РазноеКонтактно транзисторная система зажигания – Бесконтактно-транзисторная система зажигания — лабораторная работа

Контактно транзисторная система зажигания – Бесконтактно-транзисторная система зажигания — лабораторная работа

Содержание

Контактно транзисторная система зажигания

Работа контактно транзисторной системы основана на использовании полупроводниковых приборов. Преимущества контактно транзисторной системы по сравнению с батарейной системой зажигания следующие:

  • через контакты прерывателя проходит небольшой ток управления транзистора, а не ток (до 8 А) первичной обмотки катушки зажигания (исключается эрозия и износ контактов).
  • Возрастает ток высокого напряжения и энергия искрового разряда (это позволяет увеличить зазор между электродами свечи зажигания, приводит к облегчению пуска двигателя, делает двигатель экономичнее).

Для начала давайте разберемся,

Что такое транзистор

Транзистор — это трехэлектродный прибор, изменяющий сопротивление от нескольких сот омов (транзистор закрыт) до нескольких долей ома (транзистор открыт).

Имея малое сопротивление во включенном состоянии и очень большое сопротивление в выключенном состоянии, транзистор вполне удовлетворяет требованиям предъявляемым к переключающим элементам. В контактно-транзисторной системе зажигания транзистор работает в режиме переключения (режим ключа).

Устройство контактно транзисторной системы ЗИЛ-130

Устройство контактно транзисторной системы зажигания

Схема устройства контактно-транзисторной системы зажигания двигателя ЗИЛ-130 (стрелками указана цепь высокого напряжения):

а – расположение выводов на транзисторном коммутаторе; б – общая схема системы зажигания; 1 – транзисторный коммутатор ТК 102; 2 — резисторы; 3 – блок защиты транзистора; 4 – первичная обмотка; 5 – катушка зажигания; 6 – вторичная обмотка; 7 – свечи зажигания; 8 — крышка; 9 – ротор с электродом; 10 – распределитель зажигания; 11 –подвижный контакт; 12 – неподвижный контакт; 13 – кулачок прерывателя; 14 – добавочные резисторы СЭ 117; 15 – выключатель добавочного резистора; 16 — АКБ; 17 – выключатель зажигания; 18 — стабилитрон; 19 — диод; 20 – импульсный трансформатор; 21 – германиевый транзистор; К, Б, Э – электроды транзистора (коллектор, база, эмиттер).

Контактно транзисторная система ЗИЛ-130 состоит из транзисторного коммутатора1, катушки зажигания 5, свечей зажигания 7, распределителя 10, добавочных резисторов 14, выключателя 15 добавочного резистора, АКБ 16 и выключателя зажигания 17.

Катушка зажигания Б114 – маслонаполненная, выполнена по трансформаторной схеме, т.е. ее первичная и вторичная обмотки не соединены между собой и между ними существует только магнитная связь. Первичная обмотка катушки зажигания имеет два вывода, расположенные на карболитовой крышке. Один вывод обозначен буквой К, другой не имеет обозначения. Один вывод вторичной обмотки присоединен к корпусу, а другой соединен с проводом высокого напряжения, укрепленным в центральном отверстии крышки катушки зажигания. При установке катушки зажигания ее надежно соединяют с массой так, чтобы не было зазоров.

Добавочные резисторы СЭ 107, выполненные в виде двух спиралей, установлены в отдельном кожухе и имеют три вывода: ВК-Б, ВК и К. Спирали изготовлены из константановой проволоки, сопротивление которой при нагреве не изменяется, и в первичной обмотке катушки зажигания поддерживается постоянное напряжение.

Транзисторный коммутатор ТК 102 состоит из транзистора 21, импульсного трансформатора 20 и блока 3 защиты транзистора. В блок защиты входят резисторы 2, диод 19, стабилитрон 18 и конденсатор.

Все приборы коммутатора размещены в алюминиевом корпусе, имеющем ребра для лучшего отвода теплоты. У транзисторного коммутатора есть четыре вывода, обозначенные М, К, Р, и один без обозначения. Вывод М надежно соединяют с массой автомобиля многожильным неизолированным проводом, вывод К с концом первичной обмотки катушки зажигания, вывод без обозначения – со вторым концом первичной обмотки катушки зажигания, Р с подвижным контактом прерывателя.

Как работает контактно-транзисторная система зажигания?

Если выключатель зажигания 17 включен, а контакты прерывателя разомкнуты, то транзистор 21 заперт, так как нет тока в его цепи управления, т.е. в переходе эмиттер – база. Ток не проходит и между эмиттером и коллектором на массу, так как сопротивление этого перехода очень большое. При замыкании контактов прерывателя в цепи управления транзистора (эмиттер-база) проходит ток, в результате транзистор открывается. Сила тока управления невелика около (0,8 А) и уменьшается до 0,3 А с увеличением частоты вращения кулачка прерывателя. В контактно-транзисторной системе зажигания имеются две цепи низкого напряжения: цепь управления транзистора и цепь рабочего тока.

Цепь управления транзистора: положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер – база транзистора 21 – первичная обмотка импульсного трансформатора 20 – вывод Р – контакты 11 и 12 прерывателя – масса – отрицательный вывод АКБ. При прохождении тока управления транзистора через переход эмиттер-база значительно уменьшается сопротивление эмиттер-коллектор, и транзистор открывается, включая цепь рабочего тока (7-8 А).

Цепь рабочего тока низкого напряжения

Положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер-коллектор транзистора 21 – вывод М – масса – отрицательный вывод АКБ. При размыкании контактов прерывателя прекращается ток в цепи управления транзистора и значительно возрастает его сопротивление. Транзистор закрывается, выключая цепь рабочего тока низкого напряжения. Магнитный поток изменяющегося поля пересекает витки катушки зажигания, индуктируя во вторичной обмотке ЭДС, в результате чего возникает высокое напряжение (около 30000 В), а в первичной обмотке ЭДС самоиндукции (около 80-100 В).

Цепь высокого напряжения

Вторичная обмотка 6 катушки зажигания 5 ротор 9 распределителя 10 – свечи зажигания 7 ( в соответствии с порядком работы двигателя) – масса – вторичная обмотка 6 катушки зажигания 5.

Импульсный трансформатор необходим для быстрого запирания транзистора. При размыкании контактов прерывателя во вторичной обмотке импульсного трансформатора индуктируется ЭДС самоиндукции, направление которой противоположно направлению рабочего тока на переходе база-эмиттер. Благодаря этому быстро исчезает магнитное поле и ток в первичной обмотке 4 катушки зажигания 5. Диод 19 и стабилитрон 18 в прямом направлении – мимо первичной обмотки катушки зажигания.

Необходимо помнить, что контакты прерывателя пропускают и прерывают только силу тока управления транзистора 0,3-0,8 А. Если на них попало масло, образовалась масляная пленка или слой окиси, то ток управления транзистора не сможет пройти через контакты. Поэтому контакты прерывателя промывают бензином и следят за тем, чтобы они всегда были чистыми.

Контактно-транзисторная система зажигания

просмотров 8 308 Google+

С развитием техники и повышением мощности бензинового двигателя потребовалась модернизация системы зажигания. При увеличении числа цилиндров, повышении числа оборотов вращения коленвала, увеличение степени сжатия и применение обеднённых рабочих смесей, она не могла обеспечивать нормального пробивного напряжения на свечах.
Если на шестицилиндровом двигателе эта система ещё как то справлялась со своей функцией, то при появлении восьмицилиндрового двигателя, начала давать сбой при малейшей неполадке. Так же существенно снизился срок службы контактов в прерывателе.

Контактно-транзисторная система зажигания отличия от контактной.

В 60-х годах на её смену в этих двигателях пришло контактно-транзисторное зажигание. Его единственное отличие контактно-транзисторной система зажигания от контактной, это наличие в цепи между контактами трамблёра и катушкой зажигания, коммутатора, на базе транзистора.

Транзистор – электропреобразовательный полупроводниковый прибор, служащий для преобразования электрических величин. В контактно-транзисторной системе зажигания он в частности служит для коммутации цепи первичной обмотки катушки зажигания.

Контактно-транзисторная система зажигания преимущества перед контактной.

Что даёт применение транзисторного коммутатора в системе зажигания?
Во первых, самое главное преимущество, это возможность применения катушек зажигания с большим числом трансформации. То есть, возможно, уменьшить число витков в первичной обмотке катушки зажигания и в тоже время увеличить число витков во вторичной катушке. Это на четверть даёт возможность повысить вторичное напряжение и как следствие увеличить зазор на свечах зажигания до 1мм.

При всём этом ток, проходящий через контакты трамблёра минимален, примерно 0,5А. Поэтому не нужно применения конденсатора для гашения искрения и позволяет уменьшить зазор при этом увеличивается срок службы контактов.

К недостаткам этой системы можно отнести наличие трущихся деталей в трамблёре. При износе упора подвижного контакта изменяется зазор между ними, при этом изменяется угол замкнутого состояния контактов и изменяется момент искрообразования. Кроме этого трамблёр остаётся чувствительным к износу втулок кулачкового вала.  Но контактно-транзисторная система зажигания, в отличае от контактной, менее чувствительна к износам в трмблёре.

Контактно-транзисторная система зажигания принцип работы.

Рассмотрим подробнее схему подключения и работу контактно – транзисторной системы зажигания. Как видно из схемы единственным отличием от контактной системы зажигания является наличие коммутатора на базе транзистора. Транзистор выполняет роль ключа, замыкает и размыкает цепь первичной катушки зажигания. Контакты трамблёра в этом случае выполняют роль датчика, подавая импульсы на базу транзистора.

При включенном зажигании, когда контакты разомкнуты, база транзистора в коммутаторе не соединяется с минусом, при этом из-за большого переходного сопротивления в P-N переходе отсутствует ток между эмиттером и коллектором транзистора (транзистор закрыт). Следовательно, ток в первичной обмотке катушки зажигания отсутствует.

При замыкании контактов, база транзистора соединяется с минусом, при этом сопротивление в P-N-P переходе падает и через базу и коллектор будет проходить ток. При этом сопротивление эмиттер – коллектор резко снижается (транзистор открывается) замыкая цепь первичной обмотки катушки зажигания. При размыкании контактов прерывателя база транзистора отключается от минуса, при этом резко увеличивается сопротивление эмиттер – коллектор, транзистор закрывается, и цепь питания катушки зажигания рвётся.
В конструкцию коммутатора добавлена схема отключения питания катушки зажигания при длительно замкнутом положении контактов, то есть когда коленчатый вал двигателя не вращается. Это служит для защиты катушки зажигания от перегрева при замкнутых контактах трамблёра.

Эта система стала первой на пути электронного зажигания. На её основе было сделано множество приставок к контактному зажиганию, преимуществом которых является возможность регулировки угла опережения зажигания непосредственно из салона автомобиля при его движении.

admin 24/02/2012«Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CTRL+ENTER» «Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях»

Контактно транзисторная система зажигания

Контактно-транзисторная система зажигания!
Схема контактно-транзисторной системы зажигания двигателей ЗИЛ-130, ГАЗ-53А и др.!

   Повышение степени сжатия и частоты вращения коленчатого вала двигателя, происходящее в процессе развития конструкций автомобильных двигателей, влечет за собой повышение напряжения системы зажигания.

В процессе эксплуатации напряжение изменяется из-за обгорания электродов свечей и увеличения зазора между ними. С одной стороны, это обстоятельство вызывает дополнительное возрастание напряжения, необходимого для пробоя промежутка между электродами свечей, а с другой — износ прерывателя-распределителя и повышение переходного сопротивления всех контактов первичной цепи и постепенное снижение напряжения системы зажигания.

Для повышения надежности и долговечности работы приборов системы зажигания и устранения недостатков на большинстве многоцилиндровых двигателей устанавливают транзисторные системы зажигания, разновидностью которых и является контактно-транзисторная система зажигания, в которой широкое применение получили полупроводники. Полупроводниковые приборы могут быть использованы в качестве усилителя, включенного между первичной обмоткой катушки зажигания и прерывателем с тем, чтобы уменьшить ток в момент размыкания его контактов и одновременно увеличить ток в первичной обмотке катушки. По этому принципу и выполняются контактно-транзисторные системы зажигания, в которых применяют прерыватель-распределитель обычной конструкции, но между ним и катушкой зажигания включают полупроводниковый усилитель, часто называемый полупроводниковым коммутатором.

Дальнейшим усовершенствованием системы зажигания является замена прерывателя импульсным генератором с полупроводниковым усилителем. Поэтому ток в первичной цепи катушки зажигания получается прерывистым. На таком принципе основаны схемы бесконтактных транзисторных систем зажигания, которые из-за отсутствия контактов имеют более высокую надежность.

При включенном зажигании и разомкнутых контактах прерывателя (рис. 11.7) транзистор закрыт. В момент замыкания контактов прерывателя в цепи управления транзистора будет проходить ток 0,3— 0,8 А (в зависимости от скорости вращения кулачка прерывателя).

Путь тока в цепи управления транзистора показан штриховыми стрелками: « + » аккумуляторной батареи — зажим КЗ тягового реле стартера — зажим AM выключателя зажигания — ротор выключателя — зажим КЗ выключателя — два добавочных резистора, соединенных клеммами ВКБ и ВК — первичная обмотка катушки зажигания — безымянный зажим транзисторного коммутатора — переход эмиттер Э — база (Б) транзистора — первичная обмотка импульсного трансформатора — замкнутый контакт прерывателя — «масса» — « — » батареи.

При прохождении тока управления происходит резкое снижение сопротивления перехода эмиттер — коллектор (Э—К) транзистора, и он открывается, включая цепь рабочего тока низкого напряжения первичной цепи зажигания.

Путь рабочего тока низкого напряжения показан сплошными стрелками: « + » аккумуляторной батареи — зажим КЗ тягового реле стартера — выключатель зажигания — резисторы — первичная обмотка катушки зажигания — безымянный зажим транзисторного коммутатора — переход эмиттер-коллектор (3—К) транзистора 7 — «масса»—«—» аккумуляторной батареи.

Сила тока в этой цепи зависит от напряжения источника, величины сопротивления, индуктивности первичной цепи и времени замкнутого состояния контактов прерывателя.

При размыкании контактов прерывателя ток управления прерывается, что вызывает резкое повышение сопротивления транзистора, он закрывается, выключая цепь рабочего тока первичной цепи зажигания.

Резкое прерывание тока в первичной обмотке катушки зажигания сопровождается резким уменьшением магнитного потока, который пересекает витки вторичной и первичной обмоток, сердечник и кольцевой магнитопровод. При этом во вторичной обмотке индуктируется э.д.с. от 17 до 30 кВ, а в первичней обмотке катушки э.д.с. самоиндукции не превышает 100 В.

Ток высокого напряжения из вторичной обмотки катушки зажигания поступает на распределитель, затем на свечу зажигания, «массу» и возвращается во вторичную обмотку.

Э.д.с. самоиндукции первичной обмотки катушки зажигания вызывает заряд конденсатора, который защищает транзистор от действия э.д.с., а электролитический конденсатор защищает транзистор от импульсных перенапряжений.

картинка

Рис. 11.7. Схема контактно-транзисторной системы зажигания двигателей ЗИЛ-130, ГАЗ-53А и др.:
1—транзисторный коммутатор; 2, 5— конденсаторы; 3, 8, 12— резисторы; 4, 6— соответственно диод-стабилитрон Д„ и диод Д; 7— транзистор; 9— импульсный трансформатор; 10— прерыватель; 11 — распределитель; 13— катушка зажигания; 14 — аккумуляторная батарея; 15 — добавочные резисторы; 16 — выключатель зажигания с зажимами AM, КЗ и СТ; 17 — тяговое реле стартера; М, К. Р — зажимы транзисторного коммутатора

Диод Д1 препятствует протеканию тока через диод-стабилитрон Дет в прямом направлении, минуя первичную обмотку катушки зажигания. Кремниевый диод-стабилитрон Дет предназначен для защиты транзистора от пробоя э.д.с. самоиндукции.

С системой зажигания ГАЗ-3307 можно ознакомится вот в этой статье:

Система зажигания ГАЗ-3307.

  Если вдруг, Вы что то не нашли, или у Вас просто нет времени на поиски, то я рекомендую ознакомиться со статьями в категорий «Ремонт ГАЗ«. Я уверен Вы найдете ответ на свой вопрос, а если же нет напишите в комментариях интересующий Вас вопрос я обязательно отвечу.

Контактно-транзисторная система зажигания | whatisvehicle

1 — свеча зажигания; 2 — провод высокого напряжения; 3 — боковой контакт распределителя; 4 — ротор распределителя; 5 — кулачок; 6 — контакты прерывателя; 7 — коммутатор; 8 — первичная обмотка катушки зажигания; 9 — вторичная обмотка; 10 — центральный провод высокого напряжения; 11 — включатель зажигания; 12 — аккумуляторная батарея; А — прерыватель; Б — база; В — катушка зажигания; К — коллектор; Э – эмиттер.

Контактно-транзисторная система зажигания явилась переходным этапом от контактной к бесконтактным электронным системам. В ней устраняется недостаток контактной системы — подгорание и износ контактов прерывателя, коммутирующих цепь с индуктивностью и значительной силой тока. В контактно-транзисторной системе первичную цепь обмотки возбуждения коммутирует транзистор, управляемый контактами прерывателя. С применением’ контактно-транзисторной системы на автомобиле появился новый блок — электронный коммутатор(7), объединяющий в себе силовой коммутирующий транзистор и элементы схемы его управления и защиты.

Прежде, чем разбирать систему, давайте разберёмся, что такое транзистор.

Транзисторами называют полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

У транзистора три вывода: коллектор, эмиттер и база.

Можно долго читать нудные объяснения научными заумными фразами. А можно быстро и просто понять, как же оно работает.

Так вот,  по пути Коллектор-Эмиттер течёт Коллекторный ток(Ik). По другому пути База-Эмиттер течёт слабый управляющий ток(Iб). И вот при помощи этого тока базы управляется коллекторный ток(его величина).

Причем, коллекторый ток всегда больше тока базы в определенное количество раз. Эта величина называется коэффициент усиления по току, обозначается h31э. У различных типов транзисторов это значение колеблется от единиц до сотен раз.

Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу.

Более подробно можно прочитать тут: http://radiokot.ru/start/analog/basics/08/

Теперь, давайте вернёмся к нашей системе зажигания )

1 — аккумуляторная батарея; 2,3 — контакты выключателя зажигания; 4,5 — добавочные резисторы; 6 — коммутатор; 7 — прерыватель

На рисунке представлена схема контактно-транзисторного зажигания с коммутатором ТК 102.

При замыкании контактов прерывателя(7) через них начинает протекать ток базы транзистора VT1, который открывается и включает первичную обмотку катушки зажигания к источнику питания.

При размыкании контактов прерывателя транзистор VT1 закрывается, ток в первичной цепи резко прерывается и на свечах появляется всплеск высокого напряжения, как и в контактной системе.

Характеристики контактно- транзисторной системы аналогичны контактной, за исключением того, что снижения вторичного напряжения на низких частотах, вращения кулачка не происходит. Импульсный трансформатор Т в схеме ускоряет запирание транзистора, цепь VD1, VQ2 защищает транзистор от перенапряжений, а конденсатор С2 — от случайных импульсов напряжения по цепи питания. Конденсатор С1 способствует уменьшению коммутационных потерь, в транзисторе. Добавочный резистор 4 закорачивается при пуске двигателя.

Срок службы контактов прерывателя, в контактно-транзисторной системе больше, чем в контактной, так как базовый ток, коммутируемый ими, невелик. Однако механический износ прерывательного механизма, влияние вибраций на работу контактов в системе не устранены.

Специфические особенности работы транзистора в цепи катушки зажигания предопределяет необходимость полного электрического разделения первичной и вторичной обмоток (в обычной катушке два вывода обмоток соединены), а так же отсутствие конденсатора. Катушка транзисторной системы зажигания имеет большее отношение числа витков вторичной и первичной обмоток. Наиболее распространенной отечественной контактно-транзисторной системой зажигания является ТК-102. К системе зажигания добавляется коммутатор, резистор и заменяется катушка зажигания. Преимуществом этой системы зажигания является возможность увеличения искрового промежутка свечи, стабильность работы двигателя на режимах прогрева, холостого хода и малых нагрузок, улучшение пусковых качеств, особенно при низком напряжении аккумулятора, повышение долговечности контактов прерывателя.

Давайте ещё раз последовательно взглянем на работу системы:

1 — свеча; 2 — ротор; 3 — распределитель; 4 — контакты; 5 — коммутатор; 6,7—обмотки; 8 — выключатель

Работает система следующим образом: при включенном выключателя зажигания(8) после замыкания контактов 4 прерывателя транзистор коммутатора(5) открывается(т.к. пошёл ток базы, который открывает транзистор), и по первичной обмотке(7) катушки зажигания будет протекать ток. В момент размыкания контактов прерывателя транзистор коммутатора запирается(т.к. пропадает ток базы). Ток в первичной цепи резко уменьшается, и во вторичной обмотке(6) катушки зажигания создается ток высокого напряжения. Он подводится к ротору(2) распределителя зажигания(3), который распределяет ток высокого напряжения по свечам зажигания(1) в соответствии с порядком работы двигателя.

Ещё советую глянуть видео:

 Рутуб: http://rutube.ru/tracks/175204.html?v=967bdecc203dd38887c9620e767f244f

Думаю, теперь понятно, как это работает. Теперь, предлагаю перейти к рассмотрению к более современной системе зажигания.

Понравилось это:

Нравится Загрузка…

Контактные системы зажигания, работа, схемы

Контактная система зажигания выделяется наличием в составе распределителя, от которого производится подача напряжения к свечам зажигания двигателя.

В чем особенности этой системы? Где она применяется, и как работает? Из каких элементов состоит, и с какими поломками может столкнуться автовладелец в процессе пользования транспортным средством? Рассмотрим эти моменты подробнее.

Где используется?

Прошлые и настоящие владельцы ВАЗ «классики», разбирающиеся в конструкции таких автомобилей, прекрасно знают слабые места и принципы функционирования схемы зажигания контактного типа.

Ее особенность заключается в распределении напряжения к камерам сгорания двигателя через контактные соединения (отсюда и название).

Современные автомобили оборудуются более современным (электронным) зажиганием, которое управляется микропроцессором.

Контактные системы зажигания, устройство, принцип работы

К основным системам, работающим на контактном принципе, стоит отнести:

  • КС3 (KSZ) — наиболее распространенный тип схемы, в структуре которой имеется распределитель, катушка и прерыватель. Контактные системы зажигания, устройство, принцип работы
  • КТС3 (HKZ-2, JFU4, HKZk) — система зажигания с контактным датчиком и предварительным накоплением энергии.
  • KTC3 (TSZi) — еще один тип системы, работающей на контактном принципе. В ее составе присутствуют транзистор и контакты, а также индукционный накопитель энергии.

Контактные системы зажигания, устройство, принцип работы

Общий принцип работы

Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.

При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.

Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.

Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.

Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.

Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).

Контактные системы зажигания, устройство, принцип работы

В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.

Причина его появления — токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.

Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:

  • Магнитного поля;
  • Уровня интенсивности падения тока в первичной обмотке.

Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.

Принципиальная схема контактной системы зажигания показана ниже.

Контактные системы зажигания, устройство, принцип работы

Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.

Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).

Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров — размера зазора между свечными электродами, а также давления в цилиндрах машины.

Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.

Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.

К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.

К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.

Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).

В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов Цельсия (при условии, что контактная группа находится в замкнутом состоянии).

Контактные системы зажигания, устройство, принцип работы

В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.

Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:

  • Формы, энергии и времени появления искры;
  • Количества искр на определенной площади;
  • Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.

Устройство

Не секрет, что контактная система зажигания состоит из множества различных элементов:

  • АКБ;
  • Механический прерыватель и распределитель. Первый дает ток низкого, а второй — высокого напряжения;
  • Замок, катушка и свечи зажигания;
  • Регуляторы опережения зажигания представлены двумя видами — центробежным и вакуумным;
  • Высоковольтные провода.

Контактные системы зажигания, устройство, принцип работы

 

Рассмотрим основные элементы подробно:

  • Прерыватель — узел, который обеспечивает кратковременное разделение цепочки тока в обмотке низкого напряжения. В момент разрыва во вторичной цепи формируется высокое напряжение.
  • Конденсатор — деталь, целью которой является предотвращение подгорания контактов в цепи прерывателя. Монтаж емкости производится параллельно контактной группе, что позволяет поглощать изделию больший объем энергии. К дополнительной функции конденсатора стоит отнести повышение напряжения на вторичной обмотке.Контактные системы зажигания, устройство, принцип работы
  • Распределитель — элемент контактной системы зажигания, который обеспечивает раздачу потенциала напряжения на каждую из свечей цилиндров. Конструктивно устройство состоит из крышки и ротора. В верхней части расположены контакты, а потенциал от катушки направляется на центральный контакт, а через боковые контакты к свечам. Контактные системы зажигания, устройство, принцип работы
  • Катушка зажигания — устройство, которое преобразует напряжение (из низкого в высокое). Находится деталь в моторном отсеке, как и большая часть элементов контактной системы зажигания. Конструктивно в изделии предусмотрено две обмотки. Одна — низкого, а другая — высокого напряжения. Контактные системы зажигания, устройство, принцип работы
  • Трамблер — представляет собой устройство, в котором вместе находятся прерыватель и распределитель, функционирующие от коленчатого вала мотора. Контактные системы зажигания, устройство, принцип работы
  • Центробежный регулятор — узел, который обеспечивает изменение угла опережения зажигания. Этот параметр представляет собой угол поворота коленвала, в момент достижения которого на свечи подается напряжение. Чтобы гарантировать полное сгорание горючей смеси, рассматриваемый угол устанавливается с опережением.

Конструктивно регулятор — пара грузиков, которые действуют на пластинку с размещенными на ней кулачками прерывателя. Здесь стоит отметить, что пластинка свободно перемещается, но угол опережения ставится за счет позиции трамблера мотора. Контактные системы зажигания, устройство, принцип работы

  • Регулятор вакуумного типа — устройство, которое обеспечивает изменение угла опережения на фоне корректировки уровня нагрузки на мотор (меняется при нажатии на педаль газа). Регулятор объединяется с полостью дроссельного узла и корректирует угол с учетом уровня разрежения. Контактные системы зажигания, устройство, принцип работы
  • Свечи зажигания — стандартные элементы запала, которые преобразуют энергию в искру, необходимую для поджигания топливной смеси в цилиндрах мотора. В момент передачи импульса на свечи формируется искра, зажигающая горючую смесь.
  • Высоковольтные провода (бронепровода) — неизменный элемент контактной системы зажигания, с помощью которых высокое напряжение передается по пути «катушка — распределитель — свечи зажигания». Конструктивно изделие представляет собой гибкий проводник большого сечения с одной жилой из меди и многослойной изоляцией. Контактные системы зажигания, устройство, принцип работы

Принцип действия

Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов.

Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.

Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.

В этот же момент созданный импульс направляется по бронепроводам к крышке распределительного устройства, а дальше — к свечам зажигания. При этом распределение производится под определенным углом опережения.

Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.

Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.

Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.

В случае снижения оборотов коленвала происходит обратный процесс — снижение угла опережения.

Схема работы показана ниже.

Контактные системы зажигания, устройство, принцип работы

Контактно-транзисторная система зажигания

С целью оптимизации схемы разработчики добавили в конструкцию транзисторный коммутатор, который устанавливается в первичной обмотке. Его управление производится с помощью контактов прерывателя.

Принципиальная схема показана ниже.

Контактные системы зажигания, устройство, принцип работы

Особенность системы в том, что применение дополнительного устройства позволило снизить ток в цепи и продлить ресурс контактной группы прерывателя (она стала меньше подгорать).

Контактно-транзисторная схема, благодаря незначительным изменениям, получила лучшие характеристики, если сравнивать ее с классическим вариантом зажигания. Из-за применения транзистора в системе был добавлен новый узел — коммутатор.

Контактные системы зажигания, устройство, принцип работы

Преимущество транзистора в этой схеме в том, что даже небольшого тока, направленного на управление (в базу), достаточно для контроля тока большей величины.

Как уже отмечалось, новая система контактно-транзисторного типа имеет небольшие отличия от прежней версии системы. Ее особенность заключается в особых характеристиках, которыми не может похвастаться стандартная контактная схема.

Главное отличие заключается в том, что прерыватель взаимодействует напрямую с транзистором, а не с «бобиной». В остальном работа контактно-транзитной системы аналогична.

Как только происходит прерывание тока в первичной обмотке, во второй цепи возникает импульс высокого напряжения.

Если не обращать внимания на конструктивные особенности и принципы подключения коммутатора, можно выделить одно главное преимущество — возможность повышения первичного тока, благодаря применению транзистора.

При этом удается решить ряд задач:

  • Увеличить зазор между свечными электродами;
  • Поднять вторичное напряжение;
  • Устранить проблемы с пуском при низкой температуре;
  • Оптимизировать процесс образования искры;
  • Поднять число оборотов и мощность мотора.

Еще одна особенность контактно-транзисторной схемы заключается в необходимости использования катушки с отдельной первичной и вторичной обмоткой.

Рассмотренные изменения схемы позволили снизить нагрузку на контактную группу прерывателя и уменьшить проходящий через нее ток. В итоге контакты служат дольше, а надежность системы возрастает.

Несмотря на рассмотренные плюсы, нельзя не отметить и ряд минусов контактно-транзисторной системы, которые связаны с работой прерывателя.

Так, в схеме формируется искра в момент, когда происходит разрывание тока в «бобине». Ток, который поступает в транзистор, имеет достаточную величину для влияния на работу детали.

Кроме того, уменьшение тока на контактной группе прерывателя негативно сказывается на определенных характеристиках системы.

Неисправности и их причины

От эффективности работы контактной системы зажигания зависит стабильность пуска автомобиля. Вот почему автовладелец должен знать, какие бывают неисправности, и чем они вызваны.

К основным поломкам можно отнести:

Мощность мотора падает или возникают перебои в его работе.

Причин может быть несколько:

  • Нарушение целостности крышки распределителя;
  • Повреждение ротора;
  • Выход из строя свечи зажигания или нарушение зазора между электродами;
  • Ошибочно выставленный угол зажигания.

Для устранения поломки можно сделать следующее — отрегулировать угол опережения, поменять вышедшие из строя элементы или выставить необходимые зазоры в прерывателе и электродах свечей.

Контактные системы зажигания, устройство, принцип работы

На свечах отсутствует искра.

Подобная неисправность может быть вызвана:

  • Обгоранием контактов прерывателя и отсутствием необходимого зазора;
  • Плохим контактом или обрывом проводов во вторичной цепи;
  • Выходом из строя конденсатора, ротора, катушки зажигания, бронепроводов или свечей.

Для устранения неисправности требуется отрегулировать зазор контактов прерывателя, поменять неисправные элементы и (или) проверить исправность цепей обеих обмоток (высшей и низшей).

Рассмотренные выше поломки могут возникать по нескольким причинам — естественный износ деталей, несоблюдение правил эксплуатации, применения неоригинальных элементов схемы, а также негативное воздействие на узлы.

На современном этапе контактная система зажигания уходит в прошлое и напоминает о себе только при обслуживании старых автомобилей.

На ее смену пришли современные, точные и более надежные схемы, построенные на микропроцессорном принципе.

Оцените статью

Контактно – транзисторная система зажигания

Контактно – транзисторная система зажигания

В описанной выше системе контактного батарейного зажигания с ростом частоты вращения коленчатого вала двигателя снижается напряжение во вторичной цепи, вызываемое сокращением времени замкнутого состояния контактов прерывателя, вследствие чего уменьшается магнитный поток в катушке зажигания. Этого можно избежать увеличив силу тока в первичной цепи, но такое увеличение вызывает после 10 000 – 15000 километров пробега подгорание контактов прерывателя, наблюдается ненадежное воспламенение смеси в современных высокооборотных многоцилиндровых двигателях.

Поэтому на последних моделях грузовых автомобилей применяют более сложную систему зажигания с применением транзисторов, которая имеет ряд преимуществ перед системой контактного батарейного зажигания. Транзисторная система зажигания обеспечивает надежную и экономичную работу высокооборотных, многоцилиндровых двигателей с повышенной степенью сжатия.

Помимо деталей и приборов, входящих в обычную систему батарейного зажигания, контактно – транзисторная система имеет транзисторный коммутатор1 и блок добавочных сопротивлений. Механический прерыватель управляет работой транзистора, подавая на него управляющий ток. Прерыватель контактно – транзисторной системы размыкает не первичную цепь системы зажигания, а цепь сравнительно слабого тока 0,75А управления германиевым транзистором, являющимся основной частью транзисторного коммутатора. В свою очередь транзистор прерывает более сильный ток первичной обмотки 2 катушки зажигания. Сила тока базы транзистора незначительна, при разрыве контактов износа от электрической искры практически не происходит, на срок службы контактов влияет только механический износ и поскольку контакты прерывателя разгружены от первичного тока, срок их службы увеличивается до 100 тыс. километров пробега и более.

Рис. Схема контактно – транзисторной системы зажигания 1 – коммутатор, 2 – первичная обмотка катушки зажигания, 3 – вторичная обмотка, 4 – включатель зажигания, 5 – аккумуляторная батарея, 6 – свеча зажигания, 7 – провод высокого напряжения, 8 – боковой контакт распределителя, 9 – ротор распределителя, 10 – кулачок, 11 – контакты прерывателя, 12 – центральный провод высокого напряжения, I – прерыватель, II – катушка зажигания, Б – база, К – коллектор, Э – – эммитер.

Прерыватель – распределитель I контактно-транзисторной системы устроен так же, как прерыватель – распределитель обычной системы зажигания, но не имеет конденсатора. Катушка зажигания контактно – транзисторной системы отличается меньшим, чем у обычных катушек, сопротивлением первичной обмотки, благодаря чему максимальный ток первичной цепи достигает 8А, тогда как в обычной катушке он не превышает 4А. Кроме того, с целью исключения перегрузки транзистора высоким напряжением вторичная обмотка катушки не соединена с первичной.

Ток, поступающий на первичную обмотку через транзистор повышает напряжение во вторичной цепи примерно на четверть. Это позволяет увеличить зазор между электродами свечи зажигания до 1, 2 мм и тем самым увеличить длину искры и добиться полного сгорания рабочей смеси в цилиндрах двигателя при любой частоте вращения коленчатого вала. При этом облегчается пуск двигателя и увеличивается его экономичность.

Транзисторный коммутатор смонтирован в оребренном корпусе из оцинкованного сплава. В корпусе находятся транзистор и импульсный трансформатор. Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Схема и принцип работы контактно-транзисторной системы зажигания


Рис. 1. Электрические схемы контактно-транзисторной системы зажигания: а — принципиальная; б — с транзисторным коммутатором TK102.

На рис. 1, а показана принципиальная схема контактно-транзисторной системы зажигания. Контакты прерывателя S1 включены в цепь базы (Б) транзистора VT, а первичная обмотка L1 катушки зажигания Т1 — в цепь эмиттера (Э) этого транзистора. Наличие транзистора VT значительно облегчает работу контактов прерывателя, так как через них протекает ток управления транзистором (ток базы Iб), а ток первичной обмотки катушки зажигания I1 — через переход эмиттер — коллектор транзистора.

В цепь первичной обмотки включены добавочный резистор Rд шунтируемый контактами S2 в момент пуска двигателя стартером, выключатель зажигания S3 и аккумуляторная батарея GB.

При включении зажигания и замыкании контактов прерывателя S1 потенциал базы транзистора VT будет отрицательным относительно эмиттера, поэтому транзистор откроется и в первичной цепи появится ток I1. В этом случае сопротивление транзистора (переход эмиттер—коллектор) будет минимальным (0,15 Ом).

При размыкании контактов прерывателя S1 ток базы транзистора Iб прерывается, разность потенциалов базы и эмиттера становится равной нулю, транзистор запирается (значительно повышается сопротивление перехода эмиттер—коллектор), сила тока в первичной обмотке катушки зажигания резко убывает, что обеспечивает индуктирование высокого напряжения во вторичной обмотке L2.

В случае запирания транзистора при прекращении тока базы, т. е. при обрыве цепи базы, снижается устойчивость работы транзистора. Для улучшения процесса запирания транзистора в реальных схемах контактно-транзисторных систем зажигания применяют запирание транзистора, при котором на базу транзистора в момент размыкания контактов прерывателя подается положительный по отношению к эмиттеру потенциал. В этом случае получается наибольшая скорость спада силы первичного тока, что способствует увеличению вторичного напряжения в катушке зажигания.

На рис. 1, б приведена электрическая схема контактно-транзисторной системы зажигания с транзисторным коммутатором ТК102, которая предназначена для восьмицилиндровых двигателей.

Схема включает транзисторный коммутатор I (ТК102), катушку зажигания Т1 (Б114), прерыватель S1 и распределитель S4, блок резисторов II (СЭ107), составленный из резисторов Rд1 (0,5 Ом) и Rд2 (0,5 Ом), выключатель добавочного резистора S2. Резистор Rд1 ограничивает максимальную силу тока ток I1 в первичной цепи, а резистор Rд2 выполняет функции добавочного резистора, как в контактной системе зажигания. Катушка зажигания Б114 имеет первичную обмотку L1 из 180 витков провода диаметром 1,25 мм, марки ПЭВ и вторичную L2 из 41 ООО витков провода диаметром 0,06 мм марки ПЭЛ. Сопротивление первичной обмотки 0,38 Ом, вторичной 20 500 Ом. Индуктивность первичной обмотки 3,7 мГн, а вторичной 150—170 Гн. Коэффициент трансформации Кт = w1/w2 = 228. Уменьшение числа витков первичной обмотки и ее индуктивности по сравнению с катушками зажигания контактных систем необходимо для понижения ЭДС самоиндукции в первичной цепи чтобы исключить возможность пробоя силового транзистора коммутатора. Поэтому катушки зажигания контактных и контактно-транзисторных систем зажигания не взаимозаменяемы.

Транзисторный коммутатор включает мощный германиевый транзистор VT3 типа ГТ701А, стабилитрон VD2 (Д817В), диод VD1 (Д226), импульсный трансформатор Т2, конденсаторы C1 (1 мкФ) и С2 (50 мкФ), резистор R1 (27 Ом).

Все элементы транзисторного коммутатора смонтированы в литом алюминиевом корпусе, имеющем ребристую поверхность для увеличения теплоотдачи. Необходимость интенсивного отвода теплоты вызвана применением германиевого транзистора. Чтобы транзистор не перегревался, температура окружающей среды не должна превышать 65°С, поэтому транзисторный коммутатор ТК102 на автомобиле устанавливается в кабине водителя, а не под капотом двигателя.

Система работает следующим образом. При включении выключателя зажигания S3 после замыкания контактов прерывателя S1 транзистор VT3 открывается, так как потенциал его базы (Б) становится ниже потенциала эмиттера (Э), и по первичной обмотке L1 катушки зажигания будет протекать ток I1. Сила тока базы Iб равна 0,8—0,3 А (уменьшаясь при увеличении частоты вращения кулачка валика прерывателя), а сила тока в первичной обмотке 7—8 А.

В момент размыкания контактов прерывателя транзистор VT3 запирается. Ток в первичной цепи резко уменьшается, и во вторичной обмотке L2 катушки зажигания создается высокое напряжение, импульсы которого распределяются по свечам зажигания распределителем S4. Трансформатор Т2 обеспечивает активное запирание транзистора VT3. Первичная обмотка L3 этого трансформатора включена последовательно с контактами прерывателя. При размыкании контактов прерывателя во вторичной обмотке L4 индуктируется ЭДС, обеспечивающая активное запирание транзистора VT3 (потенциал его базы в момент запирания становится выше потенциала эмиттера).

Резистор формирует импульс, ускоряющий запирание транзистора. При наличии резистора (27 Ом) время запирания транзистора составляет около 30 мкс, без него 60 мкс.

Для защиты транзистора при возрастании ЭДС самоиндукции, возникающей в первичной обмотке катушки зажигания (например, при отсоединении провода высокого напряжения от свечи или крышки распределителя во время работы двигателя и при проверке системы зажигания на искру), включен кремниевый стабилитрон VD2. Напряжение стабилизации стабилитрона выбрано таким, что оно вместе с напряжением питания не превышало предельно допустимого напряжения на участке эмиттер—коллектор (свыше 100 В) транзистора VT3.

Диод VD1, включенный встречно стабилитрону, предотвращает шунтирование стабилитроном первичной обмотки.

Конденсатор С2 предназначен для защиты транзистора от случайных перенапряжений в цепи питания схемы (например, при работе без батареи, при неисправности регулятора напряжения, коротком замыкании в обмотках генератора, ухудшении контакта с массой генератора и регулятора). При увеличении скорости запирания транзистора импульсном трансформатором Т2 скорость спада силы тока первичной цепи достаточна для получения необходимого вторичного напряжения, поэтому в контактно-транзисторных системах зажигания конденсатор параллельно контактам прерывателя не включается.

Конденсатор С1 обеспечивает снижение тепловых потерь в транзисторе VT3 в период его переключения.

К преимуществам контактно-транзисторной системы зажигания относятся увеличение в два раза вторичного напряжения, энергии и длительности искрового разряда, повышение срока службы контактов прерывателя, времени наработки свечей между регулировкой зазора в свечах, так как система менее чувствительна к возрастанию искрового промежутка свечи.

Вместе с тем контактно-транзисторная система зажигания не устраняет некоторых недостатков контактных систем: вибраций контактов при большой частоте вращения валика прерывателя, износа подушечки рычажка и граней кулачка прерывателя, что требует систематической проверки и регулировки зазора и угла замкнутого состояния контактов. Последнее особенно неудобно при экранировании распределителя. Поэтому разработаны бесконтактные системы зажигания, где прерывание тока в первичной цепи осуществляется электронным устройством.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *