РазноеПечатная плата шим регулятора на 555: ШИМ регулятор на таймере NE555 – 403 — Доступ запрещён

Печатная плата шим регулятора на 555: ШИМ регулятор на таймере NE555 – 403 — Доступ запрещён

ШИМ регулятор за 1,5$

ШИМ регулятор за 1,5$
ШИМ регулятор предназначен для регулирования скорости вращения полярного двигателя,яркости освещения лампочки или мощностью нагревательного элемента.

Преимущества:
1 Простота изготовления
2 Доступность компонентов(стоимость не превышает 2$)
3 Широкое применение
4 Для новичков лишний раз потренироваться и порадовать себя=)

Однажды понадобился мне «девайс» для регулировки скорости вращения кулера. Для чего именно уже не помню. С начала пробовал через обычный переменный резистор, он сильно грелся и это было не приемлемо для меня. В итоге покопавшись в интернете нашел схему на мне уже знакомой микросхеме NE555. Это была схема обычного ШИМ регулятора с скважностью (длительностью) импульсов равной или меньше 50% (позже приведу графики как это работает). Схема оказалось очень простой и не требовала настройки, главное было не накосячить с подключением диодов и транзистора. Первый раз его собрал на макетной плате и испытал, все заработало с пол оборота. Позже уже развел небольшую печатную плату и аккуратнее все выглядело=) Ну теперь взглянем на саму схему!

ШИМ регулятор за 1,5$Схема ШИМ регулятора

Из нее мы видим что это обычный генератор с регулятором скважности импульсов собранный по схеме из даташита. Резистором R1 мы и меняем эту скважность, резистор R2 служит нам защитой от КЗ, так как 4 вывод микросхемы через внутренний ключ таймера подключен на землю и при крайнем положении R1 он просто замкнет. R3 это подтягивающий резистор. С2 это задающий частоту конденсатор. Транзистор IRFZ44N — это N канальный мосфет. D3 — это защитный диод который предотвращает выхода из строя полевик при обрыве нагрузки. Теперь немного о скважности импульсов. Скважность импульса — это отношение его периода следования (повторения) к длительности импульса, то есть через определенный промежуток времени будет происходить переход от (грубо говоря) плюса к минусу, а точнее от логической единицы к логическому нулю. Так вот этот промежуток времени между импульсами и есть та самая скважность.

ШИМ регулятор за 1,5$

Скважность при среднем положении R1ШИМ регулятор за 1,5$

Скважность при крайнем левом положении R1ШИМ регулятор за 1,5$

Скважность при крайнем правом положении R

Ниже приведу печатные платы с расположением деталей и без них

ШИМ регулятор за 1,5$

ШИМ регулятор за 1,5$

Теперь немного о деталях и их вид. Сама микросхема выполнена в DIP-8 корпусе, конденсаторы керамические малогабаритные, резисторы на 0,125-0,25 ватт. Диоды обычные выпрямительные на 1А (самое доступное это 1N4007 их везде навалом). Так же микросхему можно устанавливать на панельку, если в будущем вы хотите ее использовать в других проектах и лишний раз не выпаивать ее. Ниже приведу фотографии деталей.

P.S:Номинал конденсатора может варьироваться от 2.2 нанофарада до 4.7 нанофарад. Сопротивление резистора R4 от 47-180 ом.
P.P.S: Данный Шим регулятор я использовал и для регулирования:оборотов двигателя,яркости лампочки и температуру нагревательного элемента.

Всем творческих успехов.Спасибо за внимание!

ШИМ регулятор за 1,5$ Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Шим регулятор на таймере 555 — Проверенные схемы — Радиолюбитель — Каталог статей

                          Недавно возникла надобность в регулировки зарядного тока в зарядном устройстве, ну и как полагается в таких случаях, я немного порывшись в интернете нашёл простенькую схему шим-регулятора на

таймере 555.

Данный шим регулятор хорошо подходит для регулировки:

-оборотов двигателя

-яркости свечения светодиодов

-регулировки тока в зарядном устройстве

Схема отлично работает в диапазоне до 16В без переделки. Полевой транзистор практически не греется в нагрузке до 7А, поэтому в радиаторе не нуждается.


 

Рекомендации по сборке и настройке:

   Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно. 

   Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел — подбирайте С1, свист часто идет от него.

 

Схема + печатная плата + список деталей в архиве:

-скачать архив

 

ПЕЧАТНАЯ ПЛАТА открывается программой Sprint — Layout 6.0 

 

Схема включения NE555 и простой ШИМ регулятор на чипе 555

В этой инструкции я покажу, как создать простой ШИМ регулятор (широтно-импульсную модуляцию) из чипа 555, таймера и некоторых других компонентов. Всё очень просто, и схема включения NE555 хорошо работает для контроля светодиодов, лампочек, сервомоторов или двигателей постоянного тока.

Мой ШИМ регулятор на 555 может лишь изменять коэффициент заполнения с 10% до 90%.

Шаг 1: Что такое ШИМ

Широтно-импульсная модуляция (ШИМ) сигнала или источника питания включает в себя модуляцию его рабочего цикла, чтобы либо передавать информацию по каналу связи, либо управлять посылаемой мощностью. Самый простой способ генерации сигнала ШИМ требует только пилообразного или треугольного сигнала (легко генерируемого с использованием простого осциллятора) и компаратора.

Когда значение опорного сигнала (зеленый синусоидальной волны на рисунке 2) больше, чем сигнал модуляции (синий), ШИМ сигнал (пурпурный) находится в высоком состоянии, в противном случае она находится в низком состоянии. Но в моем ШИМ я не буду использовать компаратор.

Шаг 2: Типы ШИМ

Существует три типа ШИМ:

  1. Центр пульсации может быть зафиксирован в середине временного окна, и оба края импульса перемещаются для сжатия или расширения ширины.
  2. Передняя кромка пульсации может удерживаться у передней кромки временного окна, а хвостовая кромка будет модулироваться.
  3. Хвостовая кромка пульсации может быть зафиксирована, а передняя кромка будет модулироваться.

Три типа сигналов ШИМ (синий): модуляция передней кромки (верхняя строка), модуляция задней кромки (средняя строка) и пульсация в середине (обе кромки модулируются, нижняя строка). Зеленые линии — это пилообразные сигналы, используемые для генерации сигналов ШИМ с использованием метода пересечения.

Шаг 3: Как нам поможет ШИМ?

Питание:
Шим может использоваться для уменьшения общего количества энергии, подаваемой на LOAD, без потерь, обычно возникающих при ограничении источника питания резистивным средством. Это связано с тем, что средняя подаваемая мощность пропорциональна циклу модуляции.

При достаточно высокой скорости модуляции пассивные электронные фильтры могут использоваться для сглаживания последовательности импульсов и восстановления среднего аналогового сигнала.

Высокочастотные системы управления мощностью при помощи ШИМ легко реализуются с использованием полупроводниковых переключателей. Дискретные состояния включения/выключения модуляции используются для управления состоянием переключателя (переключателей), которые соответственно управляют напряжением. Основным преимуществом этой системы является то, что переключатели либо выключены и не имеют ток, либо включены и (в идеале) не имеют потерь напряжения вокруг них. Произведение тока и напряжение в любое заданное время определяет мощноость, рассеиваемую переключателем, таким образом (в идеале), мощность вообще не рассеивается.

На самом деле, полупроводниковые переключатели не являются идеальными, но на них все же возможно построить контроллеры высокой эффективности.

ШИМ также часто используется для управления подачи электроэнергии на другое устройство, например, при управлении скоростью электродвигателей, регулирования громкости аудиоусилителей класса D или регулировании яркости источников света и многих других приложений силовой электроники. Например, световые диммеры для домашнего использования используют определенный тип управления ШИМ.

Домашние световые диммеры обычно включают в себя электронные схемы, которые подавляют ток в определенных частях каждого цикла напряжения сети переменного тока. Регулировка яркости света, испускаемого источником света, — это просто вопрос настройки напряжения (или фазы) в цикле переменного тока, в котором диммер начинает подавать электрический ток на источник света (например, с помощью электронного переключателя, такого как симистор ). В этом случае рабочий цикл ШИМ определяется частотой сетевого напряжения (50 Гц или 60 Гц в зависимости от страны). Эти довольно простые типы диммеров могут эффективно использоваться с инертными (или относительно медленно реагирующими) источниками света, такими как лампы накаливания, например, для которых дополнительная модуляция в подаваемой электрической энергии, вызванная диммером, вызывает лишь незначительные дополнительные колебания в испускаемый свет.

Однако некоторые другие источники света, такие как светодиоды, очень быстро включаются и выключаются и, по-видимому, мерцают, если они поставляются с низким напряжением. Воспроизводимые эффекты мерцания от таких источников быстрого реагирования могут быть уменьшены за счет увеличения частоты ШИМ. Если флуктуации света достаточно быстры, зрительная система человека больше не может их фиксировать, и глаз воспринимает среднюю интенсивность времени без мерцания (см. Порог слияния фликкера).

Регулирование напряжения:
ШИМ также используется в эффективных регуляторах напряжения. Путем переключения напряжения на нагрузку с соответствующим рабочим циклом выход будет приближать напряжение на желаемом уровне. Шум переключения обычно фильтруется индуктором и конденсатором.

Один метод измеряет выходное напряжение. Когда он ниже желаемого напряжения, он включает переключатель. Когда выходное напряжение выше желаемого напряжения, оно отключает переключатель.

Регуляторы частоты вращения вентиляторов для компьютеров обычно используют ШИМ, так как она намного эффективнее по сравнению с потенциометром.

ШИМ иногда используется в синтезе звука, в частности в субтрактивном синтезе, поскольку она дает звуковой эффект, подобный хору или слегка расстроенным осцилляторам, которые играют вместе. (На самом деле PWM эквивалентна разности двух пилообразных волн.) Отношение между высоким и низким уровнем обычно модулируется низкочастотным генератором или LFO.

Популярным стал новый класс аудиоусилителей, основанный на принципе ШИМ. Называемые «усилители класса D», эти усилители создают эквивалент ШИМ аналогового входного сигнала, который подается на громкоговоритель через подходящую фильтрующую сеть для блокировки несущей и восстановления исходного аудиосигнала. Эти усилители характеризуются очень хорошими показателями эффективности (около 90%) и компактными размерами / малым весом для больших выходных мощностей.

Исторически сложилось, что грубая форма ШИМ используется для воспроизведения цифрового звука PCM на динамике ПК, который способен воспроизводить только два уровня звука. Тщательно определяя длительность импульсов и полагаясь на физические свойства фильтрации динамика (ограниченный частотный отклик, самоиндуктивность и т. д.), можно получить приблизительное воспроизведение образцов моно PCM, хотя и при очень низком качестве, и с очень разными результатами между реализациями.

В более поздние времена был введен метод цифрового кодирования прямого потока Digital Stream, который использует обобщенную форму широтно-импульсной модуляции, называемую модуляцией плотности импульса, при достаточно высокой частоте дискретизации (как правило, порядка МГц) для покрытия всех акустических частот с достаточной точностью. Этот метод используется в формате SACD, а воспроизведение кодированного аудиосигнала по существу аналогично методу, используемому в усилителях класса D.

Динамик: Используя ШИМ, можно модулировать дугу (плазму), и если она находится в диапазоне слуха, ее можно использовать в качестве динамика. Такой динамик используется в звуковой системе Hi-Fi в качестве высокочастотного динамика.

Круто, не так ли?

Шаг 4: Необходимые компоненты

Это простая схема с одним чипом, поэтому вам не понадобится много компонентов

  • NE555, LM555 или 7555 (cmos)
  • Рекомендую использовать два диода 1n4148, но подойдут и диоды серии 1n40xx
  • Потенциометр 100К
  • Зеленый конденсатор 100nf
  • Керамический конденсатор 220pf
  • Печатная плата
  • Полупроводниковый транзистор

Шаг 5: Построение устройства

Просто следуйте диаграмме и поместите все детали на макет. Проверьте дважды расположение каждого компонента перед тем, как включить устройство. Если вы хотите эффективно управлять и контролировать яркость источника света или двигатель, вы можете поставить на его выход только силовой транзистор, но если вы хотите лишь управлять источником света или двигателем, тогда рекомендуется поставить ёмкий конденсатор, например, 2200uf. Если поставить этот конденсатор и включить мотор на нагрузке в 40%, то двигатель будет на 60% эффективнее на той же скорости и крутящем моменте.

Здесь есть два видео, на которых показано, как работает моя ШИМ. На первом вы можете видеть, что вентилятор начинает вращаться на 90% рабочем цикле. На втором вы можете видеть, что светодиоды мигают, а вентилятор работает на 80%.

Файлы

ШИМ регулятор 12В на 555

Представляем простую конструкцию регулятора мощности, схема которого построена на таймере 555, работающем в режиме ШИМ. Транзисторы IRF3205 являются управляемыми элементами, причем транзисторы соединены параллельно для уменьшения сопротивления и лучшего рассеивания тепла.

Схема ШИМ на 12 В для ламп

Напряжение от трансформатора выпрямляется мостом на 50 А, установленным на радиаторе. Подается оно далее на стабилизатор 8 В, а затем в схему управления. Устройство должно было работать с несколькими галогенками 12 В 50 Вт.

Кстати, вы можете хорошо уменьшить нагрев транзисторов снизив частоту коммутации — на это стоит обратить внимание.

При полной яркости будет ток в нагрузке около 25 А. Так что уделите особое внимание винтовым соединительным разъемам. Кабели сечением 1,5 мм2 тоже недостаточны для такого большого тока.

Конечно, затворы лучше переключать напряжением около 10 — 12 В (не более 15 В для безопасности МОП-транзисторов), чем 6 В, хотя бы для того чтобы быть уверенным в их насыщении во включенном состоянии. А более высокое напряжение также означает более быструю перезагрузку затворов, что приводит к более короткому переходному времени, а это снижает потери мощности на них. Если они не насыщаются, то тепло, генерируемое на них с высокой рабочей мощностью, заставит транзисторы сильно греться.

Чтобы поднять управляющее напряжение, достаточно подключить R3 напрямую к источнику питания, а не к стабилизатору. Чтобы ускорить переключение, предлагаем конденсатор 0.1 мкФ поставить параллельно с R2 и, если необходимо, дополнительно в ряд перед этим параллельным соединением резистор, чтобы минимизировать токи при разряде конденсатора.

Вместо резистора R3 ещё лучше ставить резисторы 5-10 Ом в затворах mosfet и использовать более мощные биполярные транзисторы, например семейства BD136 — BD140 соответствующих типов проводимости.

Упрощенный ШИМ 12V регулятор постоянного тока

Для регуляторов оборотов мотора постоянного тока можно использовать эту, показанную выше схему. Здесь нет необходимости использовать управляющие транзисторы. Mosfet могут быть подключены параллельно, добавив один 30-ти омный резистор к затвору каждого транзистора. Плату можете скачать в архиве.

ШИМ — регуляторы оборотов двигателей на таймере 555 — Статьи по электронике — Каталог статей

 

Широкое применение таймер 555 находит в устройствах регулирования, например, в ШИМ — регуляторах оборотов двигателей постоянного тока.

 

Все, кто когда – либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ — регулятора на основе таймера 555 показан на рисунке 1.

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.


  Рисунок 1. Схема ШИМ — регулятора на таймере 555
  Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.
 

Рисунок 2. Принципиальная схема набора ШИМ — регулятора.
 

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент – диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку — двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой – лампой накаливания или каким-либо нагревательным элементом.

Рисунок 3. Печатная плата набора ШИМ — регулятора.
 

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.
 

Рисунок 4. Внешний вид набора ШИМ — регулятора.
 

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового» провода. Возможный вариант подобной схемы показан на рисунке 5.

Рисунок 5.
 

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит» в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.
 

Рисунок 6.

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки – лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере, в интернете их полно, но проще сделать на таймере 555.

Драйверы для транзисторов MOSFET на таймере 555

Еще одно применение интегральный таймер 555 нашел в трехфазных инверторах, или как их чаще называют частотно — регулируемых приводах. Основное назначение «частотников» — это регулирование частоты вращения трехфазных асинхронных двигателей. В литературе и в интернете можно найти немало схем самодельных частотных приводов, интерес к которым не пропадает до настоящего времени.

В целом идея такова. Выпрямленное сетевое напряжение с помощью контроллера преобразуется в трехфазное, как в промышленной сети. Но частота этого напряжения может меняться под воздействием контроллера. Способы изменения различны, — просто от ручного управления до регулирования системой автоматики.

Блок схема трехфазного инвертора показана на рисунке 1. Точками A,B,C показаны три фазы, к которым подключается асинхронный двигатель. Эти фазы получаются при коммутации транзисторных ключей, в качестве которых на этом рисунке показаны специальные транзисторы IGBT.

 

Рисунок 1. Блок схема трехфазного инвертора
 

Между устройством управления (контроллером) и силовыми ключами установлены драйверы силовых ключей инвертора. В качестве драйверов используются специализированные микросхемы типа IR2130, позволяющие подключить к контроллеру сразу все шесть ключей,- три верхних и три нижних, а кроме этого еще обеспечивает целый комплекс защит. Все подробности об этой микросхеме можно узнать в Data Sheet.

И все бы хорошо, но для домашних опытов такая микросхема слишком дорогая. И тут на помощь опять приходит наш старый знакомый интегральный таймер 555, он же КР1006ВИ1. Схема одного плеча трехфазного моста показана на рисунке 2.

Рисунок 2. Драйверы для транзисторов MOSFET на таймере 555
 

В качестве драйверов верхних и нижних ключей силовых транзисторов используются КР1006ВИ1, работающие в режиме триггера Шмитта. При использовании таймера в таком режиме достаточно просто получить импульсный ток открывания затвора не менее 200мА, что обеспечивает быстрое переключение выходных транзисторов.

Транзисторы нижних ключей соединены непосредственно с общим проводом контроллера, поэтому никаких трудностей в управлении драйверами не возникает, — нижние драйверы управляются непосредственно от контроллера логическими сигналами.

Несколько сложнее обстоит дело с верхними ключами. Прежде всего, следует обратить внимание на то, как осуществляется питание драйверов верхних ключей. Такой способ питания называется «бустрепным». Смысл его в следующем. Питание микросхемы DA1 осуществляется от конденсатора C1. А вот каким образом он может зарядиться?

Когда откроется транзистор VT2 минусовая обкладка конденсатора C1 практически связана с общим проводом. В это время конденсатор C1 заряжается от источника питания через диод VD1 до напряжения +12В. Когда транзистор VT2 закроется, будет закрыт и диод VD1, но запаса энергии в конденсаторе C1 достаточно для срабатывания микросхемы DA1 в следующем цикле. Для осуществления гальванической развязки от контролера и между собой управление верхними ключами приходится осуществлять через оптрон U1.

Такой способ питания позволяет избавиться от усложнения блока питания, обойтись всего одним напряжением. В противном случае потребовались бы три изолированных обмотки на трансформаторе, три выпрямителя и три стабилизатора. Более подробно с таким способом питания можно ознакомиться в описаниях специализированных микросхем.

Борис Аладышкин, http://electrik.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *