РазноеКак переделать компьютерный блок питания в регулируемый – Регулируемый блок питания 2,5-24в из БП компьютера

Как переделать компьютерный блок питания в регулируемый – Регулируемый блок питания 2,5-24в из БП компьютера

Содержание

Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо / Habr

Всем привет!

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.



Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX
Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах).
Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.


Ссылка на схему в полном размере

Структурно разделим БП на следующие блоки:
— выпрямитель сетевого напряжения с фильтром
— источник дежурного питания(+5V standby)
— основной источник питания(+12V,-12V,+3.3V,+5V,-5V)
— схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

ШИМ контроллер TL494.
Давайте разберемся как же устроен ШИМ контроллер TL494.

Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf

Начнем, как это ни странно, с конца — с выходной части микросхемы.
Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом).
Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2.
Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов.
Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time.
Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты.
На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в.
Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Обратная связь.
Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи


Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам…
Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1.
С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя.

Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1

От теории к практике
Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

Она встраивается в БП вот таким образом:

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper’a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом
Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

Кстати, обещанная в начале книга:
Куличков А.В. «Импульсные блоки питания для IBM PC»
radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

habr.com

Лабораторный блок питания из компьютерного

Нам понадобятся:


1. Блок питания от старого Пк (любой ATX) 
2. Модуль ЖК вольтметра 
3. Радиатор для микросхемы(любой, подходящий по размеру) 
4. Микросхема LM317 (регулятор напряжения) 
5. электролитический конденсатор 1мкФ 
6. Конденсатор 0.1 мкФ 
7. Светодиоды 5мм — 2шт.
8. Вентилятор 
9. Выключатель 
10. Клеммы — 4шт.
11. Резисторы 220 Ом 0.5Вт — 2шт.
12. Паяльные принадлежности, 4 винта M3, шайбы, 2 самореза и 4 стойки из латуни длиной 30мм. 

   Я хочу уточнить, что список примерный, каждый может использовать то, что есть под рукой. 


Общие характеристики блока питания ATX: 

   Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги: 
а) Входное высокое напряжение сначала выпрямляется и фильтруется. 
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между 
высоковольтной и низковольтными частями схемы.  
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.

Основными достоинствами таких источников являются: 
— Высокая мощность при небольших размерах 
— Высокий КПД 
   Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В. 

К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора. 


Мощность блока питания

   Электрические характеристики блока питания напечатаны на наклейке (см. рисунок) которая, обычно, находится на боковой стороне корпуса. Из нее можно получить следующую информацию: 

Напряжение — Ток 

3.3В   —   15A 

5В   —   26A 

12В   —   9А 

-5 В   —   0,5 А 

5 Vsb   —   1 A



Для данного проекта нам подходят напряжения 5В и 12В. Максимальный ток, соответственно будет 26А и 9А, что очень неплохо. 


Питающие напряжения

Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:

Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK. 

Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме. 
Разъем PS_ON (включение питание) используется для включения блока питания из дежурного режима. При подаче на этот разъем напряжения 0В блок питания включается, т.е. чтобы запустить блок питания без материнской платы его нужно соединить с общим проводом (землей).
Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю. После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.


ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.

Модернизация блока питания

1. Разборка и чистка


Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.

2. Подготавливаем провода 


Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый. 
Если есть достаточно мощный паяльник — лишние провода отпаиваем, если нет — откусываем кусачками и изолируем термоусадкой. 


3. Изготовление передней панели. 


   Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.


4. Размещение стоек



   Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.


5. Регулировка и стабилизация напряжения

    Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.
LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току. 
Схема включения и распиновка микросхемы приведены ниже: 

   Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы: 
   Либо упрощенная форма этого выражения: 

Vout = 1.25(1+R2/R1) 


   Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.

   Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В. 
     Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем: 
R2=(Vout-1,25)(R1/1.25) 
R2=(12-1.25)(240/1.25) 
R2=2064 Ома 

Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие: 
R1=240 Ом,  R2=кОм 

На этом расчет регулятора закончен. 



6. Сборка регулятора 

Сборку регулятора выполним по следующей схеме: 




Ниже приведу принципиальную схему: 

   Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате. 

   Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема. 


Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:

7. Подключение 

Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях  Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой: 

    Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы  Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель. 

    Перед подключением вольтметра, нужно внимательно разобраться со схемой подключения, рекомендованной производителем. 

Встречаются модели с внешним питанием и питанием от измеряемого напряжения.

В нашем случае для питания индикатора необходимо было постоянное напряжение 9-12В. Для этих целей подойдет плата от любого блока питания, способная выдавать требуемое напряжение или зарядное устройство от старого телефона. Также возможно использовать одно из фиксированных напряжений блока питания ATX.  

8. Последние штрихи 

   Первое, что мы можем сделать, так это приклеить четыре силиконовый ножки-подставки, чтобы не царапать стол, понизить уровень шума и способствовать лучшему охлаждению БП.

   Далее, необходимо закрыть боковые грани между блоком питания и передней панелью полосками оргстекла.  Ширина полосок должна быть такой же, как и высота стоек, которые мы использовали. Боковые панели соединяем с передней панелью при помощи дихлорэтана или клея. Для улучшения охлаждения сверлим отверстия напротив радиатора охлаждения. Так же, чтобы улучшить охлаждение нижнюю полоску можно не ставить.  

   Наш лабораторный блок питания почти готов, но для начала проведем с ним некоторые тесты. 

9. Испытания 

Измерения: 

При помощи мультиметра нужно измерить напряжение между общим разъемом и разъемами с напряжением. При измерении регулируемого выхода измерения проводятся минимального и максимального напряжения. Результаты следующие: 

Защита: 

Поскольку блок питания компьютера имеет защиту от перегрузки и короткого замыкания, мы можем это проверить. Для этого закорачиваем проводом общий разъем и разъем 5В или 12В. Блок питания должен отключиться. Для повторного его включения необходимо выключить и снова включить выключатель подачи 220В.  Регулируемый выход защищен микросхемой LM317. Защита в зависимости от температуры микросхемы срабатывает при превышении тока нагрузки 2-3А.

10. Улучшение 

   В процессе эксплуатации было замечено, что на микросхеме LM317 рассеивается очень большое количество тепла и радиатор достаточно горячий. Поэтому дополнительно, при помощи двух шурупов, был установлен 12-ти вольтовый вентилятор от видеокарты.

   Питание вентилятора берется с выхода 12В, и желательно запитать его через дополнительный выключатель, чтобы вставить его только тогда, когда это необходимо.

Результат



В основу написания легла статья с испанского сайта http://www.taringa.net

mynobook.blogspot.com

И снова о переделке БП формата АТХ

РадиоКот >Схемы >Питание >Зарядные устройства >

И снова о переделке БП формата АТХ

Часть 1-я.

Отмена анонимности в конкурсе неожиданно предоставила возможность поделиться продолжением моих опытов по переделке БП АТХ в зарядные устройства не ожидая окончания конкурса. Чем и решил воспользоваться, чтобы поздравить кота с днюхой.

Ранее, мной были опробованы и описаны, различные способы переделки БП АТХ в зарядное устройство для 12В аккумуляторов. Естественно, после полевых испытаний, возникли определённые пожелания. Как выяснилось, электронный предохранитель на полевом транзисторе по схеме Simurg, частенько позволял себе ложные срабатывания. У меня так получилось, может просто неудачно? В частности, срабатывал при подключении сильно разряженного аккумулятора. Приходилось по несколько раз подключать, пока не получится. Можно было, конечно, поиграть с его чувствительностью, задержкой срабатывания и добиться нужного результата, но из-за разброса параметров полупроводников, пришлось бы это делать для каждого устройства индивидуально, а при экспериментах с коротким замыканием во время настройки можно и спалить само зарядное.

Проблема, естественно, скрывается в первоначальном броске тока, ведь у автомобильного аккумулятора, помимо всего прочего, есть ещё и приличная ёмкость. Её зарядка и создаёт бросок тока. Значит, если бросков тока избежать затруднительно – нужно их игнорировать. Также было трудно зажечь галогенные лампы на 70Вт сразу, из-за броска тока через холодные спирали.

Решил, что мой предохранитель, будет ориентироваться на напряжение на выходе зарядного, а не на ток. Потому как, при коротком замыкании оно близко к нулю, а при переполюсовке, и вовсе — обратной полярности.

При переделках БП на TL494 (KA7500) я использовал второй компаратор (ноги 15 и 16), для введения ограничения максимального тока. Раньше, я отключал обе ноги от своих изначальных мест и подключал согласно схеме переделки. Теперь, по новой схеме, необходимо отключать только одну: 15-ю, а 16-я так и остаётся на земле (разумеется, это относится только к тем БП, в которых, этот компаратор не используется с другой целью, в них 16-я нога не сидит на земле). В качестве шунта используются дорожки платы. Полевой транзистор канала 3,3В остаётся на своём законном месте, без выпаивания и даже резать дорожки не понадобится (опять же есть БП в которых для стабилизации 3,3В используется магнитный усилитель, там вы полевого транзистора не найдёте). Из всех процедур настройки, нужно будет, только подобрать резисторы делителя на 1-й ноге до установки нужного напряжения холостого хода на выходе, и найти место на дорожках, дающее нужное падение напряжения при необходимом максимальном токе, либо подобрать R7, кому что больше нравится.

Что и как нужно удалять из БП, уже было описано мной довольно подробно в предыдущей статье. К тому же блоки немного разные и пошаговую инструкцию с позициями элементов создать невозможно.

Вот схема фрагмента который нужно смонтировать:

Рис 1.

 

К ножкам 1, 15 и 16 TL494 не должно быть подключено ничего, кроме тех деталей, что есть на схеме. Остальные трогать не надо.

Опытные коты могут пропустить этот абзац, он для котят. Резисторы R1, R2 и R3 необязательно должны быть именно таких номиналов. Тут главное, соблюсти пропорцию. Изначально они на плате уже есть. R2 и R3 я не трогаю, а R1 ставлю какой нужно для 14,5В на выходе. Рассчитать его очень просто. На 1-й ноге должно получиться при 14,5В (или сколько вам там нужно) на выходе такое же напряжение как и на второй. В подавляющем большинстве блоков, из встретившихся мне, это было 2,5В. Отсюда следует вывод, что R1 должен быть таким, чтобы при нужном нам выходном напряжении на делителе из R1, R2 и R3 получились эти самые 2,5В. Написал эту не представляющую секрета информацию потому, что часто видел в форумах вопрос: «А какой номинал нужно поставить?».

R4 – виртуальный, это как раз и есть, сопротивление дорожек на плате.

За счёт чего же достигается ограничение максимального тока в этой схеме? Всё очень просто. Резисторы R5 и R7 образуют обычный делитель напряжения. Хитрость в том, что этот делитель не делит, как обычно, напряжение между землей и источником. Он делит напряжение между плавающим относительно земли отрицательным напряжением и источником опорного напряжения TL494.

Рассмотрим, как это работает в конкретных цифрах:

  • При отсутствии тока в нагрузке, падение напряжения на R4 равно нулю. Значит, на делителе будет 5V*R7/(R7+R5), т.е. около 50мВ, на 16-й ноге естественно 0В
  • Что же будет при токе, ну допустим, 2А? На R4 возникнет падение напряжения в R4*2A=12mV. Это напряжение на вывод делителя из R5 и R7 приложится в отрицательной полярности, т.е на 15-й ножке ШИМ теперь будет уже не 50мВ, а 50-12=38мВ
  • При дальнейшем росте тока нагрузки, будет расти и падение напряжения на R4, а следовательно, и на верхнем по схеме выводе делителя на R5 и R7 отрицательное напряжение будет увеличиваться. При определённом токе, оно достигнет -50мВ, и полностью скомпенсирует изначальные 50мВ холостого хода. Т.е. напряжение на 15-й ноге ШИМ станет равно 0В и сравняется с напряжением на 16-й ноге, которая «сидит» на земле. Компаратор начнёт работать и дальнейшего роста тока нагрузки не произойдёт.

Работа схемы отключения нагрузки довольно проста и понятна по схеме. При падении напряжения на выходных клеммах ниже определённого уровня (для номиналов как на схеме это около 5В), начинает закрываться транзистор VT1, что вызывает увеличение сопротивления открытого канала T1, что в свою очередь ещё больше уменьшает выходное напряжение и т.д. В результате, оба транзистора быстро закрываются, и остаются в этом состоянии пока КЗ или переполюсовка не будет устранена.

Методика переделки такова:

Сначала, как и раньше, выпаиваем всё лишнее (более подробно об этом было написано в предыдущей статье: https://www.radiokot.ru/circuit/power/charger/27/, поэтому повторяться не буду. Если кто забыл, то можно посмотреть там), затем, подбором делителя на 1-й ноге ШИМ, добиваемся нужного напряжения на выходе канала 12В. Далее, нужно разорвать соединение земли в области ШИМ с землей на выходе БП (косичка трансформатора). Это нужно делать не наобум, а очень внимательно. Земля ШИМ и обвязки вокруг неё должна оставаться общей. Вам нужно найти тот единственный проводник, который соединяет это всё с силовой землёй. Может мне просто везло, но я всегда находил эту перемычку. Нужно было её просто выпаять, дорожек я не перерезал ни разу.

Затем, нужно бросить перемычку от дорожки идущей от косички трансформатора на дорожку канала 3,3В, которая в свою очередь, идёт от ноги полевого транзистора так, чтобы из них получилась одна дорожка максимальной длины. Это и будет наш R4. Соответственно схемы переделки, подключаем вывод R7 рядом с косичкой трансформатора, а от ноги полевого транзистора, т.е. другого конца получившейся дорожки, она же наш R4, бросаем соединение на землю ШИМ. Резистор шунта R4 теперь у нас готов. Далее, выпаиваем 15-ю ногу ШИМ из платы, аккуратно приподнимаем над платой. Транзистор T1 у нас уже на месте, навесным монтажом устанавливаем R5 и R7. Остальная часть схемы собирается на отдельной платке и распаивается в нужные точки проводами. Выход для отрицательного провода берётся с площадок бывших 5В, именно туда подключен нужный вывод полевого транзистора, а плюса — с выхода 12В, соответственно.

Теперь надо запустить БП через амперметр и постепенно нагружать выход, например лампами от авто или мощными резисторами. С определенного момента при дальнейшем росте нагрузки, ток отдаваемый БП расти перестанет, а начнёт падать напряжение на выходе. Это и есть получившее значение ограничения тока. Если оно не совпадает с нужным вам, то его можно изменить подбором R7. Если нужно больше – R7 увеличиваем, если меньше – уменьшаем. Вот собственно и вся наладка.

Я уже сделал парочку по этому варианту, результатом доволен. Переделка и настройка достаточно проста, защита надёжна и не то чтобы не «капризна», а вообще не требует настройки. Канал -12В я оставлял, на нём получалось примерно -14В и я использовал его для питания вентилятора через резистор, R9 по схеме. Как я уже упоминал в начале, бывают БП с каналом 3,3В не на полевом транзисторе, тогда можно взять его где-либо и разместить на радиаторе соединив проводами с платой, а можно и не делать защиту такого типа, а применить другую. Например, на реле.

Бывает, что в режиме ограничения тока, появляется свист. По борьбе с ним в сети написано много, первоначально можно попробовать установить цепочку из резистора и конденсатора между 3-й и 15-й ногами TL494. Возможно, придётся повозиться с подбором номиналов этих деталей. Я остановился на 22кОм и 10нФ.

Если вдруг кто сам не догадался, то:

  • HL1 светится когда «предохранитель» открыт и означает что-то вроде «К работе готов».
  • HL2 светится если ШИМ работает и БП готов выдать напряжение на выход, и гаснет если сработала штатная защита от перегрузки и ШИМ был заглушен, либо ваше зарядное сгорело. Мне лично, такого добиться ни разу не удалось. Мой предохранитель вырубал раньше, чем БП успевал перегрузиться.
  • HL3 загорается только если попутать клеммы аккумулятора, т.е. – «ошибка подключения (переполюсовка)».

Фото у меня всего два сохранилось, но на них можно найти и перемычку между землей и 3,3В, и резистор идущий от косички. К большому моему сожалению, не сохранились фото обратной стороны и готового устройства, но сейчас сфотографировать уже нечего. Зарядки нашли своих хозяев.

Вот всё, что осталось на память:

Фото 1 и 2.

 

Часть 2-я.

Теперь от простого перейдём к более сложному и более универсальному.

Следующая идея возникла как изготовление вещи для гаража (оказалось, что и для дома тоже), сочетающей в себе функции зарядного устройства и блока питания одновременно. Чтобы не напрягаться и не лепить ОУ для регулировки ограничения тока, возьмём изъезженный вдоль и поперёк очередной БП на TL494. Их всё ещё есть у меня.

Поставим себе такую задачу:

Диапазон выходных напряжений в режиме БП практически от 0 до 24В. А чего мелочиться, мало ли что нам понадобится запитать или зарядить. Отдельно нужно иметь возможность регулировать напряжение в режиме зарядного, от 12,4 до 15,9В более точно, а то при шкале от 0 до 24В сильно не разгуляешься. Зачем ставить два переменных резистора если можно обойтись одним? Для всех типов автомобильных и гелевых аккумуляторов должно этого диапазона хватить. А то понаделали их различных: свинец-свинец, кальций–свинец, кальций-кальций и т.д., а мы думай сколько делать на выходе.

И ещё, хоть я лично и сомневаюсь в необходимости реанимации полудохлых аккумуляторов, но решил реализовать примочку. А вдруг и правда однажды поможет?

Что же нужно для этого сделать. В основном всё тоже самое с небольшими отличиями.

Первым делом, выпаять все ненужное. Оставить только канал 12В и TL494 с обвязкой.

Чтобы получить 24В с сохранением должного запаса регулировки одной 12В обмотки будет маловато. Потому что, на ней размах импульсов как раз 24В, да и то при условии нормального напряжения в сети. Можно конечно мостовую схему и хоть 36В получай. Но при этом вся нагрузка только на 12В обмотки, причём без передыха, а не поочерёдно как сейчас. Но ведь у нас же бездействуют обмотки от 5В канала. Непорядок, надо их задействовать. А главное, после некоторых шевелений извилинами, оказалось что это, совсем несложно сделать.

Изначально схема выходной части БП в упрощённом виде выглядела так:

Рис 2.

Синими прямоугольниками очерчены мощные сборки, остальные диоды для отрицательных напряжений маломощные, обычно на 1-2А стоят. Мы её немного модернизируем.

Все обмотки трансформатора собраны в косичку, которая соединена с общим проводом, отмечено зелёным. Нет, расплетать мы её не будем, а просто выпаяем из платы. Теперь она оторвана от земли, а значит фактически, мы получили последовательное соединение 12В и 5В обмоток, с отводом, хоть он и не от середины. Это не традиционно, но и не запрещено! Теперь, если на места слабых диодов канала -5В поставить диоды из канала 5В и соединить их с массой, то получаем пару обмоток соединённых последовательно с амплитудой импульсов примерно в 34В. С этого момента получение 24В на выходе – не проблема. Обмотки по-прежнему будут работать все, а не часть. Это позволит получить больший ток на выходе без перемотки трансформатора.

Вот схема с изменениями и дополнениями:

Рис 3.

Правда, есть одна незначительная трудность, сборку из канала 5В напрямую применить не выйдет. Потому что, для минусового плеча, нам нужна сборка с общим анодом, а там стоит, с общим катодом. Понадобится две таких сборки. Выводы анодов можно соединить и получить обычный диод. Либо просто взять подходящие детали из другого места. Я поступил ещё более изощрённым способом. Валялись у меня две сборки на 10А и 40В. У каждой был пробит один диод. Вот оставшиеся я и использовал как обычные диоды. Безотходное производство сохраняет экологию планеты и экономит копеечку, а она рубль бережёт.

С ДГС я тоже произвёл некоторые манипуляции. Хотелось увеличить стабильность работы БП при малых токах, да и напряжение у нас стало больше традиционного для компьютерного блока питания. Поэтому обмотки канала 12В и 5В соединил последовательно. Остальные, тонкие, не используются.

Модернизацию силовых цепей на этом можно было бы и закончить, но есть ещё один сюрприз. Наш конденсатор на 16В, который обычно стоит в канале 12В, 24В не переживёт. Поэтому его необходимо заменить на 35-ти вольтовый. Емкость, на ваш вкус, у меня был на 2200мкФ его и установил, С7 по схеме.

Ещё нужно запитать вентилятор. Так как на выходе у нас теперь от 0 до 24 может быть, то туда его подключать не стоит. Где же взять подходящее напряжение? Кто ищет, тот всегда найдет! Питание будет двойным. Во первых, через диод D1 от 5В дежурки, во вторых от основного источника через D2, как можно видеть на схеме он подключается к выпаянной косичке. Первый будет обеспечивать вентилятор минимальным напряжением в отсутствие нагрузки, второй во время реальной работы. На холостом ходу у нас получится около 4.5В, а при появлении нагрузки, вырастет до 9-9.5В. Возможно этого окажется мало для полной загрузки в 240Вт. Но себе я решил сделать так, потому что грузить на всю не планирую, зато будет тише работать. Если вы планируете грузить по полной, то можно будет сделать немного по другому. Надо анод D2 подключить не к косичке, а к катоду Br1, затем поставить стабилизатор на 12В и уже от него запитать вентилятор. Не забудьте о радиаторе, греться будет не сильно, но заметно.

Теперь остаётся только изготовить небольшую плату управления и переднюю панель устройства. Смотрим схему. Кнопка S1 переключает режим работы с блока питания на зарядное устройство. В режиме «БП» таймер заблокирован и выходное напряжение изменяется от 0 до 24В. При включении режима «Зарядное» диапазон регулировки изменяется на 12,4-15,9В и разрешается работа таймера на NE555. Он позволяет с помощью переменного резистора Р1 устанавливать время отключения БП и одновременного подключения разрядной нагрузки на время от 2 до 50% цикла.

Например, если мы выставим 10%, то 9:10 времени будет идти заряд аккумулятора, а 1:10 времени его разряд через нагрузочные лампы. Это немного увеличит время его зарядки, но возможно продлит срок его службы. Мнения есть самые разные по этому поводу, какое из них правильное, я не знаю. Но часто люди просят чтобы было, так почему бы и не сделать.

Лампы использовал на 12В, но поставил их последовательно, для того чтобы не полыхали в полный накал. Слепит глаза и есть шанс ускоренного перегорания из-за частого включения-выключения. Следует иметь в виду, что по этой причине лампы будут гореть гораздо слабее и тока обычного для их мощности не заберут. Например при 10Вт лампах ток разряда будет около 0,6А, а при 35Вт не более 2А.

Что индицируют светодиоды, написано на схеме. Описывать работу таймера и делителей опорного напряжения, думаю, смысла нет. Там всё традиционно. Единственное отличие от предыдущих схем в том, что при регулировке выходного напряжения меняются не пропорции делителя входного напряжения, а опорное напряжение на 2-й ноге. Это позволило делать регулировку практически от 0В и легко переключать диапазон регулировки выходного напряжения. В схеме защиты от КЗ ничего нового тоже нет. Она уже встречалась не раз.

По используемым деталям. Смотрим схему, там все номиналы подписаны. Все переменные резисторы с линейной характеристикой. Транзистор Q1 хоть и работает в ключевом режиме, но небольшой радиатор я ему выделил.

Теперь немного по конструкции устройства.

Приборов индикации и регуляторов получилось довольно много и разместить это всё внутри мне показалось очень затруднительным. Решил сделать выносную переднюю панель где и разместить плату с таймером и индикацией, переменные резисторы и т.д. Измерения габаритов деталей показали, что расстояния в 18мм будет достаточно. Далее в программе FronDesigner 3.0 создал проект передней панели и распечатал. Соединяется панель с устройством через разъём VGA. Одна часть была выпаяна из дохлой материнской платы, вторая – внутренности купленного когда давно сборного разъёма для ремонта поломанных кабелей VGA мониторов. Один остался неиспользованным, вот и сгодился. Можно конечно использовать и другой, главное чтобы хватило количества контактов. Мне было нужно 11, а в VGA их 15 штук.

Компоненты готовы к сборке, осталось только соединить в одно целое:

Фото 3.

Выходные клеммы, панельки для ламп нагрузки и радиатор для Q1 разместились внутри свободного места БП. И крепятся к его крышке. Панельки для ламп были вынесены наружу по ряду причин:

  • Не греть дополнительно воздух внутри БП
  • Иметь возможность оперативно менять нагрузку, лампы для этих панелек видел в продаже на 10Вт, 20Вт и 35Вт. Возможно есть и другие.
  • Можно оперативно удалить эти лампы, тогда никакого разряда не будет происходить вообще.

Все необходимые соединения смонтированы, можно скручивать дальше.

Фото 4.

Что и было сделано:

Фото 5.

 

Устройство уже прошло полевые испытания и показало свою работоспособность в обоих режимах. Аккумуляторы заряжало и светодиодную ленту на 12В 6А питало не напрягаясь. Тихо и не греется, то, что я и хотел. Режим тренировки опробовать не довелось. Не на чем. Так что, если кто будет пробовать, не забудьте поделиться результатами.

P.S. Совсем недавно, ещё одно применение нашлось. Заряжал им переделанный на Li-on батареи аккумулятор шуруповёрта. Получилось пять банок последовательно по 2А/ч, вместо 15шт. Ni-Cd на 1,2А/ч. Выставил в режиме «БП» напряжение на 21В и ток ограничил на 3А. Аккумуляторы быстро зарядились и при этом были чуть тёплые. Если ставить ограничение на 1-2А, то вообще не нагреваются, но дольше заряжаются. Момент окончания зарядки видно по убывающему току. Изначально он идёт на уровне выставленного ограничения.


Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Переделка компьютерного блока питания ATX в регулируемый блок питания

Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения.

+12 В — желтый

+5 В — красный

+3,3 В — оранжевый

-5 В — белый

-12 В — синий

0 — черный

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

+12 В: +2,5 … +13,5

+5 В: +1,1 … +5,7

+3,3 В: +0,8 … 3,5

-12 В: -2,1 … -13

-5 В: -0,3 … -5,7

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Шина напряжения, В

Напряжение на холостом ходу, В

Напряжение на нагрузке 30 Вт, В

Ток через нагрузку 30 Вт, А

+12

2,48 — 14,2

2,48 — 13,15

0,6 — 1,28

+5

1,1 — 6

0,8 — 6

0,37 — 0,85

-12

2,1 — 11,1

0,2 — 7,7

0,17 — 0,9

-5

0,17 — 5

0 — 4,8

0 — 0,8

Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые.

Диоды я взял от старого блока. Диодные сборки S20C40C — Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов.

Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись 🙂 , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В.

После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности.

Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 — измерял напряжение, а цифровым — ток. Получился неплохой тандем. По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала. При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело.

По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок.

Однако и такая переделка долго не прожила.

Часть 3. Удачная.

Еще одной переделкой стал блок питания с микрухой 339. Я не приверженец выпаивать все, а затем стараться запустить блок, поэтому по шагам поступил так:

-проверил блок на включение и срабатывание защиты от кз на шине +12 В;

-вынул предохранитель по входу и заменил на патрон с лампой накаливания — так безопасно включать чтобы не сжечь ключи. Проверил блок на включение и кз;

-удалил резистор на 39к между 1 ногой 494 и шиной +12 В, заменил на переменный резистор 45к. Включил блок — напряжение по шине +12 В регулируется в пределе +2,7…+12,4 В, проверил на кз;

-удалил диод с шины -12 В, находится за резистором, если идти от провода. По шине -5 В слежения не было. Иногда стоит стабилитрон, суть его одна — ограничение выходного напряжения. Выпаивание микруху 7905 уводит блок в защиту. Проверил блок на включение и кз;

-резистор 2,7к от 1 ножки 494 на массу заменил на 2к, там их несколько, но именно изменение 2,7к дает возможность изменить предел выходное напряжения. Например, при помощи резистора на 2к на шине +12 В стало возможным регулировать напряжение до 20 В, соответственно увеличив 2,7к до 4к максимальное напряжение стало +8 В. Проверил блок на включение и кз;

-заменил выходные конденсаторы на шинах 12 В на максимальное 35 В, шинах 5 В на 16 В;

-заменил спаренный диод шины +12 В, был tdl020-05f c напряжение до 20 В но током 5 А, поставил sbl3040pt на 40 А, выпаивать из шины +5 В не надо — нарушится обратная связь на 494. Проверил блок;

-измерил ток через лампу накаливания по входу — при достижении потребления тока в нагрузке 3 А лампа по входу светилась ярко, но ток на нагрузке больше не рос, просаживало напряжение, ток через лампу был 0,5 А, что укладывалось в ток родного предохранителя. Убрал лампу и поставил обратно родной предохранитель на 2 А;

-перевернул вентилятор обдува чтобы воздух вдувало внутрь блока и охлаждение радиатора было эффективнее.

В результате замены двух резисторов, трех конденсаторов и диода получилось переделать компьютерный блок питания в регулируемый лабораторный с выходном током больше 10 А и напряжением 20 В. Минус в отсутствии регулирования тока, но зато осталась защита от кз. Лично мне регулировать так не надо — блок итак выдает больше 10 А.

Переходим к практической реализации. Есть блок, правда TX. Но у него есть кнопка включения, тоже удобно для лабораторного. Блок способен выдать 200 Вт с заявленным током по 12 В — 8А и 5 В — 20 А.

На блоке написано, что вскрывать нельзя и внутри нет ничего такого для любителей. Так что мы вроде как профессионалы. На блоке есть переключатель на 110/220 В. Переключатель конечно удалим за ненадобностью, а вот кнопку оставим — пусть работает.

Внутренности более чем скромные — нет входного дроселя и заряд входных кондеров идет через резистор, а не через термистор, в результате идет потеря энергия, которая нагревает резистор.

Выбрасываем провода на переключатель 110 В и все что мешает отделить плату от корпуса.

Заменяем резистор на термистор и впаиваем дроссель. Убираем входной предохранитель и впаиваем вместо него лампочку накаливания.

Проверяем работу схему — входная лампа светится на токе примерно 0,2 А. Нагрузкой является лампа 24 В 60 Вт. Светится лампа на 12 В. Все хорошо и проверка на короткое замыкание работает.

Находим резистор от 1 ноги 494 к +12 В и поднимаем ногу. Подпаиваем переменный резистор вместо него. Теперь будет регулирование напряжения на нагрузке.

Ищем резисторы от 1 ноги 494 к общему минусу. Здесь их три. Все достаточно высокоомные, я выпаял самый низкоомный резистор на 10к и запаял вместо него на 2к. Это увеличило предел регулирования до 20 В. Правда при тесте этого еще не видно, срабатывает защита от перенапряжения.

Находим диод на шине -12 В, стоит после резистора и поднимаем его ногу. Это отключит защиту от перенапряжений. Теперь все должно быть.

Теперь меняем выходной конденсатор на шине +12 В на предел 25 В. И плюс 8 А это с натяжкой для маленького выпрямительного диода, так что и этот элемент меняем на что-то более силовое. И конечно включаем и проверяем. Ток и напряжение при наличии лампы по входу может сильно не расти если нагрузка подключена. Вот если нагрузку отключить, то напряжение регулируется до +20 В.

Если все устраивает — меняем лампу на предохранитель. И даем блоку нагрузку.

Для визуальной оценки напряжения и тока я использовал цифровой индикатор с алиэкспрес. Тут еще был такой момент — напряжение на шине +12В начинало с 2,5В и это было не очень приятно. А вот на шине +5В от 0,4В. Поэтому я объединил шины при помощи переключателя. Сам индикатор имеет 5 провод на подключение: 3 на измерение напряжения и 2 на ток. Индикатор питается напряжением от 4,5В. Дежурное питание как раз составляет 5В и им питается микруха tl494.

Очень рад что удалось переделать компьютерный блок питания. Всем удачной переделки.

www.volt-220.com

Зарядное из компьютерного блока питания.

Добавил: STR2013,Дата: 11 Апр 2015

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Схема АТ блока питания на TL494

Несколько схем АТX блока питания на TL494

 

Переделка

Основная переделка заключается в следующем , все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты . Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к . Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду , что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А , ее следует поменять на ту , которая стоит на 5 вольтовом выпрямителе , она расчитана до 10 А , 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока ,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус , используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита , хотя у меня при 9А не срабатывает , если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания.

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Инкубатор своими руками.
  • Что делать, если наседка ко времени не подоспела? Да и количество получаемого молодняка не всегда устраивает, а серийные инкубаторы дороговаты.

    Выход один: попытаться смонтировать самому.

    Камерой для упрощенной модели инкубатора могут по­служить обыкновенные картонные коробки, оклеенные внут­ри и снаружи слоями плотной бумаги, деревянные каркасы, обшитые с обеих сторон фанерой или пластиком, заполнен­ные внутри и между стенками стекловатой, сухими опилка­ми, пенопластом. Подробнее…

  • Стробоскоп своими руками
  • С помощью стробоскопа получится красивый световой эффект для любой дискотеки. Можно использовать на танцплощадках, клубах и даже у себя дома.

    Подробнее…

  • Как отремонтировать ноутбук своими руками?
  • О ремонте ноутбука ASUS X50N

    Пока ноутбук просто и надежно работает — хорошо, но когда он ломается, то тогда приходит полный… Цена системного блока и ноутбука почти одинакова, но обслуживать намного проще и дешевле системный блок, чем ноутбук. Замену комплектующих проще делать системному блоку, чем ноутбуку. Но раз у вас ноутбук и нужен вам именно он, а не компьютер, то в статье, ниже давайте рассмотрим: как правильно разобрать, отремонтировать и собрать ноутбук.

    Подробнее…


Популярность: 178 721 просм.

www.mastervintik.ru

Лабораторный БП из компьютерного БП формата АТХ — Блоки питания — Источники питания

Евгений Князев

Привет всем!!! Решил описать вкратце переделку БП от компьютера формата АТХ. Может кому-то будет интересно.

За основу был взят БП CODEGEN — 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт «Кот», который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для «окна» ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это. 

 

 

 Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку — отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться — оставил 3 шт.
 


Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

 

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.
 

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS — ON.
Оставляем только всё, что касается +12 V и дежурного питания +5V SB .
Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт — удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

 

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) — по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 — 40А, Uобр=100В.
 

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры
 


Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора — двухцветный светодиод.
 


Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.
 


Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!
 

 

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.
 

Наладка схемы.
 

1.Все наладки блока питания проводить только через лампу накаливания 60 — 150 Вт, включенную в разрыв сетевого кабеля, а ещё лучше и через разделительный трансформатор.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) — выставляется выходной ток (правильность показаний индикатора) по образцовому А — метру.
Uizm (U14) — выставляется выходное напряжение (правильность показаний индикатора), по образцовому В — метру.
Uset_max (U16) — выставляется МАХ выходное напряжение
 

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494
.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

 

 

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор — цвет LED зеленый, теплый — оранжевый, горячий — красный). Справа — индикатор включения БП.

 

 

Установил выключатель. Основа — стеклотекстолит, обклеен самоклейкой «оракл».

Финал. То, что получилось в домашних условиях.

 

 


А теперь пробуем работу всех узлов собранного блока, так сказать в условиях приближенных к реальным, то есть нагружаем и испытываем собранный блок питания.
БП под нагрузкой, в качестве нагрузки используются лампы «галогенки» на 12В, 35 и 50Вт.

 

Скачать архив с прошивкой, схемой, платами.

Архив для статьи.

Если возникнут какие то вопросы по статье, задавайте их здесь, обсудим.

 

vprl.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о