РазноеGps расшифровка аббревиатуры: GPS и ГЛОНАСС

Gps расшифровка аббревиатуры: GPS и ГЛОНАСС

Содержание

GPS и ГЛОНАСС

Аббревиатура GPS (не путать с GPRS) стала для многих синонимом навигации. Если какое-то время тому назад для навигации покупались специальные устройства, GPS-приемники, то сейчас они встраиваются в различные приборы — мобильные телефоны, планшеты; часто автомобили поступают с навигационными системами.

В то же время, сейчас все чаще упоминается другая аббревиатура, ГЛОНАСС, и, как выясняется, она также обозначает собой навигационную систему. В чем же сходства и различия между этими системами? Как вообще работают системы навигации? Об этот и пойдет речь в данной статье.

gps glonass

Расшифровка и принцип работы

GPS расшифровывается как «Global Positioning System» — глобальная система позиционирования. ГЛОНАСС — как «ГЛОбальная НАвигационная Спутниковая Система». Что интересно, латинизация аббревиатуры приводит также к корректной аббревиатуре GLONASS — «GLObal NAvigation Satellite System».

Таким образом, мы имеет две независимых системы спутниковой навигации. И в том, и в другом случае смысл состоит в том, что на орбите Земли находится определенное количество искусственных спутников, сигналы от которых и получает ваш приемник (например, мобильник). По частоте сигнала он определяет расстояние до спутников, из содержания сигнала получает информацию о их местонахождении. При наличии трех (а, желательно, четырех) спутников решается геометрическая задача и определяется ваше местонахождение.

Немного истории

Система GPS изначально разрабатывалась американскими военными. В 1983 она была сделана публичной, но без определенного кода доступа вы получали координаты спутника с урезанной точностью, что приводило неточному определению координат. В 2000 году ограничение точности было отменено. С тех пор существенно возросла популярность GPS-приемников, сейчас почти в каждом выпускаемом мобильнике есть такая опция.

В свою очередь, система ГЛОНАСС была советским военным проектом. После распадения Советского Союза из-за нехватки финансирования проект был более-менее свернут, и к 2000 году на орбите оставалось 6 спутников из 24, из-за чего пользоваться системой было практически невозможно. Далее система снова получила финансирование, и к концу 2011 года мы имеем ситуацию, когда на орбите снова находится 24 спутника, не считая резервные.

Технологии

Для пользователя принципиальных различий между GPS и ГЛОНАСС нет. И в том, и в другом случае, устройство должно уметь получать сигналы от спутника и правильно их интерпретировать. Однако, в связи с тем, что система ГЛОНАСС была выведена на публичный рабочий режим существенно позже, GPS-приемники намного более распространены, и их цена также существенно ниже. Что будет дальше — покажет время.

Также существуют технологии, помогающие GPS-приемнику быстрее найти свое местонахождение после включения. Ведь прежде чем получить сигналы от спутников, приемнику нужно просканировать различные диапазоны. Кроме того, после включения он не знает, где именно находятся спутники, тем самым ему требуется больше информации, чем если бы слежение не прерывалось. Группа технологий, ассистирующих приемнику в задаче поиска называется LBS — Location Based Service. Наиболее известными являются:

  • Cell of Origin — метод, применяющийся в случае наличия у GPS-приемника доступа к сети сотовой связи (например, в случае мобильника). Если сотовая сеть выдает информацию о местоположении базовой станции, с которой связалось устройство, то эта информация может помочь в начальном поиске. Существуют и продвинутые модификации этого метода, берущие информацию о нескольких базовых станциях;
  • A-GPS — если у приемника есть доступ в интернет, то он может получить информацию о местонахождении спутников из интернета, а не от них самих. Тем не менее, он будет ждать сигнала от спутников с тем, чтобы определить расстояние до них.

Стоит также прояснить часто упоминающиеся термины «холодный старт» и «горячий старт» GPS-приемника. В первом случае речь идет о включении, когда устройство не содержит вообще никакой информации о спутниках, например после покупки. «Горячий старт» — это когда навигационный модуль уже использовался ранее, но устройство было выключено и включено снова. В таком случае уже сохранившаяся в памяти устройства информация о спутниках может помочь найти их быстрее. «Горячий старт» — понятие относительное, чем дольше устройство было выключено, тем меньшую пользу принесет эта информация.

Законодательство

Законы — вещь переменчивая. Поэтому последняя часть статьи может быстро потерять актуальность. Тем не менее, нельзя не сказать, что недавно был принят закон, по которому с 1 января 2012 года все маршрутные транспортные средства должны быть оснащены системами ГЛОНАСС-навигации. Правда, требовать это в реальности начнут с 1 июля. В планах правительства также и введение закона об обязательном наличии ГЛОНАСС-навигаторов на всех автомобилях. Кстати, «люксовую» модификацию автомашины Лада Приора уже сейчас оснащают ГЛОНАСС-навигатором.

Еще один обсуждающийся сейчас «интересный» закон — планируется введение пошлин на ввоз GPS-навигаторов, не умеющих использовать систему ГЛОНАСС. Пошлины могут быть установлены в размере 25%. Под эти пошлины могут попасть все GPS-приемники, включая мобильники, IPhone и IPad. Но что интересно, компания Apple не стоит на месте, последнее поколение мобильника IPhone4S объявлено как поддерживающее систему ГЛОНАСС.

 

А у вас есть GPS-приемник? А ГЛОНАСС?

Please enable JavaScript to view the comments powered by Disqus. comments powered by

GPS — это… Что такое GPS?

Спутник системы GPS на орбите

GPS (англ. Global Positioning System — система глобального позиционирования, читается Джи Пи Эс) — спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположениe. Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов. Система разработана, реализована и эксплуатируется Министерством обороны США.

Основной принцип использования системы — определение местоположения путём измерения моментов времени приема синхронизированного сигнала от навигационных спутников до потребителя. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно иметь четыре уравнения: «расстояние равно произведению скорости света на разность моментов приема сигнала потребителя и момента его синхронного излучения от спутников»:

. Здесь:  — местоположение -го спутника,  — момент времени приема сигнала от -го спутника по часам потребителя,  — неизвестный момент времени синхронного излучения сигнала всеми спутниками по часам потребителя,  — скорость света,  — неизвестное трехмерное положение потребителя.

История

Идея создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли, американские учёные во главе с Ричардом Кершнером наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если точно знать свои координаты на Земле, то становится возможным измерить положение и скорость спутника, и наоборот, точно зная положение спутника, можно определить собственную скорость и координаты.

Реализована эта идея была через 20 лет. В 1973 году была инициирована программа DNSS, позже переименованная в Navstar-GPS, а, затем, в GPS. Первый тестовый спутник выведен на орбиту 14 июля 1974 г., а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом, GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле.

Первоначально GPS — глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983 году вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту был сбит из-за дезориентации экипажа в пространстве, президент США Рональд Рейган с целью не допустить в будущем подобные трагедии разрешил частичное использование системы навигации для гражданских целей.

[1] Во избежание применения системы для военных нужд точность была уменьшена специальным алгоритмом.[уточнить]

Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности на частоте L1 и с успехом компенсируют эту составляющую ошибки. В 2000 г. это загрубление точности отменил своим указом президент США Билл Клинтон.[2]

Спутники
БлокПериод
запусков
Запуски спутниковРаботают
сейчас
Запу-
щено
Не
успешно
Гото-
вится
Заплани-
ровано
I1978-1985101000
II1989-199090000
IIA1990-199719 00011
IIR1997-20041210012
IIR-M2005-200980007
IIF2010-2011201002
IIIA2014-?000120
Всего592101231
(Последнее обновление данных: 9 Окт 2011)

Подробнее см. en:list of GPS satellite launches

Техническая реализация

Космические спутники

x Незапущенный спутник, экспонирующийся в музее. Вид со стороны антенн.

Орбиты спутников

Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat- число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).

Спутниковая группировка системы NAVSTAR обращается вокруг Земли по круговым орбитам с одной высотой и периодом обращения для всех спутников. Круговая орбита с высотой порядка 20200 км является орбитой суточной кратности с периодом обращения 11 часов 58 минут; таким образом, спутник совершает два витка вокруг Земли за одни звёздные сутки (23 часа 56 минут). Наклонение орбиты (55°) является также общим для всех спутников системы. Единственным отличием орбит спутников является долгота восходящего узла, или точка, в которой плоскость орбиты спутника пересекает экватор: данные точки отстоят друг от друга приблизительно на 60 градусов. Таким образом, несмотря на одинаковые (кроме долготы восходящего узла) параметры орбит, спутники обращаются вокруг Земли в шести различных плоскостях, по 4 аппарата в каждой.

Радиочастотные характеристики

Спутники излучают открытые для использования сигналы в диапазонах: L1=1575,42 МГц и L2=1227,60 МГц (начиная с Блока IIR-M), а модели IIF будут излучать также на L5=1176,45 МГц . Навигационная информация может быть принята антенной (обычно в условиях прямой видимости спутников) и обработана при помощи GPS-приёмника.

Сигнал с кодом стандартной точности (C/A код — модуляция BPSK(1)), передаваемый в диапазоне L1 (и сигнал L2C (модуляция BPSK) в диапазоне L2 начиная с аппаратов IIR-M), распространяется без ограничений на использование. Первоначально используемое на L1 искусственное загрубление сигнала (режим селективного доступа — SA) с мая 2000 года отключён. С 2007 года США окончательно отказались от методики искусственного загрубления. Планируется с запуском аппаратов Блок III введение нового сигнала L1C (модуляция BOC(1,1)) в диапазоне L1. Он будет иметь обратную совместимость, улучшенную возможность прослеживания пути и в большей степени совместим с сигналами Galileo L1.

Для военных пользователей дополнительно доступны сигналы в диапазонах L1/L2, модулированные помехоустойчивым криптоустойчивым P(Y) кодом (модуляция BPSK(10)). Начиная с аппаратов IIR-M введён в эксплуатацию новый М-код (используется модуляция BOC(15,10)). Использование М-кода позволяет обеспечить функционирование системы в рамках концепции Navwar (навигационная война). М-код передается на существующих частотах L1 и L2. Данный сигнал обладает повышенной помехоустойчивостью, и его достаточно для определения точных координат (в случае с P-кодом было необходимо получение и кода C/A). Еще одной особенностью M-кода станет возможность его передачи для конкретной области диаметром в несколько сотен километров, где мощность сигнала будет выше на 20 децибел. Обычный сигнал М уже доступен в спутниках IIR-M, а узконаправленный будет доступен только при помощи спутников GPS-III.

C запуском спутника блока IIF введена новая частота L5 (1176.45 МГц). Этот сигнал также называют safety of life (охрана жизни человека). Сигнал на частоте L5 мощнее на 3 децибела, чем гражданский сигнал, и имеет полосу пропускания в 10 раз шире. Сигнал смогут использовать в критических ситуациях, связанных с угрозой для жизни человека. Полноценно сигнал будет использоваться после 2014 года.

Сигналы модулируются псевдослучайными последовательностями (PRN) двух типов: C/A-код и P-код. C/A (Clear access) — общедоступный код — представляет собой PRN с периодом повторения 1023 цикла и частотой следования импульсов 1023 МГц. Именно с этим кодом работают все гражданские GPS-приемники. P (Protected/precise)-код используется в закрытых для общего пользования системах, период его повторения составляет 2*1014 циклов. Сигналы, модулированные P-кодом, передаются на двух частотах: L1 = 1575,42 МГц и L2 = 1227,6 МГц. C/A-код передается лишь на частоте L1. Несущая, помимо PRN-кодов модулируется также навигационным сообщением.

Тип спутникаGPS-IIGPS-IIAGPS-IIRGPS-IIRMGPS-IIF
Масса, кг8851500200020002170
Срок жизни7.57.5101015
Бортовое времяCsCsRbRbRb+Cs
Межспутниковая
связь
++++
Автономная
работа, дней
14180180180>60
Антирадиационная
защита
+++
АнтеннаУлучшеннаяУлучшеннаяУлучшенная
Возможность настройки
на орбите и мощность
бортового передатчика
+++++++++++
Навигационный
сигнал
L1:C/A+P
L2:P
L1:C/A+P
L2:P
L1:C/A+P
L2:P
L1:C/A+P+M
L2:C/A+P+M
L1:C/A+P+M
L2:C/A+P+M
L5:C

24 спутника обеспечивают 100 % работоспособность системы в любой точке земного шара, но не всегда могут обеспечить уверенный приём и хороший расчёт позиции. Поэтому, для увеличения точности позиционирования и резерва на случай сбоев, общее число спутников на орбите поддерживается в большем количестве (31 аппарат в марте 2010 года).

Наземные станции контроля космического сегмента

Основная статья: наземный сегмент спутниковой системы навигации

Слежение за орбитальной группировкой осуществляется с главной контрольной станции, расположенной на авиабазе ВВС США Schriever, штат Колорадо, США и с помощью 10 станций слежения, из них три станции способны посылать на спутники корректировочные данные в виде радиосигналов с частотой 2000—4000 МГц. Спутники последнего поколения распределяют полученные данные среди других спутников.

Применение GPS

x Приёмник сигнала GPS

Несмотря на то, что изначально проект GPS был направлен на военные цели, сегодня GPS широко используются в гражданских целях. GPS-приёмники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны, смартфоны, КПК и онбордеры. Потребителям также предлагаются различные устройства и программные продукты, позволяющие видеть своё местонахождение на электронной карте; имеющие возможность прокладывать маршруты с учётом дорожных знаков, разрешённых поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры.

  • Геодезия: с помощью GPS определяются точные координаты точек и границы земельных участков
  • Картография: GPS используется в гражданской и военной картографии
  • Навигация: с применением GPS осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью GPS ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах, например США это используется для оперативного определения местонахождения человека, звонящего 911. В России в 2010 году начата реализация аналогичного проекта — Эра-глонасс.
  • Тектоника, Тектоника плит: с помощью GPS ведутся наблюдения движений и колебаний плит[3]
  • Активный отдых: есть разные игры, где применяется GPS, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам

Высказывались предложения об интеграции систем Iridium и GPS.[4]

Точность

Составляющие, которые влияют на погрешность одного спутника при измерении псевдодальности, приведены ниже[5]:

Источник погрешностиСреднеквадратичное значение погрешности, м
Нестабильность работы генератора6,5
Задержка в бортовой аппаратуре1,0
Неопределённость пространственного положения спутника2,0
Другие погрешности космического сегмента1,0
Неточность эфемерид8,2
Другие погрешности наземного сегмента1,8
Ионосферная задержка4,5
Тропосферная задержка3,9
Шумовая ошибка приёмника2,9
Многолучёвость2,4
Другие ошибки сегмента пользователя1,0
Суммарная погрешность13,1

Суммарная погрешность при этом не равна сумме составляющих.

Коэффициент корреляции погрешностей двух рядом стоящих GPS приёмников(при работе в кодовом режиме) составляет 0,15-0,4 в зависимости от соотношения сигнал/шум. Чем больше соотношение сигнал/шум, тем больше корреляция. При затенении части спутников и переотражении сигнала корреляция может падать вплоть до нуля и даже отрицательных величин. Также коэффициент корреляции погрешностей зависит от геометрического фактора. При PDOP<1,5 корреляция может достигать значения 0,7. Так как погрешность GPS складывается из многих составляющих, она не может быть представлена в виде нормального белого шума. По форме распределения погрешность есть сумма нормальной погрешности, взятой с коэффициентом 0,6-0,8 и погрешности, имеющей распределение Лапласа с коэффициентом 0,2-0,4. Автокорреляция суммарной погрешности GPS падает до значения 0,5 в течении приблизительно 10 секунд[6].

Типичная точность современных GPS-приёмников в горизонтальной плоскости составляет примерно 6-8 метров при хорошей видимости спутников и использовании алгоритмов коррекции. На территории США, Канады, Японии, КНР, Европейского Союза и Индии имеются станции WAAS, EGNOS, MSAS и т. д. передающие поправки для дифференциального режима, что позволяет снизить погрешность до 1-2 метров на территории этих стран. При использовании более сложных дифференциальных режимов, точность определения координат можно довести до 10 см. Точность любой СНС сильно зависит от открытости пространства, от высоты используемых спутников над горизонтом.

В ближайшее время все аппараты нынешнего стандарта GPS будут заменены на более новую версию GPS IIF, которая имеет ряд преимуществ, в том числе они более устойчивы к помехам.

Но главное, что GPS IIF обеспечивает гораздо более высокую точность определения координат. Если нынешние спутники обеспечивают погрешность 6 метров, то новые спутники будут способны определять местоположение, как ожидается, с точностью не менее 60-90 см. Если такая точность будет не только для военных, но и для гражданских применений, то это приятная новость для владельцев GPS-навигаторов.

На октябрь 2011 года на орбиту выведены первые два спутника из новой версии: GPS IIF SV-1 запущен в 2010 году и GPS IIF-2 запущен 16 июля 2011 года.

Всего первоначальный контракт предусматривал запуск 33 спутников GPS нового поколения, но потом из-за технических проблем начало запуска перенесли с 2006 года на 2010 год, а количество спутников уменьшили с 33 до 12. Все они будут выведены на орбиту в ближайшее время.

Повышенная точность спутников GPS нового поколения стала возможной благодаря использованию более точных атомных часов. Поскольку спутники перемещаются со скоростью около 14000 км/ч (3.874км/с) (первая космическая скорость на высоте 20 200 км), повышение точности времени даже в шестом знаке является критически важным для триангуляции.

Недостатки

Проблемы с содержанием статьиПроверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Общим недостатком использования любой радионавигационной системы является то, что при определённых условиях сигнал может не доходить до приёмника, или приходить со значительными искажениями или задержками. Например, практически невозможно определить своё точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле даже профессиональными геодезическими приемниками. Так как рабочая частота GPS лежит в дециметровом диапазоне радиоволн, уровень приёма сигнала от спутников может серьёзно ухудшиться под плотной листвой деревьев или из-за очень большой облачности. Нормальному приёму сигналов GPS могут повредить помехи от многих наземных радиоисточников, а также (в редких случаях) от магнитных бурь, либо преднамеренно создаваемые «глушилками» (данный способ борьбы со спутниковыми автосигнализациями часто используется автоугонщиками).

Невысокое наклонение орбит GPS (примерно 55) серьёзно ухудшает точность в приполярных районах Земли, так как спутники GPS невысоко поднимаются над горизонтом.

Существенной особенностью GPS считается полная зависимость условий получения сигнала от министерства обороны США.

Теперь[когда?] Министерство обороны США решило начать полное обновление системы GPS. Оно было запланировано достаточно давно, но начать реализовывать этот проект удалось только сейчас. В ходе обновления старые спутники заменят на новые, которые разработаны и произведены компаниями Lockheed Martin и Boeing. Утверждается[источник не указан 652 дня], что они смогут обеспечивать точность позиционирования с погрешностью 0,5 метра.

Реализация данной программы займёт некоторое[какое?] время. В Министерстве обороны США утверждают[источник не указан 652 дня], что полностью завершить обновление системы удастся только через 10 лет. Количество спутников изменено не будет, их по-прежнему будет 30: 24 работающих и 6 резервных.

Хронология

Проблемы с содержанием статьи
1973Решение о разработке спутниковой навигационной системы
1974—1979Испытание системы
1977Приём сигнала от наземной станции, симулирующей спутник системы
1978—1985Запуск одиннадцати спутников первой группы (Block I)
1979Сокращение финансирования программы. Решение о запуске 18 спутников вместо запланированных 24.
1980В связи с решением свернуть программу использования спутников Vela системы отслеживания ядерных взрывов, эти функции было решено возложить на спутники GPS. Старт первых спутников, оснащённых сенсорами регистрации ядерных взрывов.
1980—1982Дальнейшее сокращение финансирования программы
1983После гибели самолёта компании Korean Airline, сбитого над территорией СССР, принято решение о предоставлении сигнала гражданским службам.
1986Гибель космического челнока Space Shuttle «Challenger» приостановила развитие программы, так как последний планировался для вывода на орбиту второй группы спутников. В результате основным транспортным средством была выбрана ракета-носитель «Дельта»
1988Решение о развёртывании орбитальной группировки в 24 спутника. 18 спутников не в состоянии обеспечить бесперебойного функционирования системы.
1989Активация спутников второй группы
1990—1991Временное отключение SA (англ. selective availability — искусственно создаваемой для неавторизированных пользователей округления определения местоположения до 100 метров) в связи с войной в Персидском заливе и нехваткой военных моделей приёмников. Включение SA 01 Июня 1991 года.
08.12.1993Сообщение о первичной готовности системы (англ. Initial Operational Capability). В этом же году принято окончательное решение о предоставлении сигнала для бесплатного пользования гражданским службам и частным лицам
1994Спутниковая группировка укомплектована
17.07.1995Полная готовность системы (англ. Full Operational Capability)
01.05.2000Отключение SA для гражданских пользователей, таким образом точность определения выросла со 100 до 20 метров
26.06.2004Подписание совместного заявления по обеспечению взаимодополняемости и совместимости Galileo и GPS 1
Декабрь 2006Российско-американские переговоры по сотрудничеству в области обеспечения взаимодополняемости космических навигационных систем ГЛОНАСС и GPS.²

См. также

Примечания

Литература

  • Александров И. Космическая радионавигационная система НАВСТАР (рус.) // Зарубежное военное обозрение. — М., 1995. — № 5. — С. 52-63. — ISSN 0134-921X.
  • Козловский Е. Искусство позиционирования // Вокруг света. — М., 2006. — № 12 (2795). — С. 204-280.
  • Шебшаевич В. С., Дмитриев П. П., Иванцев Н. В. и др. Сетевые спутниковые радионавигационные системы / под ред. В. С. Шебшаевича. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1993. — 408 с. — ISBN 5-256-00174-4

Ссылки

Официальные документы и спецификации
Объяснения работы
Совместимость с Gallileo и ГЛОНАСС
Разное

ссылка на KML  Система GPS — анимационная визуализация Google Maps  KMZ (файл меток KMZ для Google Earth)

Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 26 ноября 2011.

GPS. Что это такое, для чего нужен и как работает? Спутниковая система GPS. Применение GPS.

При приеме спутниковых сигналов могут возникнуть ошибки. Прохождение через слои атмосферы, задержки в ионосфере, тропосфере, погодные условия, облака, помехи в виде зданий или местности, большие отражения сигналов и частотный шум могут увеличить общую длительность прохождения сигналов, дать погрешность и отклонение, индуцировать ошибки в положении и даже приводить к отсутствию чтения сигналов.

Система GPS использует встроенную модель, которая используется для расчета обычной продолжительности помех, необходимых для исправления этого типа неточности.

Некоторые из факторов, которые могли или могут вызвать неточность в устройствах GPS:

  • Эфемерида: устаревшая орбитальная спутниковая модель, критическая проблема, которая была давно решена.
  • Атмосферные явления: задержки в атмосферных слоях, шторма, солнечные бури.
  • Численные расчеты: возникают при низком качестве оборудования, в случае нарушения спецификаций разработки.
  • Измерение времени прибытия сигнала: задержки, вызванные физическими препятствиями, такими как горы, здания, деревья.
  • Искусственные помехи: воздействие на GPS-устройство при помощи «глушилок».

Под землей, под водой определение геопозиции по GPS не работает. (Для определения геопозиции подводных объектов пользуются другими системами навигации, основанными на гироскопах, эхолокации.) Для еще более точной навигации в городских условиях, где могут возникнуть большие помехи в общности используются приемники сигналов GPS ГЛОНАСС, которые дополняют друг друга.

Система GPS. Взгляд изнутри и снаружи

Немного истории.

Как нередко бывает с высокотехнологичными проектами, инициаторами разработки и реализации системы GPS (Global Positioning System — система глобального позиционирования) стали военные. Проект спутниковой сети для определения координат в режиме реального времени в любой точке земного шара был назван Navstar (Navigation system with timing and ranging — навигационная система определения времени и дальности), тогда как аббревиатура GPS появилась позднее, когда система стала использоваться не только в оборонных, но и в гражданских целях.

Первые шаги по развертыванию навигационной сети были предприняты в середине семидесятых, коммерческая же эксплуатация системы в сегодняшнем виде началась с 1995 года. В настоящий момент в работе находятся 28 спутников, равномерно распределенных по орбитам с высотой 20350 км (для полнофункциональной работы достаточно 24 спутников).

Несколько забегая вперед, скажу, что поистине ключевым моментом в истории GPS стало решение президента США об отмене с 1 мая 2000 года режима так называемого селективного доступа (SA — selective availability) — погрешности, искусственно вносимой в спутниковые сигналы для неточной работы гражданских GPS-приемников. С этого момента любительский терминал может определять координаты с точностью в несколько метров (ранее погрешность составляла десятки метров)! На рис.1 представлены ошибки в навигации до и после отключения режима селективного доступа (данные U.S. Space Command ).Рис1.

Попробуем разобраться в общих чертах, как устроена система глобального позиционирования, а потом коснемся ряда пользовательских аспектов. Рассмотрение же начнем с принципа определения дальности, лежащего в основе работы космической навигационной системы.

Алгоритм измерения расстояния от точки наблюдения до спутника.

Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить, просто умножив время на скорость света.

Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот — L1=1575.42МГц и L2=1227.60МГц. Мощность передатчика составляет 50 и 8 Ватт соответственно. Навигационный сигнал представляет собой фазовоманипулированный псевдослучайный код PRN (Pseudo Random Number code). PRN бывает двух типов: первый, C/A-код (Coarse Acquisition code — грубый код) используется в гражданских приемниках, второй Р-код (Precision code — точный код), используется в военных целях, а также, иногда, для решения задач геодезии и картографии. Частота L1 модулируется как С/А, так и Р-кодом, частота L2 существует только для передачи Р-кода. Кроме описанных, существует еще и Y-код, представляющий собой зашифрованный Р-код (в военное время система шифровки может меняться).

Период повторения кода довольно велик (например, для P-кода он равен 267 дням). Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.

Одной из основных технических сложностей описанного выше метода является синхронизация часов на спутнике и в приемнике. Даже мизерная по обычным меркам погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы. Понятно, что устанавливать подобную штуку в каждый приемник невозможно. Поэтому для коррекции ошибок в определении координат из-за погрешностей встроенных в приемник часов используется некоторая избыточность в данных, необходимых для однозначной привязки к местности (подробней об этом чуть позже).

Кроме самих навигационных сигналов, спутник непрерывно передает разного рода служебную информацию. Приемник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере (так как скорость света меняется при прохождении разных слоев атмосферы), а также сведения о работоспособности спутника (так называемых «альманах», содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Общие принципы определения координат с помощью GPS.

Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные содержатся в принятом со спутника альманахе). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется трилатерацией. Рис2.

Если известно расстояние А до одного спутника, то координаты приемника определить нельзя (он может находится в любой точке сферы радиусом А, описанной вокруг спутника). Пусть известна удаленность В приемника от второго спутника. В этом случае определение координат также не представляется возможным — объект находится где-то на окружности (она показана синим цветом на рис.2), которая является пересечением двух сфер. Расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены двумя жирными синими точками на рис.2). Этого уже достаточно для однозначного определения координат — дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близи от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной навигации достаточно знать расстояния от приемника до трех спутников.

Однако в жизни все не так просто. Приведенные выше рассуждения были сделаны для случая, когда расстояния от точки наблюдения до спутников известны с абсолютной точностью. Разумеется, как бы ни изощрялись инженеры, некоторая погрешность всегда имеет место (хотя бы по указанной в предыдущем разделе неточной синхронизации часов приемника и спутника, зависимости скорости света от состояния атмосферы и т.п.). Поэтому для определения трехмерных координат приемника привлекаются не три, а минимум четыре спутника.

Получив сигнал от четырех (или больше) спутников, приемник ищет точку пересечения соответствующих сфер. Если такой точки нет, процессор приемника начинает методом последовательных приближений корректировать свои часы до тех пор, пока не добьется пересечения всех сфер в одной точке.

Следует отметить, что точность определения координат связана не только с прецизионным расчетом расстояния от приемника до спутников, но и с величиной погрешности задания местоположения самих спутников. Для контроля орбит и координат спутников существуют четыре наземных станции слежения, системы связи и центр управления, подконтрольные Министерству Обороны США. Станции слежения постоянно ведут наблюдения за всеми спутниками системы и передают данные об их орбитах в центр управления, где вычисляются уточнённые элементы траекторий и поправки спутниковых часов. Указанные параметры вносятся в альманах и передаются на спутники, а те, в свою очередь, отсылают эту информацию всем работающим приемникам.

Кроме перечисленных, существует еще масса специальных систем, увеличивающих точность навигации, — например, особые схемы обработки сигнала снижают ошибки от интерференции (взаимодействия прямого спутникового сигнала с отраженным, например, от зданий). Мы не будем углубляться в особенности функционирования этих устройств, чтобы излишне не осложнять текст.

После отмены описанного выше режима селективного доступа гражданские приемники «привязываются к местности» с погрешностью 3-5 метров (высота определяется с точностью около 10 метров). Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников (большинство современных аппаратов имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников).

Качественно уменьшить ошибку (до нескольких сантиметров) в измерении координат позволяет режим так называемой дифференциальной коррекции (DGPS — Differential GPS). Дифференциальный режим состоит в использовании двух приемников — один неподвижно находится в точке с известными координатами и называется «базовым», а второй, как и раньше, является мобильным. Данные, полученные базовым приемником, используются для коррекции информации, собранной передвижным аппаратом. Коррекция может осуществляться как в режиме реального времени, так и при «оффлайновой» обработке данных, например, на компьютере.

Обычно в качестве базового используется профессиональный приемник, принадлежащий какой-либо компании, специализирующейся на оказании услуг навигации или занимающейся геодезией. Например, в феврале 1998 года недалеко от Санкт-Петербурга компания «НавГеоКом» установила первую в России наземную станцию дифференциального GPS. Мощность передатчика станции — 100 Ватт (частота 298,5 кГц), что позволяет пользоваться DGPS при удалении от станции на расстояния до 300 км по морю и до 150 км по суше. Кроме наземных базовых приемников, для дифференциальной коррекции GPS-данных можно использовать спутниковую систему дифференциального сервиса компании OmniStar. Данные для коррекции передаются с нескольких геостационарных спутников компании.

Следует заметить, что основными заказчиками дифференциальной коррекции являются геодезические и топографические службы — для частного пользователя DGPS не представляет интереса из-за высокой стоимости (пакет услуг OmniStar на территории Европы стоит более 1500 долларов в год) и громоздкости оборудования. Да и вряд ли в повседневной жизни возникают ситуации, когда надо знать свои абсолютные географические координаты с погрешностью 10-30 см.

В заключение части, повествующей о «теоретических» аспектах функционирования GPS, скажу, что Россия и в случае с космической навигацией пошла своим путем и развивает собственную систему ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). Но из-за отсутствия должных инвестиций в настоящее время на орбите находятся лишь семь спутников из двадцати четырех, необходимых для нормального функционирования системы…

Краткие субъективные заметки пользователя GPS.

Так уж получилось, что о возможности определять свое местоположение с помощью носимого приборчика размерами с сотовый телефон я узнал году в девяносто седьмом из какого-то журнала. Однако замечательные перспективы, нарисованные авторами статьи, были безжалостно разбиты заявленной в тексте ценой навигационного аппарата — почти 400 долларов!

Года через полтора (в августе 1998) судьба занесла меня в маленький спортивный магазинчик в американском городе Бостон. Какого же было мое удивление и радость, когда на одной из витрин я случайно заметил несколько разных навигаторов, самый дорогой из которых стоил 250 долларов (простенькие же модели предлагались за $99). Конечно, уйти из магазина без прибора я уже не мог, поэтому принялся пытать продавцов о характеристиках, преимуществах и недостатках каждой модели. Ничего вразумительного от них я не услышал (и отнюдь не из-за того, что плохо знаю английский), так что пришлось разбираться во всем самому. И в результате, как это нередко бывает, была приобретена самая продвинутая и дорогая модель — Garmin GPS II+, а также специальный чехол к ней и шнур для питания от гнезда прикуривателя автомобиля. В магазине имелось еще два аксессуара для теперь уже моего аппарата — устройство для крепления навигатора на велосипедном руле и шнур для соединения с РС. Последний я долго крутил в руках, но, в конце концов, все же решил не покупать из-за немалой цены (немногим более 30 долларов). Как потом оказалось, шнур я не купил совершенно правильно, ибо все взаимодействие прибора с компьютером сводится к «сливке» в ЭВМ пройденного маршрута (а также, думаю, координат в режиме реального времени, но насчет этого есть определенные сомнения), да и то при условии покупки софта от Garmin. Возможность загружать в прибор карты, к сожалению, отсутствует.

Давать подробное описание своего прибора я не буду хотя бы потому, что он уже снят с производства (желающие ознакомиться с подробной технической характеристикой могут сделать это здесь ). Замечу лишь, что вес навигатора — 255 гр., размеры — 59х127х41 мм. Благодаря своему треугольному сечению аппарат исключительно устойчиво располагается на столе или панели приборов автомобиля (для более прочной фиксации в комплект входит липучка Velcro). Питание осуществляется от четырех пальчиковых батареек АА (их хватает лишь на 24 часа непрерывной работы) или внешнего источника. Попробую рассказать об основных возможностях моего прибора, которые, думаю, имеет подавляющее большинство присутствующих на рынке навигаторов.

С первого взгляда GPS II+ можно принять за мобильный телефон, выпущенный пару лет назад. Лишь только присмотревшись, замечаешь необычно толстую антенну, огромный дисплей (56х38 мм!) и малое, по телефонным меркам, количество клавиш.

При включении прибора начинается процесс сбора информации со спутников, а на экране появляется простенькая мультипликация (вращающийся земной шар). После первоначальной инициализации (которая в открытом месте занимает пару минут) на дисплее возникает примитивная карта неба с номерами видимых спутников, а рядом — гистограмма, свидетельствующая об уровне сигнала от каждого спутника. Кроме того, указывается погрешность навигации (в метрах) — чем больше спутников видит прибор, тем, разумеется, точнее будет определение координат.

Интерфейс GPS II+ построен по принципу «перелистываемых» страниц (для этого даже есть специальная кнопка PAGE). Выше была описана «страница спутников», а кроме нее, есть «страница навигации», «карта», «страница возврата», «страница меню» и ряд других. Следует заметить, что описываемый аппарат не русифицирован, однако даже с плохим знанием английского можно понять его работу.

На странице навигации отображаются: абсолютные географические координаты, пройденный путь, мгновенная и средняя скорости движения, высота над уровнем моря, время движения и, в верхней части экрана, электронный компас. Надо сказать, что высота определяется с гораздо большей погрешностью, чем две горизонтальные координаты (на этот счет есть даже специальная ремарка в руководстве пользователя), что не позволяет использовать GPS, например, для определения высоты парапланеристами. Зато мгновенная скорость вычисляется исключительно точно (особенно для быстродвижущихся объектов), что дает возможность использовать прибор для определения скорости снегоходов (спидометры которых имеют обыкновение значительно врать). Могу дать «вредный совет» — взяв напрокат автомобиль, отключите его спидометр (чтобы он насчитал поменьше километров — ведь оплата зачастую пропорциональна пробегу), а скорость и пройденное расстояние определяйте по GPS (благо он может вести измерения как в милях, так и в километрах).

Средняя скорость движения определяется по несколько странному алгоритму — время простоя (когда мгновенная скорость равна нулю) в вычислениях не учитывается (более логично, на мой взгляд, было бы просто делить пройденное расстояние на общее время поездки, но создатели GPS II+ руководствовались каким-то иными соображениями).

Пройденный путь отображается на «карте» (памяти аппарата хватает километров на 800 — при большем пробеге автоматически стираются самые старые метки), так что при желании можно посмотреть схему своих блужданий. Масштаб карты меняется от десятков метров до сотен километров, что, несомненно, исключительно удобно. Самое же замечательное состоит в том, что в памяти прибора имеются координаты основных населенных пункты всего мира! США, конечно, представлено более подробно (например, все районы Бостона присутствуют на карте с названиями), чем Россия (тут указано расположение лишь таких городов как Москва, Тверь, Подольск и т.п.). Представьте, например, что Вы направляетесь из Москвы в Брест. Находите в памяти навигатора «Брест», жмете специальную кнопку «GO TO», и на экране появляется локальное направление Вашего движения; глобальное направление на Брест; количество километров (по прямой, разумеется), оставшееся до точки назначения; средняя скорость и расчетное время прибытия. И так в любой точке мира — хоть в Чехии, хоть в Австралии, хоть в Таиланде…

Не менее полезной является так называемая функция возврата. Память аппарата позволяет записывать до 500 ключевых точек (waypoints). Каждую точку пользователь может называть по своему усмотрению (например, DOM, DACHA и т.п.), также предусмотрены различные пиктрограммки для отображения информации на дисплее. Включив функцию возврата к точке (любой из заранее записанных), владелец навигатора получает те же возможности, что и в описанном выше случае с Брестом (т.е. расстояние до точки, расчетное время прибытия и все остальное). У меня, например, был такой случай. Приехав в Прагу на автомобиле и устроившись в гостинице, мы с приятелем отправились в центр города. Оставив машину на стоянке, пошли побродить. После бесцельной трехчасовой прогулки и ужина в ресторане мы поняли, что совершенно не помним, где оставили машину. На улице ночь, мы — на одной из маленьких улочек незнакомого города… К счастью, прежде чем покинуть автомобиль, я записал его местоположение в навигатор. Теперь же, нажав пару кнопок на аппарате, я узнал, что машина стоит в 500 метрах от нас и через 15 минут мы уже слушали тихую музыку, направляясь на автомобиле в гостиницу.

Кроме движения к записанной метке по прямой, что не всегда удобно в условиях города, Garmin предлагает функцию TrackBack — возврат по своему пути. Грубо говоря, кривая движения аппроксимируется рядом прямолинейных участков, а в точках излома ставятся метки. На каждом прямолинейном участке навигатор ведет пользователя к ближайшей метке, по достижении же ее осуществляется автоматическое переключение на следующую метку. Исключительно удобная функция при езде на автомобиле по незнакомой местности (сигнал со спутников сквозь здания, конечно, не проходит, поэтому, чтобы получить данные о своих координатах в условиях плотной застройки, приходится искать более-менее открытое место).

Я не буду дальше углубляться в описание возможностей прибора — поверьте, что кроме описанных, в нем есть еще масса приятных и нужных примочек. Одна смена ориентации дисплея чего стоит — можно использовать аппарат как в горизонтальном (автомобильном), так и в вертикальном (пешеходном) положении (см. рис.3).

Одной из основных же прелестей GPS для пользователя я считаю отсутствие какой-либо платы за пользование системой. Купил один раз прибор — и наслаждайся!

Заключение.

Я думаю, нет нужды перечислять области применения рассмотренной системы глобального позиционирования. GPS-приемники встраивают в автомобили, сотовые телефоны и даже наручные часы! Недавно я встретил сообщение о разработке чипа, совмещающего в себе миниатюрный GPS-приемник и модуль GSM — устройствами на его базе предлагается оснащать собачьи ошейники, чтобы хозяин мог без труда обнаружить потерявшегося пса посредством сотовой сети.

Но в любой бочке меда есть ложка дегтя. В данном случае в роли последнего выступают российские законы. Я не буду подробно рассуждать о юридических аспектах использования GPS-навигаторов в России (кое-что об этом можно найти здесь ), замечу лишь, что теоретически высокоточные навигационные приборы (коими, без сомнения являются даже любительские GPS-приемники) у нас запрещены, а их владельцев ждет конфискация аппарата и немалый штраф.

К счастью для пользователей, в России строгость законов компенсируется необязательностью их выполнения — например, по Москве разъезжает огромное количество лимузинов с шайбой-антенной GPS-приемников на крышке багажника. Все более-менее серьезные морские суда оборудованы GPS (и уже выросло целое поколение яхтсменов, с трудом ориентирующихся в пространстве по компасу и прочим традиционным средствам навигации). Надеюсь, власти не будут вставлять палки в колеса техническому прогрессу и в ближайшее время легализуют пользование GPS-приемниками в нашей стране (отменили же разрешения на сотовые телефоны), а также дадут добро на рассекречивание и тиражирование подробных карт местности, необходимых для полноценного использования автомобильных навигационных систем.

что такое в Англо-русском словаре технических аббревиатур

Смотреть что такое GPS в других словарях:

GPS

технология определения координат расположения пользователя на поверхности Земли, реализуемая путем взаимодействия персонального GPS-устройства (в частности, портативного компьютера, снабженного соответствующим модулем) с мировой радионавигационной спутниковой системой (включающей 24 спутника, а также сеть наземных станций). Текущее положение пользователя GPS-устройства определяется методом триангуляции после вычисления расстояний до нескольких спутников (или наземных станций) по временной задержке радиосигналов (благодаря синхронизации времени для всей спутниковой системы и для персонального GPS-устройства) с точностью (для гражданского применения) 15 м и вероятностью 95 %. Объединение технологии GPS с электронными картами местности и использование запросов по беспроводной сети к местным БД позволяет реализовать автоматическое построение оптимального маршрута следования пользователя GPS-системы до интересующего объекта [84, с. 184]…. смотреть

GPS

тех. сокр.Global Positioning SystemСистема глобальной навигации, глобальная система определения местоположения, система спутниковой навигации, спутнико… смотреть

GPS

[gallons per second] — галлонов в секунду* * *сокр.[gallons per second] галлонов в секунду* * *• Global Positioning System• Ground Positioning Satelli… смотреть

GPS

I сокр. от general problem solverуниверсальный решатель задачII сокр. от general-purpose systemсистема общего назначения

GPS

global navigation satellite system Or global positioning systemГЛОНАСС или ГНС — глобальная навигационная спутниковая система или глобальная навигацион… смотреть

GPS

сокр. от general problem solver — универсальный решатель задач II сокр. от Global Position System — глобальная система рекогносцировки III сокр. от general-purpose system — система общего назначения… смотреть

GPS

I general problem solver универсальный решатель задач II Global Position System глобальная система рекогносцировки III general-purpose system система общего назначения… смотреть

GPS

global positioning system — система глобального позиционирования (через спутниковые ретрансляторы)

GPS

1) см. Global Positioning System 2) (General Problem Solver) общий решатель проблем, система GPS

GPS

глобальная система навигации и определения положения

GPS

сокр. от Global Positioning System глобальная система навигации и определения положения

GPS

система контроля местонахождения транспортных средств

GPS

система спутниковой навигации

GPS

Global Positioning System глобальная система позиционирования

GPS

глобальная система навигации и определения положения

GPS

• geopositioning system • Global Positioning System

GPS

GPS см. Global Positioning System

GPS

мировая спутниковая позиционная система

GPS

см. Global Positioning System

GPS (GLOBAL POSITIONING SATELLITE) SURVEY

Англо-русский словарь нефтегазовой промышленности

• аэрокосмическая разведка• аэрокосмическая съемка

GPS (GLOBAL POSITIONING SYSTEM)

Глоссарий терминов бытовой и компьютерной техники Samsung

Спутниковая система глобального позиционирования, разработанная Министерством обороны США и позволяющая точно определить свои координаты в любой точке земного шара при помощи определения расстояния до 3 любых спутников системы GPS. В настоящее время выпускаются весьма недорогие и простые приемники GPS под любой тип интерфейса с возможностью их эксплуатации совместно с ноутбуком и даже с мобильным телефоном. Системы, аналогичные GPS, в настоящее время внедряются в Европейском союзе (проект Galileo) и в России (проект «ГЛОНАСС»)…. смотреть

GPS (GLOBAL POSITIONING SYSTEM)

Строительный словарь

технологии — спутниковые навигационные системы, применяемые для выполнения геодезических работ при изысканиях, проектировании, строительстве и эксплуатации автомобильных дорог.<br><div align=»right»></div>Источник: Справочник дорожных терминов<br>… смотреть

GPS GLOBAL POSITIONING SYSTEM

Англо-русский словарь Мюллера

GPS Global Positioning System noun глобальная система навигации и определе-ния положения

GPS RECEIVER

Англо-русский словарь по космонавтике

GPS-приёмник

GPS STATION CLOCK

Англо-русский словарь по космонавтике

синхронизатор универсальной системы спутниковой связи

GPS SURVEY

Англо-русский словарь нефтегазовой промышленности

• аэрокосмическая разведка• аэрокосмическая съемка• аэрокосмическая съемка / разведка

какие бывают системы, параметры и функции / Блог компании Promwad / Хабр

В этой статье мы расскажем про глобальные системы позиционирования, разработанные в США, России, ЕС и Китае; объясним, как поддержка технологий глобальной спутниковой навигации реализована в электронных устройствах, а также опишем ключевые и дополнительные функции современных навигационных приемников.

GPS

Система GPS (Global Positioning System) создавалась для применения в военных целях. Она начала работать в конце 80-х — начале 90-х годов, однако до 2000 года искусственные ограничения на определение местоположения существенно сдерживали ее возможности использования в гражданских целях.


 
После отмены ограничений на точность определения координат ошибка снизилась со 100 до 20 м (в последних поколениях GPS-приёмников при идеальных условиях ошибка не превышает 2 м). Такие условия позволили использовать систему для широкого круга общих  и специальных задач:
  • Определение точного местоположения
  • Навигация, движение по маршруту с привязкой к карте на основании реального местоположения
  • Синхронизация времени

Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat — это число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).
 

ГЛОНАСС

Российский аналог GPS — ГЛОНАСС (глобальная навигационная спутниковая система) — была развёрнута в 1995 году, но в связи с недостаточным финансированием и малым сроком службы спутников она не получила широкого распространения. Вторым рождением системы можно считать 2001 год, когда была принята целевая программа ее развития, благодаря которой ГЛОНАСС возобновил полноценную работу в 2010 году.
 
Сегодня на орбите работают 24 спутника ГЛОНАСС, они охватывают навигационным сигналом весь земной шар.
Новейшие потребительские устройства используют GPS и ГЛОНАСС как взаимодополняющие системы, подключаясь к ближайшим найденным спутникам, это значительно увеличивает скорость и точность их работы.
 

Пример: aвтомобильное GPS/ГЛОНАСС-навигационно-связное устройство на базе ОС Android, разработанное командой Promwad по заказу российского конструкторского бюро. Реализована поддержка GSM/GPRS/3G. Устройство автоматически обновляет информацию о дорожной обстановке в режиме реального времени и предлагает водителю оптимальный маршрут с учётом загруженности дорог.


 
Сейчас на стадии разработки находятся еще две спутниковые системы: европейская Galileo и китайская Compass.
 
Galileo

Галилео — совместный проект Европейского союза и Европейского космического агентства, анонсированный в 2002 году. Изначально рассчитывали, что уже в 2010 году в рамках этой системы на средней околоземной орбите будут работать 30 спутников. Но этот план не был реализован. Сейчас  предположительной датой начала эксплуатации Galileo считается 2014 год. Однако ожидается, что полнофункциональное использование системы начнется не ранее 2020 года.
 

Compass

Это следующая ступень развития китайской региональной навигационной системы Beidou, которая была введена в эксплуатацию после запуска 10 спутников в конце 2011 года. Сейчас она обеспечивает покрытие в границах Азии и Тихоокеанского региона, но, как ожидается, к 2020 году система станет глобальной.
 

Сравнение орбит спутниковых навигационных систем GPS, ГЛОНАСС, Galileo и Compass (средняя околоземная орбита — MEO) с орбитами Международной космической станции (МКС), телескопа Хаббл и серии спутников Иридиум (Iridium) на низкой орбите, а также геостационарной орбиты и номинального размера Земли.
 

Поддержка ГНСС

Поддержка технологи глобальных навигационных спутниковых систем (ГНСС) в электронных устройствах реализуется на базе навигационных приемников, которые могут быть выполнены в различных вариантах:
  • Smart Antenna — модуль, состоящий из керамической антенны и навигационного приемника. Преимущества: компактность, не требует согласования, удешевляет разработку за счет сокращения сроков.
  • MCM (Multi Chip Module) — чип, включающий все компоненты навигационного приемника.
  • OEM — экранированная плата, включающая ВЧ интерфейсный процессор и процессор частот основной полосы (RF-frontend + baseband), SAW-фильтры и обвязку. Это наиболее популярное решение на данный момент.

Навигационный модуль подключается к микроконтроллеру или системе на кристалле по интерфейсу UART/RS-232 или USB.
 
Ключевые параметры навигационных приемников

Прежде чем навигационный приемник сможет выдавать информацию о местоположении, он должен обладать тремя наборами данных:
  1. Сигналы от спутников
  2. Альманах — информация о приблизительных параметрах орбит всех спутников, а также данные для калибровки часов и характеристики ионосферы
  3. Эфемериды — точные параметров орбит и часов каждого спутника

Характеристика TTFF показывает сколько времени требуется приемнику на поиск сигналов от спутников и определение местоположения. Если приёмник новый, или был выключен на протяжении длительного периода, или был перевезен на большое расстояние с момента последнего включения, время до получения набора необходимых данных и определения места увеличивается.
 
Производители приемников используют различные методы уменьшения TTFF, включая скачивание и сохранения альманаха и эфемерид по беспроводным сетям передачи данных (т.н. метод Assisted GPS или A-GPS), это быстрее чем извлечение этих данных из сигналов ГНСС.
 
Холодный старт описывает ситуацию, когда приемнику нужно получение всей информации для определения места. Это может занять до 12 минут.
 
Теплый старт описывает ситуацию, когда у приемника есть почти вся необходимая информация в памяти, и он определит место в течении минуты.
 
Одним из ключевых параметров навигационных модулей в мобильных устройствах является энергопотребление. В зависимости от режима работы модуль потребляет различное количество энергии. Фаза поиска спутников (TTFF) характеризуется большим, а слежение меньшим энергопотреблением. Также производители реализуют различные схемы уменьшения энергопотребления, например, путем периодического перевода модуля в режим сна.
 
Как правило, все модули выдают данные по текстовому протоколу NMEA-0183, но кроме указанного текстового протокола каждый производитель имеет свой собственный двоичный протокол (Binary), который позволяет изменять конфигурацию модуля под конкретное использование либо получать доступ к дополнительному функционалу, а также доступ к сырым измерениям. Двоичный протокол удобен для использования на микроконтроллерах, т.к. при этом нет необходимости выполнять преобразование из текста в двоичные данные, тем самым экономя программную память путем исключения библиотеки работы со строками и времени на преобразование.
 
Стандарт NMEA-2000 — это развитие протокола NMEA-0183. В качестве физического уровня в NMEA-2000 используется CAN-шина, которая была выбрана в виду большей защищенности по сравнению с RS-232. С точки зрения протокола передачи данныхNMEA-2000 существенно отличается от своего предшественника, т.к. использует двоичный протокол, базирующийся на стандарте SAE J1939.
 
Частота обновления данных о местоположении и скорости всех модулей составляет 1 Гц, но при необходимости ее можно поднять до 5 или 10 Гц.
 
В зависимости от области применения модуль можно  сконфигурировать под определенные динамические характеристики, которые он должен отслеживать (например, максимальное ускорение объекта). Это позволяет использовать оптимальный алгоритм и улучшать качество измерений.
 
Для выполнения навигационной задачи модуль должен одновременно принимать сигналы от нескольких спутников, т.е. иметь несколько приемных каналов. На сегодняшний день это число лежит в диапазоне от 12 до 88.
 
Точность определения местоположения по GPS составляет в среднем 15 м, она обусловлена используемым неточным сигналом, влиянием атмосферы на распространение радиосигнала, качеством кварцевых генераторов в приемниках и пр. Но с помощью корректирующих методов возможно улучшить точность определения местоположения. Эта технология называется Differential GPS. Существует два метода коррекции: наземный и спутниковый DGPS.
 
В наземных методах коррекции наземные станции дифференциальных поправок постоянно сверяют свое заведомо известное местоположение и сигналы от навигационных спутников. На базе этой информации вычисляются корректирующие величины, которые могут быть переданы с помощью УКВ- или ДВ-передатчика на мобильные DGPS-приемники в формате RTCM. На основании полученной информации потребитель может корректировать процесс определения собственного местоположения. Точность этого метода составляет 1—3 метра и зависит от расстояния до передатчика корректирующей информации и качества сигнала.
 
Спутниковые методы, такие как система WAAS (Wide Area Augmentation System), доступная в Северной Америке, и система EGNOS (European Geostationary Navigation Overlay System), доступная в Европе, шлют корректирующие данные с геостационарных спутников, таким образом достигается большая область приема, чем при наземных методах.
 

Спутниковые системы дифференциальной коррекции (SBAS — Space Based Augmentation Systems) позволяют улучшить точность, надежность и доступность навигационной системы за счет интеграции внешних данных в процессе расчета
 

Демонстрация принципа работы системы WAAS (Wide Area Augmentation System) на территории США
 
Одним из основных параметров, влияющих на точность определения местоположения и стабильность приема является чувствительность. Она, как правило, определяется качеством малошумящего усилителя на входе приемника и сложностью реализованных алгоритмов цифровой обработки. Типовые значения современных приемников лежат в диапазоне 143 дБм для поиска и 160 дБм для слежения.
 
Кроме определения местоположения ГНСС предоставляют информацию о точном времени. Как правило, все приемники имеют выход PPS (pulse per second, импульсов в секунду) — секундная метка (1 Гц), которая точно синхронизирована с временной шкалой UTC.
 

Дополнительные функции навигационных устройств

Счисление пути. На основе информации о направлении движения и пройденном пути (предоставляется дополнительными датчиками) приемник может рассчитывать свои координаты при отсутствии сигналов от спутников (например, в туннелях, на подземных стоянках и в плотной городской застройке).
 
Некоторые модули имеют возможность напрямую подключать флэш-память (например, по SPI) к модулю для записи трека c необходимой периодичностью. Эта функция позволяет отказаться от использования отдельного микроконтроллера, либо она может быть полезной для минимизации энергопотребления (т.е. система на кристалле может находиться в состоянии сна).
 
На этом поверхностный обзор технологий глобальной спутниковой навигации завершен. Спасибо за внимание. Примеры реализованных проектов на базе этих ГЛОНАСС и GPS можно посмотреть на странице разработок компании Promwad.

GPS. Прошлое, настоящее и будущее глазами обывателя / Хабр

Введение

В настоящее время, когда современные телефоны стали в десятки раз мощнее первых суперкомпьютеров, когда появились первые iPhone, iPad и множество устройств на Android мы получили новую идеологию применения этих ресурсов. Карманные гаджеты теперь не просто уменьшенные до размеров ладони компьютеры, а инструменты, позволяющие пользователю при помощи одного пальца управлять целыми сферами его жизни – всеми сферами, в которые проник Интернет: общением, развлечениями, путешествиями, поиском информации…
Список можно продолжать до бесконечности. Во многом вплетению Интернета в нашу жизнь поспособствовала GPS-навигация. Теперь, когда почти у каждого в кармане лежит GPS-приемник, множество сервисов получило возможность улучшить нашу жизнь. Однако рассмотрим сначала историю происхождения GPS.

1. История появления и развития навигационной технологии

GPS (от англ. Global Positioning System) – спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение объектов (см. Рисунок 1).

Проект был реализован и принадлежит военному ведомству США. Основной задачей проекта является определение текущих координат пользователя на поверхности Земли или в околоземном пространстве [4].

Идея создания спутниковой навигации родилась еще в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли, американские ученые во главе с Ричардом Кершнером (Richard Kershner), наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если вы точно знаете свои координаты на Земле, то становится возможным измерить положение и скорость спутника, и наоборот, точно зная положение спутника, можно определить собственную скорость и координаты (см. Рисунок 2).

Реализована эта идея была через 20 лет. Первый тестовый спутник выведен на орбиту 14 июля 1974 г. в США, а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом, глобальная система позиционирования встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на Земле.

Первоначально глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983 г. был сбит вторгшийся в воздушное пространство Советского Союза самолет корейских авиалиний с 269 пассажирами на борту, президент США Рональд Рейган разрешил частичное использование системы навигации для гражданских целей. Но точность была уменьшена специальным алгоритмом.
Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности на частоте L1 и с успехом компенсируют эту составляющую ошибки, и в 2000 г. это загрубление точности было отменено указом президента США [2].

Ниже, в таблице представлена хронология развития GPS (см. Таблица 1).

Таблица 1- Хронология развития GPS

Дата Событие
1973 Решение о разработке спутниковой навигационной системы
1974—1979 Испытание системы
1977 Прием сигнала от наземной станции, симулирующей спутник системы
1978—1985 Запуск одиннадцати спутников первой группы (Block I)
1979 Сокращение финансирования программы. Решение о запуске 18 спутников вместо запланированных 24
1980 В связи с решением свернуть программу использования спутников Vela системы отслеживания ядерных взрывов, эти функции было решено возложить на спутники GPS. Старт первых спутников, оснащенных сенсорами регистрации ядерных взрывов
1980—1982 Дальнейшее сокращение финансирования программы
1983 После гибели самолета компании Korean Airline, сбитого над территорией СССР, принято решение о предоставлении сигнала гражданским службам
1986 Гибель космического челнока Space Shuttle «Challenger» приостановила развитие программы, так как последний планировался для вывода на орбиту второй группы спутников. В результате основным транспортным средством была выбрана ракета-носитель «Дельта»
1988 Решение о развертывании орбитальной группировки в 24 спутника. 18 спутников не в состоянии обеспечить бесперебойного функционирования системы
1989 Активация спутников второй группы
1990—1991 Временное отключение SA (англ. selective availability — искусственно создаваемой для неавторизированных пользователей округления определения местоположения до 100 метров) в связи с войной в Персидском заливе и нехваткой военных моделей приемников. Включение SA 1 Июня 1991 года
8.12.1993 Сообщение о первичной готовности системы. В этом же году принято окончательное решение о предоставлении сигнала для бесплатного пользования гражданским службам и частным лицам
1994 Спутниковая группировка укомплектована
17.07.1995 Полная готовность системы
1.05.2000 Отключение SA для гражданских пользователей, таким образом, точность определения выросла со 100 до 20 метров
26.06.2004 Подписание совместного заявления по обеспечению взаимодополняемости и совместимости Galileo и GPS
Декабрь 2006 Российско-американские переговоры по сотрудничеству в области обеспечения взаимодополняемости космических навигационных систем ГЛОНАСС и GPS
2. GPS сегодня

2.1. GPS – игры

Революцию геотаргетинговых сервисов, то есть построенных вокруг определения местоположения чего-либо (пользователя или точки на карте), можно было предсказать еще до появления новомодных смартфонов. Люди начали сходить с ума по GPS‑навигации сразу же, как только она получила распространение. 1 мая 2000 года пресс-служба Белого Дома объявила о том, что прекращено преднамеренное ухудшение точности гражданских приемников системы GPS, а уже 3 мая один из фанатов GPS Дейв Улмер решил проверить точность навигации. Он назвал эту идею «большой американской охотой на тайник при помощи GPS» и через Интернет сообщил о ней другим пользователям. Замысел был очень прост: где-то в лесу прячется контейнер, и регистрируются его географические координаты. Другие игроки должны найти «клад» при помощи своих GPS‑приемников. Правило для нашедшего: возьми какие-то вещи, оставь что-то свое. Улмер поместил собственный контейнер (черное ведро) недалеко от Портленда. Вместе с журналом, где участники могли отметить свое посещение, и карандашом он оставил небольшие подарки: видеокассеты, книги, диски и рогатку. В течение трех дней тайник был найден двумя игроками, которые прочитали о нем в сети. Другие энтузиасты начали размещать собственные тайники и публиковать их координаты, поддержав начинание. Как и многие другие идеи в Интернете, новая игра очень быстро завоевала популярность и со временем получила новое название – геокэшинг. Сайт Geocaching.com по сей день остается популярным ресурсом для геокэшеров всего мира, а в России действует ресурс geocaching.su. Российский вариант немного отличается от западного: тайники в отечественной версии игры рекомендуется создавать в местах, которые имеют историческое, культурное или природное значение [1].
2.2. GPS-метки

На основе геокэшинга были реализованы идеи GPS меток. Сервис foursquare предлагает пользователям отмечать на карте интересные места, бары, кафе, театры, в прочем, все, что может заинтересовать других. Благодаря этому сервису гораздо проще найти бар, где недавно отметился твой друг, нежели прибегать к Интернет-поиску. Однако и у foursquare есть не менее успешные аналоги, как русские – AlterGeo, так и зарубежные – Gowalla. Так же подобные сервисы развиваются и внутри социальных сетей: в Facebook – Places, в ВКонтакте – места, позволяющие отметиться в каком-либо месте и отметить друзей, которые находятся рядом с тобой. Можно предположить, что «Места» будут пронизывать почти весь мир.
2.3. Виртуальная реальность

Уже сейчас стали появляться первые GPS навигаторы, проводящие линии маршрута прямо по изображению с встроенной видеокамеры. Правда, работают они хуже некуда, сложно совместить неточный GPS-тег на карте с видеоизображением. Впрочем, это удалось сделать создателям Layar – браузера дополненной реальности. Он способен совмещать информационные карты с показаниями GSP приемника и компаса, накладывая результат на изображение с видеокамеры (см. Рисунок 3).

Однако это всего лишь браузер, а не навигатор, то есть о точке можно знать только расстояние, разделяющее вас, а вот как до нее пройти и что между вами находится, узнать не получится.
Интересное приложение выпустил сайт «Вокруг света». Оно способно определять местоположение и автоматически начинает рассказ о ближайшей достопримечательности. Радует и то, что присутствует ручной режим и, в случае ошибки GPS, можно выбрать интересующий объект вручную.

2.4. GPS – карты

Конечно же, нельзя не упомянуть о главных потребителях данной технологии – о мобильных картах. Google Maps, предустановленные в каждом приличном смартфоне, и «Яндекс. Карты», располагающие более точной на сегодня картой России, сражаются за наш рынок, то и дело добавляя новые функции и сервисы, становясь качественнее и сложнее. Трехмерный вид и быстрая векторная карта у Google против более грамотной навигации и более точной растровой карты у «Яндекса». Безусловное лидерство в отображении загруженности дорог и автомобильной маршрутизации, а также едва не ставшие «геотаргетинговым twitter’ом» пользовательские комментарии на карте у «Яндекса» против недавно запустившегося режима полноценного автомобильного навигатора у Google. Более грамотный поиск по русскоязычным названиям у «Яндекса» против пешеходной маршрутизации с учетом общественного транспорта у Google. Выбирать можно бесконечно, но в итоге у каждого пользователя стоят обе карты. Стоит «Яндексу» выпустить автомобильный навигатор внутри карт, аналогичный Google, и это навсегда изменит рынок GPS-навигации, дав нам на выбор два бесплатных, оперативно обновляющихся и компактных навигатора. А это сделает привычные GPS навигаторы архаизмом [1].
3. Кому это нужно?

Чем же помогут в жизни GPS устройства обычному человеку (см. Рисунок 4)?

Лучшая программа городской навигации проложит вам маршрут к заданному адресу. А если хорошенько попросите, то и несколько маршрутов на выбор. Причем, если вы выбрали один, а по пути решили отклониться от рекомендаций, тут же, на ходу, маршрут будет пересчитан. Она же спрогнозирует ожидаемые скорость и время прибытия к точке назначения, проведет вас до места, всякий раз предупреждая заранее на экране (а если включите голосовой режим, то и голосом) о поворотах, разворотах и прочих сменах простого прямого движения. А еще, если вам предстоит какая-нибудь сложная развязка, автоматически увеличит ее изображение до полной внятности и обозначит, по какому из рукавов надо двигаться. Более того, некоторые программы (и прилагаемые к ним недорогие подписные сервисы) позволяют учитывать в расчетах данные о реальных пробках на дорогах и предлагать маршруты более, может быть, длинные, но в данный момент более быстрые. Правда, эти сервисы еще только-только начинают развиваться, и инфраструктура, призванная их обеспечить, еще не вполне налажена.

Если же речь идет о поездках за рулем в чужом городе, а того пуще — за границей, здесь без навигатора (подключенного к умной программе и снабженного самыми свежими картами, которые обычно часто обновляются через Интернет) попросту не обойтись [3].

Заключение

Можно только предполагать, какое развитие получит навигация в будущем. Возможно все движение, в том числе и личный транспорт, будет управляться автоматическими компьютерными системами, и навигация будет контролировать перемещения, не давая сбиться с пути и предупреждая столкновения с другими объектами. Возможно, на смену GPS придет более совершенная технология, позволяющая получать сигнал на глубине нескольких километров и не теряющая точности от внешних факторов. Однако точно понятно, что развитие только начинается.
Список используемой литературы

1. Банин, Д. На карту поставлено все / Д. Банин, Р. Китаев // Испытатель. — 2011. — № 3. — С. 21-25.
2. История создания систем спутниковой навигации [Электронный ресурс] / Неизвестный автор // Как работает система GPS. — 2009. — Режим доступа: www.glonax.ru/history-gps.html
3. Козловский, Е. Искусство позиционирования / Е. Козловский // Вокруг света. — М.: 2006. — № 12. — С. 204-280.
4. Сетевые спутниковые радионавигационные / В. Шебшаевич [и др.]. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1993. — 408 с.: ил.

Что означает GPS?

000 Основной вид

Правительственные »Военные

000500050005000500050005000500050005000500050005 it:
Perfect000000 Система Python 900 08

Разное »Несекретный

Программы Университеты

GPS

Система глобального позиционирования

Академия и наука »Электроника — и многое другое …

Оцените:
GPS

The Gap Зарегистрированный

Бизнес »Символы NYSE

Оцените его:
GPS

Generac Power Systems

Бизнес» Компании и фирмы

45

5

Оцените это:
GPS

Goingly Straight

Governmental »Транспорт

Оцените:
GPS

General Pavement Studies »Транспорт

900 15 Оцените это:
GPS

Рогатка гигантского пингвина

Разное »Funnies

Оценить:
GPS

Габунган Перусахан Седженис

Международный

GPS

Система позиционирования подруги

Разное »Funnies

Оценить:
GPS 9000

90 005
Оцените это:
GPS

Глобальная система позиционирования gps

Разное »Несекретный

Система гравитационных покрытий

Разное »Производство

Оцените:
GPS

Собрание для молитв и учебы

000 Сообщество

Оцените это:
GPS

Глобальное положение змей

Разное »Несекретный

Оцените это:
Оценить:
GPS

Отличное позиционирование

Интернет» Чат

GPS

Система точного определения местоположения бабушек

Разное »Funnies

Оценить:
GPS Оцените:
GPS

Успех в Божьем планировании

Государственное планирование

0 GPS00010 Medical Physology17

Gl obal Увековечение глупости

Разное »Приколы

Оцените это:
GPS

Gastrocnemius-Plantaris

Оцените:
GPS

галлонов в секунду

Разное »Единицы измерения — и многое другое…

Оценить:
GPS

Global Public Square

Интернет »Сайты

GPS

Синдром серых тромбоцитов

Медицина »Физиология

Оцените это:
GPS

God Point Somewhere

Оцените: