, водородные автомобили, которые возможно рано или поздно смогут вытеснить с авторынка весь существующий ныне автотранспорт. Мы расскажем вам о том, как работают водородные автомобили, о их плюсах и минусах, сравним их с бензиновыми, дизельными и электрическими автотранспортными средствами. 

 

Принцип работы

Как работают водородные автомобили Это химическая реакция происходящая в водородном топливном элементе.

 

Водородные автомобили, которые начала серийно выпускать автопромышленность, в качестве своего альтернативного источника топлива используют как известно, водород, который взаимодействуя с кислородом превращается в водяной пар, а в результате этого выделяется уже энергия. Эта энергия в водородном автомобиле обычно направляется либо на электродвигатели, либо на аккумуляторную батарею, которая затем и питает электродвигатель машины.

 

На основе этой технологии возможно построить и двигатель внутреннего сгорания, который сможет работать на том же водороде и будет аналогичен моторам, которые работают на бензине. 

 

Преимущества

Подобно электромобилям данные транспортные средства, что работают на водородном топливном элементе, не выделяют углекислого газа. В результате этого получается, что водородные автомобили не способствуют глобальному потеплению или загрязнению атмосферы воздуха. Нынешние водородные автомобили стали практически бесшумными, а это также является хорошим преимуществом перед автомобилями, которые оснащены двигателями внутреннего сгорания (ДВС). К сожалению, но увы, в мире пока не существует оснащенных ДВС машин, которые работали бы совсем бесшумно. 

 

Смотрите также: Водород в автомобилях: Опасности и сложности использования

 

Поскольку в автомобилях с водородным топливным элементом используются только электродвигатели, то в этих видах автотранспорта максимальный крутящий момент доступен сразу, т.е. с 0-ых оборотов в минуту работы двигателя.

 

Водородные автомобили, в отличие от электрокаров и обычных бензиновых транспортных средств могут иметь более широкий диапазон работы, они более эффективны. Например, 1 грамм водорода выделяет в 3 раза больше энергии, чем грамм бензина. Заправка же водородного автомобиля происходит намного быстрее электрического авто. Кроме того, на полном баллоне заправленного водородом, автомобиль имеет гораздо больший запас хода, чем электрокар. В итоге получается, что водородные автомобили больше подходят для длительных поездок и на длительные расстояния в сравнении с электромобилями, которые  рассчитаны как известно для передвижения на небольшие расстояния. 

 

Недостатки

Как работают водородные автомобили 

Основным недостатком водородных автомобилей является то, что такое топливо как водород, чрезвычайно сложно и трудно хранить. Чтобы заправить нормальное количество водорода в резервуар, его необходимо для начала сжать, примерно до 700 бар. А для сжатия водорода потребуется энергия. Кроме того, чтобы храненить водород под высоким давлением, требуется тяжелый усиленный высокопрочный резервуар, чтобы это легкоиспоряемое топливо не представляло ни какой опасности всей окружающей среде .

 

Таким образом, в случае такой утечки или разгерметизации баллона с водородом всегда существует огромный риск, что газообразный легковоспламеняющийся водород воспламениться или хуже того, возьмет и взорвется. 

 

Что касаемо его производительности, то водородные автомобили с ДВС работающие на водороде, нуждаются в гораздо большем объеме количества воздуха, если сравнивать их с бензиновыми автомобилями. Вот например, идеальное химическое соотношение воздуха с топливом для бензиновых моторов составляет около 14,3 к 1, а для водородных автомобилей это соотношение уже будет составлять примерно 38 к 1. Однако при таком соотношении водорода и кислорода водородные двигатели внутреннего сгорания сжигают топливо при очень большой температуре, что приводит к разрыву тройных связей азота в воздухе и в результате этого начинает образовываться закись азота (да, это так и есть, образуется тоже вещество, которое выбрасывается в атмосферу при работе дизельного мотора). Это вещество является одним из самых вредных загрязнителей окружающей природы. 

 

Чтобы уменьшить уровень вредных выбросов в ДВС который работает на водороде необходимо, чтобы соотношение между водородом и кислородом увеличилось почти до 80 к 1. Но вместе с этим, ДВС работающий на водороде потеряет большое количество своей мощности в сравнении с аналогичными бензиновыми моторами. Дело здесь вот в чем, как мы уже ранее сказали, водород является более энергоемким топливом по сравнению с бензином. 

 

Один из способов обойти подобный неблагоприятный эффект, это использовать для максимальной мощности твердый топливный элемент, который будет давать энергию электромоторам, которая потребуется в тех случаев, когда автомобилю будет нужна максимальная мощность. То есть, как вы уже поняли идея заключается в том, чтоб в данном автомобиле при небольшой мощности и нагрузке в качестве альтернативы использовать водородное топливо а не бензин, которое и будет питать ДВС. Для максимальной же мощности в действие вступит уже аккумулятор, который и будет подпитывать электродвигатель.  

Как работают водородные автомобили

 

Другой проблемой для такого типа двигателей является тот факт, что водород чрезвычайно энергоемкое вещество, т.е. топливо. Если сравнивать его с бензином, то в 1 литре водорода содержится всего около 30% энергии в отличие от того же бензина. Соответственно, что запас хода водородного автомобиля на одном полном заправленном баке будет небольшим, если его сравнивать с бензиновой машиной. 

 

Водородные автомобили (не важно какую технологию они используют: топливный элемент или же водород, который используется напрямую вместо бензина в качестве топлива) так же как и бензиновые транспортные средства не так эффективны, если например их сравнивать с электрокарами. КПД водородных автомобилей составляет примерно 30 — 50%, что сопоставимо с бензиновыми автомобилями. А это почти на половину меньше, чем КПД электрических автотранспортных средств.

 

Это может означать или означает следующее, что сами водородные автомобили как и бензиновые, основную и большую часть своей энергии теряют в процессе обработки так называемой тепловой выделяемой энергии.

 

Есть еще один серьезный минус таких машин, которые работают на водородном топливном элементе. Этот тип или вид машин не очень-то приспособлен работать при холоде. 

 

Откуда же берут водород?

Как работают водородные автомобили 

Существует два основных способа получения водорода. Первый включает в себя следующее, а именно, взаимодействие паров с метаном (природным газом) в результате чего получается водород и двуокись углерода.

 

При таком способе получения водорода, существуют две проблемы. Первая, -при этом процессе выделяется углекислый газ, который является парниковым газом наносящим вред атмосфере планеты. Вторая, -газ метан является ископаемым топливом и он не возобновляется. 

 

Второй способ получения водорода, это расщепление воды посредством электролиза. В результате этого процесса из воды выделяется чистый водород, который может служить источником топлива для водородного автомобиля. К нашему сожалению для этого процесса необходимо слишком много энергии, которая не будет потом возобновлена на все 100%. Кроме того, в процессе получения чистого водорода происходят некоторые косвенные выбросы углекислого газа.

 

Смотрите также: Почему двигатели V4 редко встречаются в автомобилях?

 

В том числе, в процессе получения водорода часть энергии топлива теряется, что делает водородные автомобили менее эффективными в сравнении, например с тем же электрическим транспортом. 

 

В заключительном итоге, в водородных автомобилях топливо стало обычным источником подзарядки аккумуляторных батарей, которые в свою очередь и питают сам электромотор. Тут есть все очень просто. Энергия от водорода поступает в так называемый накопительный аккумулятор, чтобы поддерживать уровень заряда самой батареи, который постоянно снижается из-за питания электродвигателя. Вот и вся хитрость.

 

Какие водородные автомобили сегодня продаются на мировом авторынке?

Как работают водородные автомобили 

Прямо сейчас, единственным массово серийным водородным автомобилем, который можно купить и приобрести, является Toyota Mirai. В настоящий момент эта машина продается в США, в Японии и в некоторых странах Европы и ОАЭ. По имеющимся сегодня данным Японская компания продала уже более 3000 тысяч автомобилей. К большому сожалению этот водородный седан стоит очень дорого.

Как работают водородные автомобили

В среднем его цена- 60 000 долларов США. И эти деньги вы должны выложить и отдать за автомобиль мощностью всего в 152 л.с., где максимальный запас хода равен 500 км, и те только при идеальных условиях езды. В среднем автомобиль может проехать, где-то 300 км, что сопоставимо с автомобилем седан Tesla Model S. Так что запас хода этого водородного автомобиля не очень-то впечатляет.

 

Но есть еще одна важная проблема для автомобиля. Где вы будете заправлять Toyota Mirai? Ведь водородных заправок даже в мировом масштабе не так уж много. Именно отсутствие такой инфраструктуры и тормозит развитие водородного автотранспорта. 

 

В мире существуют еще две серийные водородные модели автомобилей. Речь идет о Honda Clarity и Hyundai Tucson FCEV. Но эти машины доступны для граждан только в нескольких странах мира, и то в ограниченном тираже.

 

Недавно, компания Mercedes на автосалоне во Франкфурте представила на всеобщее обозрение свой первый серийный водородный кроссовер, под маркой- GLC, который в скором времени будет доступен для покупки его во всех странах Евросоюза. 

Как работают водородные автомобили 

Таким образом вы убедились, что выбор водородных авто не так уж на сегодня и богат даже в его глобальном мировом масштабе. Но тем не менее, мировая автопромышленность не стоит на месте, в настоящий момент уже многие автомобильные компании занимаются своими разработками и исследованиями в этой области автомобилестроения.

 

Смотрите также: Mercedes GLC F-Cell: Теперь и водородная версия

 

Например, компания BMW в настоящий момент проводит инженерные испытания своего водородного спорткара, созданного на базе i8.

 

В том числе активные разработки водородных автомобильных технологий ведет и компания Mazda. Вот например, у известного Японского бренда есть новая разработка роторного мотора, который способен работать на водородном топливе. Подобная технология была также использованна и на прототипе автомобиля RX-8 Hydrogen RE. Эта машина может работать и на водороде, и на бензине. Правда при работе на водороде мощность машины существенно падает и состовляет всего 109 л.с.

 

Не отстает от таких разработок и компания Aston Martin, которая уже создала Rapide S способный работать как на бензине, так и на водороде. Например, эта машина может использовать разные виды топлива как по отдельности, так и вместе взятые.

 

Кстати Aston Martin Rapide S стал первым водородным автомобилем, который успешно завершил 24-часовые гонки в Нюрбургринге.

 

Вывод

Как работают водородные автомобили 

Итак, самый существенный вопрос, который волнует сегодня миллионы человек на Земле. Будут ли водородные автомобили в будущем жизнеспособными? И другой немало важный вопрос. Смогут ли они заменить все ныне существующие автомобили?

 

Однозначно, что на эти вопросы сегодня вам никто не ответит: ни великие инженеры и автоконстукторы, ни физики и ни химики, даже самые известные всему миру фантасты не смогут сегодня дать ответ на эти конкретно поставленные вопросы..

 

А спрогнозировать заранее на чем будут ездить люди во всем мире примерно через 100 лет, просто невозможно.

 

Лично мы со своей стороны считаем, что водородные автомобили никогда не смогут стать нашими основными транспортными средствами и заменить традиционные автомобили с двигателями внутреннего сгорания. Ведь такие автомобили недостаточно эффективны. Кроме того, во всем мире под водородные автомобили нет необходимой инфраструктуры, а чтобы ее развить до уровня бензиновых и дизельных АЗС, потребуется не одно столетие и огромные инвестиционные средства. 

 

Сегодня использование электричества в плане топлива для автомобилей, более предпочтительно. Ведь согласитесь, что использование напрямую электричества для питания электродвигателей куда логичней, чем использование преобразования воды в водород и обратно только с одной целью,- подпитывание или питание аккумуляторных батарей. Причем надо не забывать, что при данном процессе теряется до 50% всей энергии. Согласитесь, это не очень впечатляет.

 

Тем не менее мы хотим сказать, что водородные автомобили могут использоваться например, в тех же  самых автогонках электрокаров, где поддерживать нужный уровень заряда аккумулятора является главной задачей всех спортивных команд. Используя водород во время таких гонок, т.е. гонок электрокаров, командам не нужно будет часто менять аккумуляторы, что естественно увеличит саму зрелищность этих соревнований.

Отправить ответ

avatar
  Подписаться  
Уведомление о