РазноеПерспективные силовые агрегаты автомобилей – «В России запатентована уникальная технология для увеличения КПД двигателя внутреннего сгорания» в блоге «Перспективные разработки, НИОКРы, изобретения»

Перспективные силовые агрегаты автомобилей – «В России запатентована уникальная технология для увеличения КПД двигателя внутреннего сгорания» в блоге «Перспективные разработки, НИОКРы, изобретения»

Содержание

Перспективы двигателей внутреннего сгорания

В последнее время появилось много новых разработок, которые направлены на совершенствование традиционных моторов. Некоторые их них находятся уже на стадии внедрения, другие новинки имеются только в виде опытных образцов. Однако пройдет немного времени и часть этих инноваций будут реализованы в новых машинах.

Лазеры вместо свечей зажигания

Еще недавно лазеры считались фантастическими приборами, о которых обычные люди узнавали из фильмов о марсианах. Но уже сегодня имеются разработки, направленные на замену привычных свечей зажигания лазерными устройствами. Традиционные свечи имеют один недостаток. Они не дают мощной искры, которая способна поджечь топливную смесь с большим количеством воздуха и малой концентрацией топлива. Повышение мощности приводило к быстрому износу электродов. Очень перспективно выглядит применение лазеров для воспламенения обедненной топливной смеси. Среди преимуществ лазерных свеч следует отметить возможность регулировки мощности и угла зажигания. Это позволит сразу не только повысить мощность двигателя, но сделать процесс сгорания более эффективным. Первые керамические лазерные приборы разработали инженеры в Японии. Они имеют диаметр 9 мм, что подходит для целого ряда автомобильных моторов. Новинка не потребует существенной доработки силовых агрегатов.

Инновационные роторные двигатели

В ближайшем будущем из бензиновых двигателей могут пропасть поршни, распредвалы, клапаны. Ученые Мичиганского университета работают над созданием принципиально новой конструкции автомобильного мотора. Силовой агрегат будет получать энергию под действием взрывных волн, поддерживающих движение. Одной из основных деталей новой установки является ротор, в корпусе которого имеются радиальные каналы. При быстром вращении ротора топливная смесь проходит по каналам и мгновенно заполняет свободные отсеки. Конструкция позволяет заблокировать выходные порты, и горючая смесь не вытекает во время сжатия. Так как топливо попадает в отсеки очень быстро, происходит образование ударной волны. Она проталкивает порцию топливной смеси в центр, где происходит воспламенение, а затем и выхлоп отработанных газов. Благодаря такому оригинальному решению исследователям удалось сократить потребление топлива на 60%. Снизилась и масса мотора, что привело к созданию легкого автомобиля (400 кг). Достоинством нового мотора будет и малое количество трущихся деталей, поэтому ресурс двигателя должен увеличиться.

Разработка Scuderi

Сотрудники компании Scuderi подготовили свою версию двигателя будущего. Он имеет два типа поршневых цилиндров, что позволяет более эффективно использовать образующуюся энергию.
Уникальность разработки заключается в соединении двух цилиндров при помощи перепускного канала. В результате один из поршней создает компрессию, а во втором цилиндре происходит воспламенение топливной смеси и выброс газов.
Такой способ позволяет использовать экономнее выработанную энергию. Компьютерные модели показывают, что расход топлива в двигателе Scuderi будет меньше на 50%, чем у традиционных ДВС.

Двигатель с тепловым разделением

Повысить КПД двигателя Scuderi удалось благодаря тепловому разделению мотора на 2 части. В обычном четырехтактном двигателе остается нерешенной одна проблема. Разные такты лучше работают в определенных температурных диапазонах. Поэтому ученые решили разделить двигатель на два отсека и поставить между ними радиатор. Работа мотора будет происходить по следующей схеме. В холодных цилиндрах будет происходить впуск топливной смеси и ее сжатие. Таким образом достигается максимальная эффективность в холодных условиях. Процесс сгорания и выхлоп газов происходит в горячих цилиндрах. Предположительно данная технология обеспечит экономию топлива в пределах 20%. Ученые планируют доработать данный вид мотора и добиться 50%-ной экономии.

Мотор Skyactiv-G от Mazda

Японская компания Мазда всегда стремилась создавать инновационные двигатели. Например, некоторые серийные автомобили оснащаются роторными силовыми агрегатами. Теперь конструкторы автоконцерна основательно занялись экономией топлива. Уже в следующем году планируется выпустить автомобиль с двигателем Skyactiv-G. Он будет первой моделью из семейства Skyactiv. На малолитражной версии Mazda2 будет устанавливаться спортивный двигатель Skyactiv-G объемом 1,3 л. Распределять крутящий момент будет вариаторная коробка передач. Силовая установка отличается высокой степенью сжатия, благодаря чему достигается экономия топлива в пределах 15%. Разработчики утверждают, что средний расход бензина составит около 3л/100 км.

Оппозитный двигатель EcoMotors OPOC

Оппозитными моторами комплектовали свои машины разные автопроизводители. Данная конструкция не лишена изъянов, над которыми инженеры продолжают работать. Как известно, в оппозитном двигателе цилиндры расположены горизонтально, и поршни перемещаются в противоположных направлениях. Конструкторы EcoMotors разместили в каждом цилиндре по два поршня, которые направлены друг к другу. Коленчатый вал находится между цилиндрами, а для перемещения поршней в одном цилиндре используются шатуны разной длины. Такое расположение поршневой группы позволило снизить вес двигателя, так как не требуются массивные головки блока цилиндров. Существенно меньше и ход поршней в оппозитном агрегате, чем в традиционном бензиновом моторе. По мнению инженеров EcoMotors, автомобиль с двигателем OPOC должен потреблять около 2 л бензина на 100 км пути.

Силовой агрегат Pinnacle

Еще одна перспективная разработка сделана на базе оппозитного двигателя. В моторе Pinnacle два поршня двигаются навстречу друг другу, находясь в одном цилиндре. Между ними и происходит воспламенение топливной смеси. Двигатель имеет два коленчатых вала и одинаковой длины шатуны. Данная конструкция позволяет получить колоссальную экономию энергии при низкой себестоимости силового агрегата. Предполагается, что эффективность бензинового двигателя удастся увеличить на 50%. По всей планете ученые ищут новые подходы к созданию мощных, экономных и экологичных моделей ДВС. Отдельные разработки выглядят достаточно перспективно, у других будущее не такое безоблачное. Однако только время рассудит, кто будет купаться во славе, а чьи разработки попадут на пыльные полки архива.

Перспективы развития двигателей внутреннего сгорания

Эра двигателей внутреннего сгорания (ДВС) еще далека от заката — такого мнения придерживается достаточно большое количество и специалистов, и простых автолюбителей. И для такого утверждения у них есть все основания. По большому счету, существует только две серьезных претензии к ДВС — прожорливость и вредный выхлоп. Запасы нефти не безграничны, а автомобили являются одними из основных ее потребителей. Выхлопные газы отравляют природу и людей и, накапливаясь в атмосфере, создают парниковый эффект. Парниковый эффект приводит к изменению климата и далее к другим экологическим бедам. Но не будем отвлекаться.С обоими недостатками конструкторы и инженеры за последние десятилетия научились весьма эффективно бороться, доказав, что у ДВС есть еще неиспользованные резервы для развития и совершенствования.

Содержание статьи

Снижение расхода топлива

Существенное снижения расхода топлива было достигнуто благодаря внедрению в конструкцию ряда технических новшеств. Первым шагом стал переход от карбюраторных двигателей к впрысковым. Современные системы впрыска обеспечивают подачу топлива в цилиндры под высоким давлением, в результате чего происходит его тонкое распыление и хорошее смешивание с воздухом. В ходе такта сжатия топливо впрыскивается в камеру сгорания точно дозированными порциями до 5-7 раз. Использование наддува, увеличение числа клапанов, повышение степени сжатия также позволили более полно сжигать рабочую смесь. Оптимизация формы камеры сгорания, днища поршней, применение систем с регулируемыми фазами газораспределения способствовали улучшению процессов смесеобразования. В результате двигатель может работать на более бедных смесях, экономя топливо и снижая выброс вредных веществ.

Широко применяется в современных автомобилях система старт-стоп, дающая заметную экономию топлива в городском режиме движения. Эта система автоматически выключает двигатель при остановке автомобиля. Запуск производится при нажатии на педаль сцепления (в автомобилях с механической коробкой передач) или при отпускании педали тормоза (в автомобилях с автоматической коробкой).

Система рекуперации энергии торможения, впервые появившаяся на гибридных автомобилях, постепенно перекочевала и на обычные. Кинетическая энергия замедляющегося автомобиля, которая раньше растрачивалась на нагрев деталей тормозной системы, сейчас преобразуется в электрическую и используется для подзарядки аккумулятора. Расход топлива снижается до 3%.

Важным обстоятельством является то, что улучшение технических характеристик двигателей происходит при неуклонном снижении их объема. Например, фольксвагеновский мотор 1,4 TSI, признанный лучшим двигателем 2010 года, при объеме 1390 куб.см развивает мощность до 178 л.с. То есть, с каждого литра снимается 127 л.с.! Удельный расход топлива за прошедшие 20-30 лет был снижен почти в два раза. А раз снижается потребление топлива, соответственно снижается и выброс вредных веществ, да и запасы нефти можно растянуть на больший срок.

Очистка выхлопных газов

Все вышеперечисленные меры снижают вредные выбросы, так сказать косвенно, за счет улучшения технических характеристик. Но есть ряд систем, назначение которых – непосредственно уменьшать количество вредных веществ в выхлопных газах.

Прежде всего это, конечно же, каталитический нейтрализатор и система рециркуляции выхлопных газов EGR. В нейтрализаторе вредные вещества, содержащиеся в выхлопных газах, вступают в химическую реакцию с веществами, нанесенными на его соты. В результате реакции вредные вещества разлагаются на безвредные составляющие.

Система EGR (Exhaust Gas Recirculation) имеет более «узкую» направленность. Она предназначена для снижения содержания оксидов азота в выхлопных газах на режимах прогрева и резкого ускорения, когда двигатель работает на обогащенной смеси. Принцип работы системы состоит в перенаправлении части выхлопных газов обратно в цилиндры. Это вызывает снижение температуры горения и, соответственно, концентрации оксидов азота.

При работе двигателя не все выхлопные газы попадают в выпускную систему. Часть их прорывается в картер. Для предотвращения попадания в атмосферу используется система вентиляции картера. Пары бензина так же, как и выхлопные газы, содержат вредные для человека вещества. Поэтому на автомобилях устанавливается система поглощения паров бензина.

Все вышеперечисленные системы универсальны, то есть используются как на бензиновых моторах, так и на дизельных. Однако выхлопные газы дизеля отличаются повышенной концентрацией оксидов азота и сажи. Поэтому в выпускной системе дизелей дополнительно устанавливается сажевый фильтр. В некоторых конструкциях может использоваться

система SCR (Selective catalytic reduction) или, в вольном русском переводе, впрыск мочевины. Принцип работы: водный раствор мочевины впрыскивается в выхлопную систему перед катализатором. В результате химической реакции почти половина высокотоксичных оксидов азота превращается в обычный безвредный азот.

К слову говоря, успехи в совершенствовании дизельных моторов впечатляют. Не будем далеко ходить за примерами. Взгляните на таблицу: в ней представлены победители двух самых престижных мировых наград World Green Car of the Year (Зеленый автомобиль года в мире) и Green Car of the Year (Зеленый автомобиль года).

ГодWorld Green Car of the YearGreen Car of the Year
2006Honda Civic Hybrid (гибрид)Mercury Mariner Hybrid (гибрид)
2007Mercedes-Benz E320 Bluetec (дизель)Toyota Camry Hybrid (гибрид)
2008BMW 118d with Efficient Dynamics (дизель)Chevrolet Tahoe Hybrid (гибрид)
2009Honda FCX (топливные элементы)Volkswagen Jetta TDI Clean Diese (дизель)
2010Volkswagen Polo BlueMotion (дизель)Audi A3 TDI Clean Diesel (дизель)
2011Chevrolet Volt (гибрид)Chevrolet Volt (гибрид)
2012Mercedes S250 CDI BlueEfficiency (дизель)Honda Civic Natural Gas (газ)
2013Tesla Model S (электромобиль)Ford Fusion (бензин EcoBoost)
2014BMW i3 (электромобиль)Honda Accord (бензин, гибрид)

Видите? В одном конкурсе четыре раза побеждали дизели, в другом – дважды.

Перспективы ДВС

Суммируя сказанное можно утверждать, что в ближайшие десятилетия мы будем сосуществовать с двигателями внутреннего сгорания. Для этого есть весомые технические и экономические причины. Отлаженность технологии производства ДВС обеспечивает их сравнительно низкую стоимость. Совершенствование рабочего процесса позволило получить высокие характеристики и снизить вредные выбросы.

Рост продаж «зеленых» автомобилей во многом стимулирован правительственной поддержкой. Как только государство свертывает программу скидок на экологичные автомобили, спрос на них стремительно падает.

Многочисленные попытки создать достойную альтернативу ДВС пока не увенчались успехом. Если же даже принципиально новый двигатель вскоре появится, то для его внедрения в серийное производство понадобятся громадные капиталовложения и длительный промежуток времени.

Что выбрать: бензин или дизель?

Что выбрать: бензин или дизель?Этот вопрос вызывает нескончаемые споры в среде автомобилистов. В помощь им специалисты Bosch разработали наглядную схему, демонстрирующую преимущества обеих типов ДВС и условия, при которых тот или иной из них предпочтительнее.

Дизельный автомобиль потребляет до 25% меньше топлива и меньше загрязняет окружающую среду, зато бензиновый имеет меньшую стоимость, его страхование и эксплуатация обходятся дешевле. Однако если годовой пробег превышает 15000 километров, покупать дизель выгоднее.

Выбор подходящего типа двигателя зависит также от класса автомобиля. Современные бензиновые силовые агрегаты весьма эффективны в компактных автомобилях, а нынешние дизеля позволяют достигать низкого расхода топлива и дают удовольствие от вождения в больших универсалах. Бензиновые моторы обеспечивают завидную приемистость и динамику «горячим» спортивным автомобилям, а высокий крутящий момент дизелей как нельзя кстати подходит большим внедорожникам.

Топ-10 наиболее перспективных автомобильных разработок

Вот какие автомобильные разработки наиболее перспективны для будущего

Это рейтинг достижений, с которыми связывают будущее мирового автомобилестроения. Они появились в результате конкурентной борьбы между производителями, которые стремятся улучшить абсолютно все — от двигателя до мельчайших элементов подвески. Итак, что в скором времени ждет автолюбителей, какими нововведениями их порадуют конструкторы и другие специалисты, работающие над совершенствованием «железных коней»?

 

Цифровое улучшение амортизаторов

Производитель автомобильного оборудования Tenneco хочет внедрить адаптивное демпфирование для массового производства. Это новая доступная система регулируемых клапанов. Блок DRiV использует соленоиды для управления потоком жидкости через три порта с разными диаметрами. Открытие и закрытие клапанов в разных комбинациях создает восемь различных профилей демпфирования, а быстрое переключение между этими кривыми имитирует работу более дорогих непрерывно регулируемых клапанов, которые являются общими для адаптивных амортизаторов.

 

Tenneco также снижает потребность в дорогостоящих компьютерах и датчиках движения, устанавливая схемы управления и акселерометры на самом демпфере. Эти устройства получили название DRiV и могут устанавливаться на амортизаторах для любых автомобилей.

 

Но Tenneco позиционирует их как решение для пикапов, где адаптивное демпфирование поможет эффективно снизить нагрузку при движении по пересеченной местности или транспортировке грузов.

 

Новая динамика

Благодаря своему первопроходцу Hypercar Mercedes-AMG немецкий бренд ускоряет революцию в сфере топливных технологий. Это двигатель-теплогенератор или MGU-H. Агрегат отличается компактными размерами, работает по принципу электропривода и является одной из самых передовых технологий.

 

Компрессор и турбина установленные на 1,6-литровый мотор V-6 и разделяются относительно длинным валом. Он удваивается как ротор для MGU-H в турбине Oreo. При этом крутящий момент двигателя не попадает на колеса, но его 107 л.с. уменьшают отставание, вращая турбину, когда энергии индукции самой по себе недостаточно. Эта технология навсегда изменит динамику уличных автомобилей.

 

Давление и глубина протектора под контролем

В мире, где большинство приборов способны работать в автономном режиме, автомобильные шины не должны оставаться кордом со слоями резины. Информационная система электронной шины Continental eTIS использует датчик, прикрепленный непосредственно к шине для измерения температуры, нагрузки и глубины протектора, а также давления. Как и система контроля моторного масла, eTIS может предупредить водителя о необходимости замены шины. Это сообщение зависит не от пробега, а от фактического состояния резины.

 

Адаптивная технология фар

Фары, обеспечивающие максимальную видимость водителю и 100-процентную интенсивность дальнего света без ослепления встречных водителей – следующий этап в развитии автомобильной оптики. Эта технология известна как адаптивные управляемые световые линии, а последняя ее версия установлена в Audi A8 2018, которая поступит в продажу этой весной в Европе и появится осенью в США.

 

Матричные светодиодные фары HD (Audi называет свою систему ADB) используют 32 светодиода, расположенных в два ряда. Выключив отдельные осветительные элементы или затемнив их, можно создать миллионы световых режимов. Габариты позволяют Audi создавать поворотный эффект без движущихся частей и использовать навигационную систему для прогнозирования схемы затемнения, отключения ламп при возникновении препятствий впереди.

 

Всего несколько автопроизводителей выпускают подобные системы освещения. Но функционеры ассоциаций и законодатели уже ведут работу на тем, чтобы превратить адаптивные фары в эффективное оборудование, которое будет использоваться массово.

 

Сжатие вместо искры

Кажется, что Mazda выиграла гонку десятилетия в сфере технологий детонации топлива. Японский производитель использует сжатие, похожее на дизельный двигатель, а не на искру. Компания заявляет, что к 2019 году будет продана машина, использующая эту технологию экономии топлива.

 

Существует одна оговорка – Skyactiv-X (так Mazda называет этот двигатель) все-таки полагается на искру для управления воспламенением от сжатия. Небольшая доза газа, впрыскиваемого во впускное отверстие в начале такта создает однородную смесь воздух/ топливо по всему цилиндру. Но она слишком обеднена, чтобы воспламениться исключительно при сжатии. Когда поршень приближается к верхней мертвой точке, подключается инжектор и свеча зажигания почти сразу воспламеняет этот богатый топливом карман. Повышение давления, создаваемое тут, затем приводит к сжиганию обедненной смеси во всей камере сгорания.

 

Mazda использует этот метод при низких и средних нагрузках с соотношением воздух-топливо примерно 30,0:1. Обычные газовые агрегаты используют значительно больше топлива с коэффициентами ниже – 15,0:1. При высоких нагрузках Skyactiv-X работает как обычный двигатель с искровым зажиганием. Оснащенный нагнетателем, 2.0-литровый японский мотор выдает мощность около 190 л.с., а Mazda обещает 30-процентное улучшение топливной эффективности у такого двигателя.

 

Долой пыль из оксида железа

На торцовочные тормоза Porsche устанавливают обычные железные роторы с 0,004-дюймовым слоем карбида вольфрама. Это делается для предотвращения образования пыли из оксида железа, которая часто покрывает колеса и суппорты мощных автомобилей. Покрытие также дает дискам полированную, блестящую отделку, чтобы помочь оправдать премиумный статус Porsche.

 

По словам конструкторов известного бренда, сверхсекретная система PSCB значительно сократит тормозной путь автомобиля независимо от скорости и будет эксплуатироваться до 30% дольше. Эта технология дебютирует на Cayenne 2019 года. Системы PSCB будут оснащены белыми суппортами, чтобы показать их чистоту.

 

Высокое напряжение

По подсчетам экспертов, одна заправка автомобиля бензином в среднем занимает 3 минуты и 33 секунды. EV-драйверы подключаются к быстродействующим станциям постоянного тока в среднем в течение 22 минут и по-прежнему забирают значительно больше времени для зарядки, чем автомобиль с двигателем внутреннего сгорания.

 

Porsche лидирует в сегменте электроприводов, имея агрегат мощностью 350-кВт. Это более чем вдвое выше по сравнению с установкой Tesla в 120 кВт, имеющейся на Superchargers. Простое увеличение силы тока для поддержки 350-киловаттной станции на современном 400-вольтовом оборудовании потребует громоздких кабелей с жидкостным охлаждением, поэтому Porsche предлагает вместо этого просто удвоить напряжение.

 

Это требует крупномасштабной переработки практически всей бортовой электроники, но решает проблему применения толстых кабелей. Это также приводит к неожиданному побочному эффекту – устранению около 37 килограмм электропроводки и электроники. Полная зарядка по-прежнему будет занимать минуты, но 450 ампер на 800 вольт могут выдавать 90 киловатт-часов, которых хватит на 360 километров.

 

Следующий этап развития батарей

Замена жидкого или гелевого электролита литиево-ионной батареи кристаллическим твердым аналогом может удвоить энергоемкость, улучшить долговечность и устранить неполадки, которые могут превратить электромобиль в огненный шар. Такие твердотельные батареи являются наиболее перспективным преемником современных аккумуляторов EV. В то время как большинство экспертов говорят, что технология далека от производства, Toyota утверждает, что она начнет внедрять твердотельные батареи в массовое производство с начала 2020-х годов.

 

Водяная дисперсия и тепловой предел

По мере того, как автопроизводители повышают эффективность мощных двигателей, они все ближе подходят к тепловым пределам, когда топливо взрывается с катастрофическим выбросом энергии. Система WaterBoost от Bosch охлаждает всасывающий заряд, распыляя мелкий туман воды во впускные отверстия во время высокоскоростного режима езды.

 

BMW использует нагнетание воды в M4 GTS для увеличения мощности с 444 лошадиных сил до 493, а новейший Porsche 911 GT2 RS выдает 700 л.с. с помощью впрыска воды. Технология также увеличивает эффективность двигателя и снижает вредные выбросы.

 

Проветривание

Изменение пути воздуха, а не настройка форм, с которыми он взаимодействует, является приближающейся границей предельных возможностей в активной аэродинамике. Хотя несколько автомобилей в настоящее время используют этот трюк, Lamborghini Huracán Performante делает это наиболее элегантно.

 

Втягивание воздуха в стойки, поддерживающие заднее крыло автомобиля, а затем выброс его через вентиляционные отверстия, встроенные в нижнюю часть полого крыла, уменьшает сопротивление и прижимную силу. Когда требуется увеличить последнее, воздушный поток в стойке блокируется, что позволяет крылу функционировать традиционно. Кроме того, внутреннее его пространство разделено на две части, так что появляется возможность создавать большую прижимную силу с одной стороны, помогая Lambo Junior плавно входить в повороты.

 

Автор: Сергей Василенков

Перспектива применения электродвигателей в автомобилях



В статье проведен анализ основных направлений применения электродвигателей в автомобилестроении в качестве силовых агрегатов. Выделены наиболее перспективные направления.

Проблема замены энергии углеводородов в силовых агрегатах автомобиля и не только является одной из основных в современном мире. Предпосылок для этого существует множество- истощение ресурсов на планете, сложная экологическая обстановка, выделение большого количества вредных выбросов двигателя внутреннего сгорания и т. д. На рынке в последнее время появилось большое количество альтернативных двигателю внутреннего сгорания силовых установок. Одним из основных конкурентов углеводородам на данный момент является применение электроэнергии. [1,2,3,4]

У электрических агрегатов есть ряд несомненных преимуществ: высокий коэффициент полезного действия — до 95 процентов, компактность, малый вес, простота использования, экологичность, долговечность, создается максимальный показатель крутящего момента на любой отметке скорости, воздушное охлаждение, способны функционировать в режиме генератора, не нужна коробка передач, возможность регенерации энергии торможения и т. д. Существенных недостатков у электродвигателя нет. Основной проблемой является питание агрегата, что тормозит распространение и широкое использование технологии. [2,3]

Электрoдвигателем является устройство, преобразующее электроэнергию в механическую. Принцип работы электродвигателя основывается на явлении электромагнитной индукции. Электродвигатель включает в себя статор и ротор (рисунок 1). Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

Электродвигатели, применяемые в электромобилях, можно условно классифицировать по типу тока:

‒ устройства переменного тока;

‒ устройства постоянного тока;

‒ решения универсального образца (способны функционировать от постоянного и переменного тока).

Устройства переменного тока делятся на группы:

‒ асинхронные — скорость вращения магнитного поля статора выше скорости вращения ротора;

‒ синхронные — частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Еще электродвигатели классифицируют по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

‒ Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.

‒ Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

От электродвигателей, применяемых на производствах, автомобильный агрегат отличается малыми габаритами и повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

устройство электродвигателя

Рис. 1. Устройство электродвигателя электромобиля

История электромобиля насчитывает более полутора веков. Есть данные, что транспортные средства, приводимые в движение электрическим мотором, были разработаны и созданы раньше машин с двигателем внутреннего сгорания. Первые модели электромобилей были собраны в 1830–40-х годах. Пионерами электромобилестроения принято считать британцев Роберта Андерсена, Роберта Дэвидсона и американца Томаса Давенпорта. Конструкции их разработок были довольно неуклюжими и ненадёжными агрегатами. Скорость перемещения была небольшой. Их вполне мог обогнать пешеход, идущий неспешным шагом. [1]

Период конеца XIX века — начала XX века вполне можно назвать бумом электромобилестроения. Производство электромобилей было налажено в Европе и в США. В Соединённых Штатах Выпуск электромобилей к началу XX века достиг 10 тысяч экземпляров, а их количество в несколько раз превышало количество автомобилей с двигателем внутреннего сгорания. Характеристики электромобилей на рубеже XIX-XX веков были на то время впечатляющими.

В 1899 году электромобиль (рисунок 2) бельгийца Камиля Женатци под названием La Jamais Contente сумел преодолеть рубеж 100 км/ч. Машина имела обтекаемый корпус из сплава алюминия и вольфрама. Внешний вид напоминал торпеду, установленную на шасси. Кузов электромобиля был открытым. Он оснащался двумя электродвигателями и имел массу около 1 тонны. Электромобиль достиг скорости 105, 88 км/ч. [1]

В XX столетии электромобиль постепенно уступил позиции традиционному автомобилю. Одной из основных причин была недостаточно большая ёмкость аккумуляторов. Ввиду этого запас хода был не слишком велик. Производство автомобилей с двигателями внутреннего сгорания постоянно расширялось и обходилось всё дешевле. В связи с этим они получали всё большее распространение.

Гоночный электромобиль La Jamais Contente, 1899 г.

Рис. 2. Гоночный электромобиль La Jamais Contente, 1899 г.

В литературе и других источниках информации существует большое количество данных по электромобилям. Однако эти данные разрознены и нет четкой классификации.

В современном электромобилестроении выделилось два направления развития — это непосредственно электромобили и гибридные агрегаты. Причем поизводство гибридных авто на рынке занимает лидирующие позиции. Гибридные агрегаты представляют собой комбинированный агрегат, в котором совмещены двигатель внутреннего сгорания и электродвигатель, где электродвигатель применяется как дополнительный элемент.

Применение гибридных автомобилей такие преимущества как экологичность и экономичность, которая достигается за счет снижения расхода топлива. На данный момент минимальный расход гибридного авто достигает менее 3-х литров на 100 км пути, когда минимальное потребление автомобилей только с двигателем внутреннего сгорания 4–5 литров на 100 км пути. Помимо этого, применение гибридного авто позволяет адаптировать серийные автотранспортные средства и вести разработку новых моделей.

Выделены следующие основные гибридные системы:

  1. Интегрированное содействие мотору,
  2. Интегрированный генератор стартера. Система, как и предыдущая, позволяет начинать движение машине, только в этом случае используется меньший электродвигатель.
  3. Система остановки/старта двигателя. Происходит отключение мотора, когда его мощность не используется, а затем он запускается моментально, как только это необходимо.

Анализ литературы показал, что различают также следующие виды гибридных приводов (рисунок 3):

  1. Параллельный. В этом случае батареи передают энергию электродвигателю, а бак — топливо для ДВС. Оба агрегата способны создать условия для перемещения транспортного средства.
  2. Последовательный. ДВС поворачивает генератор, который может или завести электродвигатель, или зарядить аккумуляторы.
  3. Последовательно-параллельная. ДВС, электродвигатель и генератор соединены с колёсами через планетарный редуктор.

Основная масса существующих на данный момент гибридных автомобилей относятся к параллельным.

Гибридная система существенно снижает уровень выводимых газов и увеличивает продуктивность расхода топлива, что особо актуально в условиях крупного населенного пункта. А регенеративная система аккумулирует энергию.

типы гибридных автомобилей

Рис. 3. Виды гибридных приводов.

При использовании гибридных схем не нужно специально подзаряжать аккумуляторную батарею, это происходит при работе автомобиля, увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Рынок электромобилей и гибридных авто насыщен различными конструкциями и вариантами исполнения электрического привода. Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

На гибридных автомобилях Volt от Chevrolet в качестве электропривода применяется трехфазный асинхронный двигатель (рисунок 4). Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi, который является исключительно электрическим. Конструкциях электромобилей зачастую включают в себя коллекторные моторы. Однако в автомобиле «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. Его КПД составляет 92 %, а масса 3,6 кг. Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса — 11 кг. [2]

устройство электродвигателя шевроле вольт

Рис. 4. Электродвигатель гибрида Chevrolet Volt

мотор-колесо

Рис. 5. Система мотор-колесо

Главными составляющими электромобиля являются электродвигатель, питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора, упрощенная трансмиссия, инвертор, зарядное устройство на борту, электронная система управления элементами конструкции, преобразователь.

Питание мотора в этой схеме организовывает тяговая аккумуляторная батарея. Аккумуляторы в основном используются литий-ионного типа, которые включают в себя несколько последовательно подключенных модулей. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В.

Таким образом рынок транспортных средств постепенно поворачивается в сторону использования в качестве силовой установки электропривода, который обладает несомненными преимуществами по сравнению с двигателей внутреннего сгорания. Существуют два вида реализации электропривода транспортных средствах- электромобиль и гибридное авто. Пока основным направлением разработок автопроизводителей является применение гибридных автомобилей. Это обусловлено минимальными расходами при производстве, т. к. позволяет адаптировать серийные автотранспортные средства и вести разработку новых моделей. Применения электромобилей ограничено по ряду технологических и эксплуатационных причин, в частности отсутствие развитой инфраструктуры обслуживания, высокая себестоимость и малый запас хода на одном заряде. Одним из важных факторов, притормаживающий прогресс, является психология человека. Трудно переубедить автомобилистов пересесть с бензиновых и дизельных автомобилей на электрические. Это особенно сложно сделать тем, кто занимается автогонками или является любителем динамичной езды.

Литература:

  1. История электромобиля // drive2. URL:https://www.drive2.ru/b/288230376152252121/ (дата обращения: 15.05.2016).
  2. Устройство и эксплуатация автомобиля // autoleek. URL: http:// autoleek.ru /dvigatel/ jelektricheskij-dvigatel/ustrojstvo-jelektromobilja.html (дата обращения: 15.05.2016).
  3. Карамян О. Ю., Чебанов К. А., Соловьева Ж. А. ЭЛЕКТРОМОБИЛЬ И ПЕРСПЕКТИВЫ ЕГО РАЗВИТИЯ // Фундаментальные исследования. — 2015. — № 12–4. — С. 693–696;
  4. Зарядные станции «ЭМИ» // URL: http://e-m-i.ru/index.php/zaryadnyestantsii-i-uslugi/zaryadnye-stantsii-peremennogo-toka-emi
  5. CHAdeMO technological strengths, 2012, no. 154 // URL: http://www.chademo.com/wp/
  6. Всероссийская программа развития зарядной инфраструктуры для электротранспорта. Концепция создания Коммерческого оператора сети ЭЗС. М.: РОССЕТИ, 2015. 16 с. // URL: http://www.rosseti.ru/investment/electrocar/ (дата обращения: 15.05.2016).

Основные термины (генерируются автоматически): внутреннее сгорание, электродвигатель, электромобиль, двигатель, автомобиль, переменный ток, щеточно-коллекторный узел, магнитное поле статора, XIX-XX, возможность регенерации энергии торможения.

Перспективы развития двигателей внутреннего сгорания. Перспективные силовые агрегаты автомобилей


Перспективы двигателей внутреннего сгорания

В последнее время появилось много новых разработок, которые направлены на совершенствование традиционных моторов. Некоторые их них находятся уже на стадии внедрения, другие новинки имеются только в виде опытных образцов. Однако пройдет немного времени и часть этих инноваций будут реализованы в новых машинах.

Лазеры вместо свечей зажигания

Еще недавно лазеры считались фантастическими приборами, о которых обычные люди узнавали из фильмов о марсианах. Но уже сегодня имеются разработки, направленные на замену привычных свечей зажигания лазерными устройствами. Традиционные свечи имеют один недостаток. Они не дают мощной искры, которая способна поджечь топливную смесь с большим количеством воздуха и малой концентрацией топлива. Повышение мощности приводило к быстрому износу электродов. Очень перспективно выглядит применение лазеров для воспламенения обедненной топливной смеси. Среди преимуществ лазерных свеч следует отметить возможность регулировки мощности и угла зажигания. Это позволит сразу не только повысить мощность двигателя, но сделать процесс сгорания более эффективным. Первые керамические лазерные приборы разработали инженеры в Японии. Они имеют диаметр 9 мм, что подходит для целого ряда автомобильных моторов. Новинка не потребует существенной доработки силовых агрегатов.
Инновационные роторные двигатели
В ближайшем будущем из бензиновых двигателей могут пропасть поршни, распредвалы, клапаны. Ученые Мичиганского университета работают над созданием принципиально новой конструкции автомобильного мотора. Силовой агрегат будет получать энергию под действием взрывных волн, поддерживающих движение. Одной из основных деталей новой установки является ротор, в корпусе которого имеются радиальные каналы. При быстром вращении ротора топливная смесь проходит по каналам и мгновенно заполняет свободные отсеки. Конструкция позволяет заблокировать выходные порты, и горючая смесь не вытекает во время сжатия. Так как топливо попадает в отсеки очень быстро, происходит образование ударной волны. Она проталкивает порцию топливной смеси в центр, где происходит воспламенение, а затем и выхлоп отработанных газов. Благодаря такому оригинальному решению исследователям удалось сократить потребление топлива на 60%. Снизилась и масса мотора, что привело к созданию легкого автомобиля (400 кг). Достоинством нового мотора будет и малое количество трущихся деталей, поэтому ресурс двигателя должен увеличиться.
Разработка Scuderi
Сотрудники компании Scuderi подготовили свою версию двигателя будущего. Он имеет два типа поршневых цилиндров, что позволяет более эффективно использовать образующуюся энергию. Уникальность разработки заключается в соединении двух цилиндров при помощи перепускного канала. В результате один из поршней создает компрессию, а во втором цилиндре происходит воспламенение топливной смеси и выброс газов. Такой способ позволяет использовать экономнее выработанную энергию. Компьютерные модели показывают, что расход топлива в двигателе Scuderi будет меньше на 50%, чем у традиционных ДВС.
Двигатель с тепловым разделением
Повысить КПД двигателя Scuderi удалось благодаря тепловому разделению мотора на 2 части. В обычном четырехтактном двигателе остается нерешенной одна проблема. Разные такты лучше работают в определенных температурных диапазонах. Поэтому ученые решили разделить двигатель на два отсека и поставить между ними радиатор. Работа мотора будет происходить по следующей схеме. В холодных цилиндрах будет происходить впуск топливной смеси и ее сжатие. Таким образом достигается максимальная эффективность в холодных условиях. Процесс сгорания и выхлоп газов происходит в горячих цилиндрах. Предположительно данная технология обеспечит экономию топлива в пределах 20%. Ученые планируют доработать данный вид мотора и добиться 50%-ной экономии.
Мотор Skyactiv-G от Mazda
Японская компания Мазда всегда стремилась создавать инновационные двигатели. Например, некоторые серийные автомобили оснащаются роторными силовыми агрегатами. Теперь конструкторы автоконцерна основательно занялись экономией топлива. Уже в следующем году планируется выпустить автомобиль с двигателем Skyactiv-G. Он будет первой моделью из семейства Skyactiv. На малолитражной версии Mazda2 будет устанавливаться спортивный двигатель Skyactiv-G объемом 1,3 л. Распределять крутящий момент будет вариаторная коробка передач. Силовая установка отличается высокой степенью сжатия, благодаря чему достигается экономия топлива в пределах 15%. Разработчики утверждают, что средний расход бензина составит около 3л/100 км.
Оппозитный двигатель EcoMotors OPOC
Оппозитными моторами комплектовали свои машины разные автопроизводители. Данная конструкция не лишена изъянов, над которыми инженеры продолжают работать. Как известно, в оппозитном двигателе цилиндры расположены горизонтально, и поршни перемещаются в противоположных направлениях. Конструкторы EcoMotors разместили в каждом цилиндре по два поршня, которые направлены друг к другу. Коленчатый вал находится между цилиндрами, а для перемещения поршней в одном цилиндре используются шатуны разной длины. Такое расположение поршневой группы позволило снизить вес двигателя, так как не требуются массивные головки блока цилиндров. Существенно меньше и ход поршней в оппозитном агрегате, чем в традиционном бензиновом моторе. По мнению инженеров EcoMotors, автомобиль с двигателем OPOC должен потреблять около 2 л бензина на 100 км пути.
Силовой агрегат Pinnacle
Еще одна перспективная разработка сделана на базе оппозитного двигателя. В моторе Pinnacle два поршня двигаются навстречу друг другу, находясь в одном цилиндре. Между ним

Альтернативные силовые установки для транспортных средств

Двигатели внутреннего сгорания (ДВС) уже почти 200 лет служат человечеству. Однако их широкое использование оборачивается целым рядом экологических и ресурсных проблем. 26% всех выбросов антропогенных парниковых газов вызваны сжиганием ископаемого топлива. При этом более 90% топлива,  используемого для автомобилей, судов, локомотивов и самолетов, получено из нефти. При сгорании нефтепродуктов в атмосферу выделяются крайне вредные окись углерода, двуокись углерода, углеводороды, окислы азота и другие компоненты. Загрязнение воздуха выступает причиной каждой девятой смерти в мире и признано одним из крупнейших вызовов в области здравоохранения и окружающей среды. В ряде развитых стран принимаются активные меры по постепенному переводу транспорта с ДВС и расширению использования альтернативных источников топлива. Так, Германия приняла закон о запрете продажи новых автомобилей с ДВС с 2030 г. Страна планирует к 2050 г. сократить автомобильные выхлопы до нуля. Аналогичные инициативы обсуждаются в других странах ЕС, США, Индии.
Более активное использование современных альтернативных силовых установок позволит снизить объем вредных выбросов в атмосферу Земли, сократить расходы на содержание транспортных средств и увеличить их КПД. Разработка таких технологий даст возможность странам, испытывающим дефицит традиционного топлива, уменьшить свою энергетическую зависимость. Ниже рассмотрены перспективные технологии новых типов двигателей для автомобилей, работающих на альтернативном топливе: водородные и метанольные топливные элементы для электромобилей, а также двигатели внутреннего сгорания на диметиловом эфире.

Версия для печати: 

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ

Использование водорода в качестве топлива возможно в транпортных средствах как с ДВС, так и с водородными топивными элементами. Однако традиционные поршневые ДВС приспособить к работе на водороде и сложно, и дорого (стоимость эксплуатации и обслуживания такой водородной силовой установки примерно в 100 раз выше, чем у обычного двигателя внутреннего сгорания).

Альтернативные вариантом являются топливные элементы (ТЭ), преобразующие химическую энергию топлива в тепло и постоянный электрический ток, питающий электродвигатель или системы бортового питания транспортного средства. ТЭ представляет собой непрерывно перезаряжаемую батарею из двух покрытых катализатором электродов, между которыми находится электролит. Через один электрод подается водород, через другой — чистый кислород или кислород из воздуха, к которым постоянно добавляются химическое топливо и окислитель. Соединение водорода с кислородом обычно происходит внутри пористой полимерной мембраны. 
Водородные ТЭ намного более экологичны, эффективны (их КПД составляет 45%, современного автомобильного ДВС — 35%), надежны, способны работать при низких температурах, при этом менее габаритны. Они могут  применяться в качестве силовых установок в гибридных автомобилях, а в электромобилях — в качестве суперконденсаторов. 



 

Эффекты

  Экологичность: при сгорании водорода в двигателе образуется практически только вода

 Распределенное энергоснабжение: водород в виде неиспользованного электричестваможно применять для питания домашней электросети

 Возможное сокращение общего объема потребления нефти в секторе автомобильных перевозок на 40% к 2050 г.

Оценки рынка

70 тыс. в год 

к 2027 г. составит выпуск новых водородных автомобилей в мире 

Драйверы и барьеры

  Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др.)

 В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ

 Высокие затраты на выработку водорода: от $4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80)

 Отсутствие автомобильной инфраструктуры

 Сложность в эксплуатации: уязвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды

 Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ






Международные
научные публикации
Международные
патентные заявки

Уровень развития
технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



МЕТАНОЛЬНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Метанол — высококачественное моторное топливо для ДВС — хорошо зарекомендовал себя и как энергоноситель в ТЭ, используемых в портативной электронике, транспортных приложениях, а также в электромобилях. В ТЭ метанол расщепляется при взаимодействии с атмосферным кислородом (воздухом), в результате этой реакции возникает электрический ток и образуется вода в качестве побочного продукта. 

В настоящее время разрабатываются технологии получения метанола из природного газа (минуя синтез-газ) посредством гидрирования из промышленных выбросов углекислого газа (в долгосрочной перспективе его научатся извлекать прямо из окружающего воздуха). Также ведутся разработки по производству биометанола из биомассы (лигноцеллюлозы), что послужит толчком к массовому распространению метанольных ТЭ.  



 

Эффекты

  Сокращение выбросов углекислого газа более чем на 70% при расщеплении биометанола в ТЭ

  Электромобили нового типа могут проезжать до 800 км на одном заряде батареи с применением метанольных ТЭ

Оценки рынка

40 млн ед. 

к 2020 г. составит объем рынка автотранспортных средств, работающих на метанольных ТЭ (благодаря чему на 104 млн т будут сокращены выбросы углекислого газа по сравнению с объемом выбросов от автомобилей на бензиновом ДВС)

Драйверы и барьеры

 Экологичность: метанол менее биологически опасен, чем нефтепродукты

 Возможность использования существующей транспортной инфраструктуры для заправки транспортного средства

  Простота эксплуатации: в частности, метанол не улетучивается при транспортировке

 Возможно создание технологии производства биометанола в промышленных масштабах, что увеличит его использование в ТЭ

 Высокая себестоимость производства метанола с помощью существующих технологий

 Используемые в качестве катализаторов в ТЭ драгоценные металлы (платиноиды) значительно повышают рыночную стоимость установок и вырабатываемой ими энергии






Международные
научные публикации
Международные
патентные заявки

Уровень развития
технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



ДВИГАТЕЛИ НА ДИМЕТИЛОВОМ ЭФИРЕ 

Серьезным конкурентом традиционным видам ископаемого и синтетического топлива и основной альтернативой дизелю может стать диметиловый эфир (ДМЭ). В сравнении с дизельным топливом эфир лучше горит и более экологичен (не содержит серы, в течение суток полностью разлагается в атмосфере на воду и углекислый газ). Это в целом более чистое топливо, некоррозионноактивное, нетоксичное, не вызывает мутаций, в том числе канцерогенного характера. 

Сегодня ДМЭ производится из переработанного угля, природного газа, биомассы, бытовых и промышленных отходов. Также разрабатывается синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы. Преобразовать дизельный двигатель в ДМЭ-двигатель можно без больших затрат, что будет стимулировать массовое распространение технологии. 





 

Эффекты

    Значительное сокращение уровня вредных выбросов с отработавшими газами: оксидов азота в 3-4 раза, углеводородных соединений — в 3 раза, угарного газа — в 5 раз, при практически бездымной работе двигателя во всех режимах

 Повышение экономичности ДВС (до 5%) и его КПД по сравнению с работой на дизельном топливе

 Оптимизация расходов на производство и транспортировку топлива (сократятся в 10 раз относительно показателей сжиженного природного газа)

 Легкое преобразование ДМЭ в бензин, характеризующийся высокой стабильностью и повышенным экологическим качеством, минимальным содержанием нежелательных примесей (отсутствие серы, незначительное содержание бензола (0,1% при норме 1%), непредельных углеводородов (~1%))

 Создание дополнительных рабочих мест в добывающей промышленности благодаря развитию производства диметилового эфира из ископаемого сырья (природный газ, уголь) 

Оценки рынка

$9,7  млрд

к 2020 г. достигнет объем глобального рынка ДМЭ (среднегодовые темпы роста 16-19% в 2015-2020 гг.)

Драйверы и барьеры

 Ужесточение экологических стандартов

 Наличие соответствующей инфраструктуры: применение ДМЭ не требует серьезной конструкционной доработки дизельных двигателей и установки специальных фильтров. Использование ДМЭ на автомобилях с ДВС возможно даже при 30%-м его содержании в топливе без трансформации систем питания и зажигания двигателя.

 Масштабная сырьевая база: сырьем для производства ДМЭ является природный газ, доказанные запасы которого в России по состоянию на 2015 г. остаются крупнейшими в мире.

  Ряд нерешенных проблем с хранением ДМЭ

  Сравнительно высокая рыночная цена ДМЭ относительно других видов топлива

 При производстве ДМЭ затрачивается существенно больший объем сырьевого газа, чем для других топливных продуктов с эквивалентной теплотворной способностью

  При меньшей в 1,5 раза полноте сгорания по сравнению с дизельным топливом увеличивается расход ДМЭ в 1,5–1,6 раза

  ДМЭ является наркотическим галлюциногенным веществом






Международные
научные публикации
Международные
патентные заявки

Уровень развития
технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 


Перспективные направления развития конструкции автомобиля

Персональный легковой автомобиль в современном мире наиболее привлекателен для че- ловека как средство каждодневного транспорта, во-первых, по своим техническим возмож- ностям, во-вторых, из-за способности удовлетворить в наибольшей степени индивидуальные запросы каждого владельца.
Это привело к тому, что автомобиль стал самым массовым транспортным средством в мире, количество автомобилей увеличивается (в первую очередь легковых), и, видимо, эта тенденция сохранится и в ближайшем будущем.
Но массовая автомобилизация несет и негативные последствия: гибель и ранения людей на дорогах, загрязнение окружающей среды, снижение скорости перемещения из-за транспортных заторов, влияние на здоровье человека транспортного шума, увеличение площадей полезных земель, занятых автомобильными дорогами, стоянками и т. д.
В связи с этим конструкция автомобиля будет совершенствоваться в следующих направлениях:
1. Повышение безопасности автомобиля.
Установлено, что причинами большинства дорожно-транспортных происшествий являются ошибки водителей. Можно ожидать, что получат дальнейшее распространение системы, скорее всего, электронные, которые будут принимать на себя некоторые функции управления автомобилем или помощи водителю в критических режимах. Получат распространение общие информационные системы, имеющие связь с каждым автомобилем (системы телематики) и позволяющие осуществлять контроль за состоянием транспортной сети определенного региона и заранее предупреждать водителя о возникновении аварийных ситуаций, рекомендовать наиболее рациональные маршруты движения.
2. Уменьшение вредного воздействия на окружающую среду и снижение затрат энергии.
Получат дальнейшее развитие устройства, позволяющие снижать вредные выбросы традиционных двигателей внутреннего сгорания. Усилится борьба за экономию нефтяного топлива как с позиций снижения объемов его потребления, так и с позиции уменьшения объемов выбросов СО2. Увеличится доля автомобилей, работающих на альтернативных источниках энергии: природный газ, водород, биотопливо. Экономии энергии будет способствовать уменьшение собственной массы автомобиля, применение гибридных силовых установок. Ожидается, что общий расход энергии автомобилями за 10 лет уменьшится на 25%. Будет снижен транспортный шум автомобилей, в первую очередь за счет разработки и использования малошумных автомобилей.
3. Повышение привлекательности автомобиля для потребителя.
Данное направление охватывает широкий круг вопросов и связано со стремлением автопроизводителей создавать автомобили, наиболее полно отвечающие индивидуальным запросам конкретного человека. Можно ожидать снижение до 1,5 лет периодичности выпуска на рынок новых моделей, увеличение количества модификаций автомобиля, применение новых устройств, повышающих комфорт (систем поддержания необходимого климата в салоне, устройств автоматического управления агрегатами и т. д).
Особую роль будет играть широкое применение информационных систем, позволяющих водителю получать при движении объективную и полную информацию как о работе самого автомобиля (средства встроенной диагностики), так и различную информацию из глобальных информационных систем (системы телематики). Это сделает возможным более эффективно интегрировать автомобиль в общую транспортную систему, а водителя и пассажиров — в систему обмена информацией с другими людьми.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *