РазноеПростой блок питания с регулировкой напряжения и тока: Блок питания с регулировкой напряжения и тока своими руками 10а

Простой блок питания с регулировкой напряжения и тока: Блок питания с регулировкой напряжения и тока своими руками 10а

Содержание

Простой блок питания с регулировкой напряжения и тока. — Радиомастер инфо

Довольно распространенная схема такого блока питания выполнена на двух транзисторах, силовом p-n-p КТ818 и усилителе КТ815. Схема для начинающих и они часто задают вопрос, можно ли выполнить эту схему на более распространенном силовом n-p-n транзисторе. Сделать можно, результаты даже лучше, чем на КТ818. О том, как это сделать рассказано в этой статье.

Для начала приведу, базовую, назовем ее так, схему простого блока питания на силовом p-n-p транзисторе КТ818.

Схема простого блока питания состоит из понижающего трансформатора Tr1, двухполупериодного выпрямителя на четырех диодах 1N4007, конденсатора фильтра С1, резистора R1, ограничивающего ток стабилитрона VD1, регулятора напряжения R4, усилителя на Т2, силового транзистора Т1, цепи регулировки тока R5 с ограничителем R2, диода развязки тока базы Т2 и резистора, повышающего стабильность работы схемы при разных токах нагрузки R3.

Максимальное выходное напряжение определяется напряжением вторичной обмотки трансформатора, рабочим напряжением стабилитрона VD1, допустимым напряжением транзисторов Т1 и Т2.

Максимальный ток нагрузки определяется мощностью трансформатора Tr1, соответственно диаметром провода вторичной обмотки, током диодов выпрямителя, максимальным током К-Э транзистора Т1, его коэффициентом усиления и как следствие, его током базы и параметрами транзистора Т2, который должен увеличить малый ток от стабилитрона до необходимого значения тока базы силового транзистора Т1, иначе Т1 полностью не откроется и на выходе не будет увеличения напряжения и тока при повороте соответствующих регуляторов (R4, R5).

Учитывая изложенный выше принцип работы схемы, был изготовлен вариант на силовом транзисторе n-p-n по следующей схеме.

В качестве транзисторов были опробованы несколько вариантов:

Т1 – КТ819, КТ805, КТ829, КТ8109, КТ8101

Т2 – КТ814, КТ816, КТ973

Сочетания транзисторов использовались разные. Наилучшие результаты получены на транзисторах Т1 КТ805БМ и Т2 КТ814В1.

Вот как выглядят детали, примененные в этой схеме:

Диапазон регулировки напряжения и тока самый широкий, падение напряжения на силовом транзисторе Т1 самое низкое и соответственно его нагрев меньше.

Что еще важно учитывать при изготовлении этой, и других подобных схем линейных стабилизаторов.

  1. Так как все лишнее напряжение падает на силовом транзисторе Т1, он греется. Больше всего он греется при больших тока и низких напряжениях на выходе. Например, при входном напряжении 16В, выходном 5В и токе 2А на транзисторе Т1 будет падать напряжение 11В. При токе 2А мощность, рассеиваемая на этом транзисторе будет равна 2А х 11В = 22Вт. При приблизительной оценке площади радиатора для Т1 получаем значение более 400 см кв. Это пластина 20х20 см или ребристый радиатор с такой же площадью охлаждения.

  1. Это понижает КПД устройства и делает его применение невыгодным при больших мощностях. Самый простой выход для повышения КПД, подобрать трансформатор с отводами на вторичной обмотке и поставить переключатель. В таком случае при нужном напряжении на выходе 5В на входе можно установить 7В. В этом случае, при том же токе 2А, на транзисторе Т1 будет рассеиваться мощность 4Вт. Это более чем в 4 раза меньше, чем в предыдущем случае.
  2. Схема простого блока питания не имеет эффективной защиты от короткого замыкания в нагрузке и при неблагоприятных ситуациях (большом токе и нагретом Т1) силовой транзистор Т1 может выйти из строя.
  3. Вывод. Данная схема удобна при использовании для токов в нагрузке до 1А. Наиболее рациональным в этом случае является изготовление металлического корпуса для блока питания и использования его в качестве радиатора для транзистора Т1. Главное достоинство – простота, отсутствие дефицитных деталей, а также плавная регулировка напряжения и тока делает схему привлекательной.

Материал статьи продублирован на видео:

 


Адрес администрации сайта: [email protected]
   

 

Как сделать лабораторный источник питания своими руками

Подборка рекомендаций и ссылок по сборке лабораторного источника питания (ЛБП) своими собственными руками из доступных комплектующих. Вариантов сделать для себя точный блок питания с регулировкой множество — начиная от простых и бюджетных, заканчивая серьезными устройствами с мощной стабилизацией, связью с компьютером и удаленным программированием. 

 

Программируемые и управляемые модули для ЛБП

Простой способ собрать для себя лабораторный источник питания — это взять управляемый модуль-преобразователь со стабилизацией питания. Одни из самых мощных на Алиэкспресс — это модули RD DPS5015 и DPS5020, с выходными токами 15 и 20 Ампер соответственно. Для удаленного управления выбирайте версии «С» — communication для работы через USB/Bluetooth/Wi-Fi. Модули RD DPH5005 имеют встроенный Buck Boost конвертер для повышения напряжения (можно питать 12/24 вольта и получить на выходе, 30-40-50В. Один из самых продвинутых программируемых преобразователей питания — это модель RD 6006 (подробный обзор). Предыдущий список модулей с интересными вариантами.

Компактные преобразователи питания

Не всегда нужны громоздкие источники и приборы, но достаточно бывает компактного преобразователя для подключения и быстрого теста самоделок. На выбор могу предложить несколько вариантов. Например, простой карманный источник питания, который работает от USB зарядки или павербанка — DP3A, с поддержкой быстрой зарядки QC3.0 и возможностью выставить нужный ток или напряжение со стабилизацией до 15W. Подробный обзор DP3A по ссылке. Чуть мощнее и в отдельном корпусе под блочный монтаж — преобразователь 32В/4А с встроенными защитами (OVP/OСР/ОРР) и стабилизацией тока и напряжения CC/CV, а также возможностью поднять выходное напряжение (Buck Boost). Еще один полезный для домашних самоделок источник — простой блок питания наподобие ноутбучного, но со встроенным показометром и регулировкой. Заявлена стабилизация напряжения мощность до 72W (максимум 3А на выходе). 

Стационарные источники питания все-в-одном

Для стационарной работы я бы рекомендовал иметь дома хотя бы один мощный источник типа KORAD. Цифры в названии подобных ЛБП обычно показывают максимальные режимы питания: 30/60 Вольт и 5/10 Ампер. То есть KORAD KA3005 — это 30В/5А, модели 6005 стабилизирует большее выходное напряжение, а типа 3010 — больший ток (до 10 А). Плюс подобных источников — встроенный сетевой преобразователь на 220В.

Модули сетевого питания для сборки ЛБП

Для питания управляемых модулей нужен сетевой преобразователь. Я бы не рекомендовал брать дешевые «народные» платы питания, а предложил бы посмотреть в сторону корпусных БП. В таких уже продумано охлаждение и монтаж, присутствует некоторая регулировка выхода. На выбор предлагаются источники с выходным напряжением на 5V, 12V, 24V, 36V, 48V, 60V и мощностью  до 400 Вт. Конечно, можно использовать и компьютерные источники питания АТХ (с выходом 12В и преобразователем типа DPH5005, или с переделкой для повышения выходного напряжения), и другие от старой аппаратуры.

Таким образом, можно на базе готовых модулей и источников тока создать свой удобный и точный блок лабораторного питания. За основу можно взять как старую технику, так и полностью готовые комплектующие с Алиэкспресс и радиомагазинов. Цены варьируются от $5 за простой преобразователь с экраном и стабилизацией, и до $100 за мощное устройство. Из полезных функций — наличие Buck Boost конвертера, который помогает повышать напряжение при недостатке входного, функция заряда аккумуляторов (с наличием встроенной защиты и счетчиков емкости), функция стабилизации тока, функции удаленного управления.

Learning Регулируемый источник питания и его конструкция [Простое объяснение]

Привет. Надеюсь, вы хорошо проводите время. В этом посте я делюсь своими знаниями о регулируемом источнике питания.

Регулируемый — это общий термин, используемый для обозначения любого типа источника питания, который имеет стабильное выходное напряжение или ток независимо от входа или нагрузки. Это может быть линейный источник питания, регулируемый источник питания или регулируемый источник питания.

Единственное условие: он должен иметь выходное напряжение или ток независимо от входа (напряжения) или выходной нагрузки (сопротивления или тока).

Если вы искали просто, чтобы узнать, что такое регулируемый источник питания, я уже дал вам ответ. Но если вы хотите изучить его полностью, вы можете следить за моим обучением вместе со мной.

Будет весело.

Почему регулируемый источник питания?

В основном блоки питания рассчитаны на определенную нагрузку и среду. Но иногда основное напряжение питания, нагрузка и температура окружающей среды продолжают изменяться, изменяя параметры компонентов и, следовательно, изменяя выходное напряжение.Изменения выходного напряжения нежелательны.

Позвольте мне объяснить, почему изменение выходного напряжения нежелательно. Устройства имеют минимальное и максимальное входное напряжение и пороговые значения тока. И вы должны соблюдать эти пороговые значения, иначе вы можете повредить устройство.

Если выходное напряжение вашего источника питания изменится, есть вероятность, что оно превысит эти пороговые значения. Вот почему нам нужно постоянное выходное напряжение. И это достигается за счет регулируемого источника питания.

Стабилизированным источником питания может быть любой источник питания, поскольку я сказал, что он должен обладать постоянным выходным напряжением.Линейный источник питания, регулируемый источник питания или регулируемый источник питания могут быть регулируемым источником питания. Он может иметь любое значение напряжения, например 5 В, 10 В, 12 В и многие другие.

Важно помнить, что стабилизированный источник питания не всегда рассчитан только на постоянное выходное напряжение, он может быть рассчитан на постоянный выходной ток.

Так вы сможете понять, в чем разница между регулируемыми и нерегулируемыми источниками питания. Позвольте мне похвалить его за ваши примечания:

Нерегулируемый источник питания не имеет выходного напряжения или выходного тока независимо от входного основного напряжения или нагрузки.

Генеральное устройство регулируемого источника питания

Если вы попросите меня разработать регулируемый блок питания. Сразу спрошу, это регулируемый линейный источник питания с фиксированным напряжением, или регулируемый источник питания, или переменный источник питания?

В общем, изучение было бы идеальным решением для этого, поскольку основной принцип работы всех регулируемых источников питания одинаков.

Общая блок-схема

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы.Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Вам нужно понимать, какой блок что делает.

Сначала мы спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для наших проектов.

Входной трансформатор

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.В зависимости от вашей страны переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В.

Нам нужен входной трансформатор для понижения входящего переменного тока до требуемого уровня.

Будьте осторожны, играя с этим устройством. Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами.

Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какие провода находятся под напряжением, идущие к трансформатору.

Схема выпрямителя

Если вы думаете, что трансформатор просто снизил напряжение до желаемого регулируемого постоянного напряжения.

Извините, вы ошибаетесь, как когда-то я.

Пониженное напряжение все еще равно переменному току. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя преобразует переменное напряжение в постоянное. В основном, существует два типа выпрямительной схемы; полуволна и полная волна.

Однако нас интересует полный выпрямитель, так как он более энергоэффективен, чем полупрямой.

Сглаживающий конденсатор / фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящую сеть в постоянный ток, но, к сожалению, не может сделать ее чистым постоянным током.

Выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти колебания и обеспечивать совместимость напряжения для регулирования.

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсаторный.Вы, наверное, слышали, конденсатор — это устройство для накопления заряда.

Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Стабилизатор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение.

Регулировка напряжения очень важна, потому что нам не нужно изменение выходного напряжения при изменении нагрузки. Всегда требуется нагрузка, не зависящая от выходного напряжения.

ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но также и от изменений напряжения в сети.

Надеюсь, вы разработали базовую концепцию конструкции регулируемого источника питания.

давайте продолжим с реальной принципиальной схемой для нашего конкретного источника питания с регулируемым напряжением 5 В, чтобы вы могли получить очень четкое представление о конструкции.

Я буду использовать программу NI Multisim, надеюсь, вы знакомы с ней. Если вы с ним не знакомы, нет проблем.Это не обязательно. Вы можете использовать любое программное обеспечение. Основная цель — изучить программное обеспечение для проектирования, а не для моделирования.

Конструкция регулируемого источника питания (с фиксированным напряжением)

Следующие этапы проектирования охватывают проектирование регулируемого источника питания с фиксированным выходным напряжением или регулируемого / регулируемого источника питания. С помощью этих шагов вы можете спроектировать регулируемый источник питания.

Я использую конкретный пример 5V, потому что я думаю, что таким образом было бы лучше всего понять весь процесс проектирования.

Вы думаете, я бы начал объяснение с трансформатора, но это не так. Трансформатор выбирается не сразу.

Ниже представлена ​​принципиальная схема указанного проекта. Вы получаете основное питание, напряжение и частота могут зависеть от вашей страны; предохранитель для защиты цепи; трансформатор, выпрямитель, конденсаторный фильтр, светодиодный индикатор и стабилизатор IC.

Блок-схема реализована в NI Multisim, хорошей программе моделирования для студентов и начинающих электронщиков.Я рекомендую потратить немного времени на то, чтобы поиграть с ним. Поскольку, на мой взгляд, вы должны хорошо разбираться в программном обеспечении для моделирования, чтобы получать удовольствие от изучения базовой электроники.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения.В нашем случае мы проектируем для выходного напряжения 5 В, мы выберем ИС линейного регулятора LM7805.

Далее нам нужно знать номинальные значения напряжения, тока и мощности выбранной ИС регулятора.

Это делается с помощью паспорта регулятора IC. Ниже приведены номинальные значения и схема контактов для LM7805.

Спецификация 7805 также предписывает использовать конденсатор 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки.

И 0,1 мкФ на входе регулятора, чтобы избежать пульсации, если фильтрация находится далеко от регулятора.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В. Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и трансформатором тоже стоит выпрямитель на диодном мосту.На выпрямителе имеется собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В или 12 В.

Шаг 3: Выбор диодов для моста

Видите ли, выпрямитель сделан из диодов, расположенных по некоторой схеме.Для изготовления выпрямителя необходимо подобрать для него подходящие диоды. При выборе диода для мостовой схемы.

Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае. Вместо отдельных диодов вы также можете использовать один отдельный мост, входящий в комплект IC.

Но я не хочу, чтобы вы использовали здесь только для обучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки.И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора.

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо помнить о его напряжении, номинальной мощности и емкости. Т

Номинальное напряжение рассчитывается исходя из вторичного напряжения трансформатора.Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение.

Итак, если вторичное напряжение составляет 17 В (пиковое значение), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки i-e 500 мА в нашей конструкции, Vo = выходное напряжение i-e в нашем случае 5 В, f = частота

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно. Затем, используя формулу конденсатора, практический стандарт, близкий к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула из книги «Электронные устройства Томаса Л. Флойда» приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — сопротивление нагрузки. А Rf — это коэффициент пульсации, который для хорошей конструкции должен быть менее 10%. На этом мы заканчиваем проектирование блока питания на 5 В.

Сделайте блок питания безопасным

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же в нашем простом источнике питания должен быть предохранитель на входе. Входной предохранитель защитит наш источник питания в случае перегрузки. Например, наша желаемая нагрузка может выдержать 500 мА.

Если в случае, если наша нагрузка начнет работать неправильно, есть вероятность заусенцев компонентов. Предохранитель защитит наши поставки. Практическое правило при выборе номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях можно использовать для этого. Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.

Комплект блока питания 5 В (DIY)

Итак, мы получили базовые знания о том, как устроен простой блок питания на 5 В.

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.Было бы очень хорошее решение.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на собственном опыте.

Для начала рекомендую комплект блока питания Elenco (Amazon Link). Он доступен по цене, высокого качества и хорошо документирован, чтобы направлять вас на каждом этапе. Поверьте, вы многому научитесь.Вы узнаете, как паять, собирать и изготавливать конечный продукт, который вы всегда видите в разных магазинах.

Регулируемый источник питания (с регулируемым / регулируемым выходом)

В большинстве случаев нам не требуется фиксированное напряжение. Иногда нам нужен регулируемый источник питания.

Например, чтобы проверить токи коллектора транзистора при различных базовых напряжениях, нам понадобится регулируемый источник питания. И это переменное напряжение необходимо регулировать.

Процедура проектирования такая же, как я объяснил выше, с небольшими изменениями в регуляторах мощности.

На этот раз нам потребуется переменный резистор, чтобы, изменяя его сопротивление, мы получали разные напряжения. Ниже приведена схема регулируемого источника питания или регулируемого источника питания:

До светодиодной части схема такая же, как и для стабилизированного источника питания 5 В при 500 мА. Схема усложняется после светодиодной части, не так ли? Не бойтесь.Все очень просто. Переменный резистор предназначен для изменения выходного напряжения.

Диоды используются для защиты схемы от обратного тока. Теперь давайте посмотрим на следующем видео, как изменение резистора изменяет выходное напряжение.

Преимущества регулируемого источника питания

Источник питания с регулируемым выходом имеет много преимуществ. Следующее имеет ключевое значение.

  • низкий уровень шума
  • по выгодной цене
  • простота
  • надежность

Регулируемый блок питания очень прост в конструкции, вы могли почувствовать это в этом посте.Простой дизайн делает его очень экономичным. Эти блоки питания имеют невысокую стоимость и очень надежны.

Они относительно бесшумны. ИС линейных регуляторов, которые используются на выходе, имеют низкие пульсации выходного напряжения, что делает их наиболее подходящими для приложений, где важна чувствительность к шуму.

Заключение

Проектный блок питания подойдет для поддержки других ваших небольших проектов или принесет вам хорошие оценки / деньги, если вас назначат на аналогичный проект.Я не знаю почему, но я уверен, что если вы выполните те же простые шаги со мной, вы получите свой первый разработанный блок питания.

Пожалуйста, не указывайте это только на 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА.

Для дополнительной информации, для вывода положительного напряжения используйте LM78XX. XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

На этом конструирование регулируемого источника питания подошло к концу. Надеюсь, вам понравилось.

Спасибо и удачной жизни.


Другие полезные сообщения:

Как источник питания регулирует выходное напряжение и ток?

Практические руководства

Резюме

Как источник питания регулирует выходное напряжение и ток?

Описание

CV и CC являются основными режимами работы большинства источников питания.Но что именно происходит внутри блока питания, что дает ему возможность регулировать выходное напряжение или ток в зависимости от нагрузки? Если вы когда-нибудь задумывались об этом, больше не удивляйтесь!

Большинство источников питания регулируют либо свое выходное напряжение, либо выходной ток на постоянном уровне, в зависимости от сопротивления нагрузки относительно выходного напряжения источника питания и настроек тока. Это можно резюмировать следующим образом:

· Если R нагрузка> (V out / I out), то источник питания находится в режиме CV

· Если R нагрузка <(V out / I out), то источник питания находится в режиме CC

Для достижения этой цели все источники питания имеют отдельные контуры управления с обратной связью по напряжению и току для ограничения выходного напряжения или тока в зависимости от нагрузки.Чтобы проиллюстрировать это, на рисунке 1 показана принципиальная схема базового блока питания с последовательным выходом 5 В и 1 А, работающего в режиме постоянного напряжения.

Рисунок 1: Базовая схема источника питания постоянного тока, работа при постоянном напряжении (CV)


В CV и управления CC петли / усилители каждый имеет значение опорного сигнала. В этом случае оба эталонных значения составляют 1 вольт. Для того, чтобы регулировать выходное напряжение усилитель ошибки CV сравнивает свою ссылку 1 вольт против резистора делителя, который делит выходной сигнал вниз напряжения на коэффициент 5, ограничение выходного напряжения до 5 вольт.Аналогичным образом, усилитель ошибки CC сравнивает свою ссылку 1 вольт против тока шунт 1 Ом, расположенного в выходном пути тока, что ограничивает выходной ток до 1 ампер. Для рисунка 1 сопротивление нагрузки составляет 10 Ом.

Поскольку это сопротивление нагрузки больше, чем (V out / I out) = 5 Ом, источник питания работает в режиме CV. Усилитель ошибки CV управляет последовательным транзистором, отводя избыточный базовый ток от последовательного транзистора через диодную схему «ИЛИ».Усилитель CV работает в замкнутом контуре, поддерживая напряжение ошибки на уровне нуля вольт. Для сравнения, поскольку фактический выходной ток составляет всего 0,5 А, усилитель CC пытается включить ток сильнее, но не может, потому что усилитель CV контролирует выход.

Усилитель CC работает без обратной связи. Его выход достигает положительного предела, а напряжение ошибки -0,5 В. Схема I-V на выходе для этой операции с постоянным напряжением показана на рисунке 2.

Рисунок 2: Схема I-V источника питания, работа CV

Теперь предположим, что мы увеличиваем нагрузку, уменьшая выходное сопротивление нагрузки с 10 Ом до 3 Ом.На рисунке 3 показана принципиальная схема нашего базового блока питания с последовательным выходом на 5 В и 1 А, пересмотренного для работы в режиме CC с нагрузочным резистором 3 Ом.


Рисунок 3: Базовая схема источника питания постоянного тока, работа при постоянном токе (CC)


Поскольку сопротивление нагрузки меньше (V out / I out) = 5 Ом, источник питания переключается в режим CC. Усилитель ошибки СС берет на себя управление, когда падение напряжения на текущих шунтирующих резисторах увеличиваются, чтобы соответствовать опорному значению 1 вольт, что соответствует выходу усилитель 1, рисунок избыточного тока базы из серии проходит транзистор, хотя диод «ИЛИ» сеть.

Усилитель CC теперь работает по замкнутому контуру, регулируя выходной ток для поддержания входного напряжения ошибки на нуле. Для сравнения, поскольку фактическое выходное напряжение теперь составляет всего 3 вольта, усилитель CV пытается увеличить выходное напряжение, но не может, потому что усилитель CC контролирует выход. Усилитель CV работает без обратной связи. Его выходной сигнал теперь достигает своего положительного предела, в то время как он имеет напряжение ошибки -0,4 В.

Выходная I-V-диаграмма для этой операции с постоянным током показана на рисунке 4.



Рисунок 4: Схема I-V источника питания, работа CC

Как мы уже видели, большинство источников питания имеют отдельные контуры управления током и напряжением для регулирования своих выходов либо в режиме постоянного напряжения (CV), либо в режиме постоянного тока (CC). Один или другой берет на себя управление, в зависимости от того, какое сопротивление нагрузки зависит от выходного напряжения и тока источника питания. Таким образом, и нагрузка, и источник питания защищены путем ограничения напряжения и тока, подаваемых источником питания на нагрузку.

Понимая эту теорию, лежащую в основе работы источника питания CV и CC, также легче понять основную причину того, почему различные характеристики источника питания такие, какие они есть, а также увидеть, как можно создать другие возможности источника питания, построив сверху. этого фонда.

Оставайтесь с нами!

См. Также


Основы постоянного напряжения CV и постоянного тока CC Часть 1
Основы постоянного напряжения CV и постоянного тока CC Часть 2
Руководство по выбору продуктов питания
Источники питания постоянного тока

Цепи питания | Практические аналоговые полупроводниковые схемы

Существует три основных типа источников питания: нерегулируемый (также называемый грубой силой ), линейный регулируемый и переключающий .Четвертый тип схемы источника питания, называемый с регулируемой пульсацией, , представляет собой гибрид между схемами «грубой силы» и «переключением» и заслуживает отдельного раздела.

нерегулируемый

Нерегулируемый источник питания — это самый примитивный тип, состоящий из трансформатора , выпрямителя и фильтра нижних частот . Эти источники питания обычно демонстрируют большое количество пульсаций напряжения (то есть быстро меняющуюся нестабильность) и другие «шумы» переменного тока, накладываемые на мощность постоянного тока.Если входное напряжение изменяется, выходное напряжение будет изменяться пропорционально. Преимущество нерегулируемых поставок в том, что они дешевы, просты и эффективны.

линейно регулируемый

Линейный регулируемый источник питания — это просто «грубый» (нерегулируемый) источник питания, за которым следует транзисторная схема, работающая в «активном» или «линейном» режиме, отсюда и название «линейный стабилизатор ». (В ретроспективе это очевидно, не так ли?) Типичный линейный регулятор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и он просто сбрасывает любое избыточное входное напряжение, чтобы обеспечить максимальное выходное напряжение на нагрузку.Это чрезмерное падение напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, транзисторная схема потеряет стабилизацию, что означает, что она не сможет поддерживать постоянное напряжение. Он может только снизить избыточное напряжение, но не восполнить недостаток напряжения в цепи грубой силы. Следовательно, вы должны поддерживать входное напряжение как минимум на 1–3 вольт выше желаемого выходного напряжения, в зависимости от типа регулятора. Это означает, что эквивалент мощности не менее от 1 до 3 вольт, умноженный на ток полной нагрузки, будет рассеиваться схемой регулятора, генерируя много тепла.Это делает источники питания с линейной регулировкой неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.

Переключение

Импульсный регулируемый источник питания («переключатель») — это попытка реализовать преимущества схем с прямым и линейным регулированием (компактность, эффективность и дешевизна, но также «чистое» стабильное выходное напряжение). Импульсные источники питания работают по принципу выпрямления входящего переменного напряжения линии электропередачи в постоянный ток, преобразования его в высокочастотный прямоугольный переменный ток через транзисторы, работающие как переключатели включения / выключения, повышая или понижая это напряжение переменного тока с помощью легкого веса. трансформатор, затем выпрямляет выход переменного тока трансформатора в постоянный ток и фильтрует его для конечного выхода.Регулировка напряжения достигается изменением «рабочего цикла» инверсии постоянного тока в переменный на первичной стороне трансформатора. Помимо меньшего веса из-за меньшего размера сердечника трансформатора, коммутаторы имеют еще одно огромное преимущество по сравнению с двумя предыдущими конструкциями: источник питания типа может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в России. мир; они называются «универсальными» источниками питания. Обратной стороной коммутаторов является то, что они более сложны и из-за своей работы имеют тенденцию генерировать много высокочастотных «шумов» переменного тока в линии электропередачи.Большинство коммутаторов также имеют на своих выходах значительные пульсации напряжения. У более дешевых типов этот шум и пульсации могут быть такими же сильными, как и для нерегулируемого источника питания; Такие бюджетные коммутаторы не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение, и есть «универсальные» входные возможности. Дорогие переключатели не имеют пульсаций и имеют почти такой же низкий уровень шума, как и некоторые линейные переключатели; эти переключатели обычно столь же дороги, как и линейные источники питания. Причина использования дорогого коммутатора вместо хорошего линейного в том, что вам нужна универсальная совместимость с энергосистемой или высокая эффективность.Высокая эффективность, малый вес и небольшие размеры — вот причины, по которым импульсные источники питания почти повсеместно используются для питания цифровых компьютерных схем.

Регулируемая пульсация

Источник питания с пульсационным регулированием является альтернативой линейно регулируемой проектной схеме: источник питания «грубой силы» (трансформатор, выпрямитель, фильтр) составляет «входной конец» схемы, но транзистор работает строго в его включенном состоянии. В режимах выключения (насыщение / отсечка) мощность постоянного тока передается на большой конденсатор по мере необходимости для поддержания выходного напряжения между высокой и низкой уставкой.Как и в переключателях, транзистор в стабилизаторе пульсаций никогда не пропускает ток, находясь в «активном» или «линейном» режиме в течение значительного промежутка времени, что означает, что очень мало энергии будет потрачено впустую в виде тепла. Однако самым большим недостатком этой схемы регулирования является необходимое присутствие некоторой пульсации напряжения на выходе, поскольку напряжение постоянного тока изменяется между двумя уставками управления напряжением. Кроме того, это пульсирующее напряжение изменяется по частоте в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию постоянного тока.Цепи регулятора пульсаций, как правило, немного проще, чем схемы переключателя, и им не нужно обрабатывать высокие напряжения в линии питания, с которыми должны работать переключающие транзисторы, что делает их более безопасными в эксплуатации.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Блок-схема регулируемого источника питания

, принципиальная электрическая схема, рабочая

ВВЕДЕНИЕ

Почти все основные бытовые электронные схемы нуждаются в нерегулируемом переменном токе для преобразования в постоянный постоянный ток для работы электронного устройства.Все устройства будут иметь определенный лимит питания, и электронные схемы внутри этих устройств должны обеспечивать постоянное напряжение постоянного тока в пределах этого лимита. Этот источник постоянного тока регулируется и ограничен по напряжению и току. Но питание от сети может быть нестабильным и может легко вывести из строя электронное оборудование, если оно не будет должным образом ограничено. Эта работа по преобразованию нерегулируемого переменного тока (AC) или напряжения в ограниченный постоянный ток (DC) или напряжение, чтобы сделать выход постоянным независимо от колебаний на входе, выполняется регулируемой схемой источника питания.

Все активные и пассивные электронные устройства будут иметь определенную рабочую точку постоянного тока (точка Q или точка покоя), и эта точка должна достигаться источником питания постоянного тока.

Источник питания постоянного тока практически преобразован в каждую ступень электронной системы. Таким образом, общим требованием для всех этих фаз будет источник питания постоянного тока. Все системы с низким энергопотреблением могут работать от аккумулятора. Но в устройствах, долгое время эксплуатируемых, батареи могут оказаться дорогостоящими и сложными.Лучше всего использовать нерегулируемый источник питания — комбинацию трансформатора, выпрямителя и фильтра. Схема представлена ​​ниже.

Нерегулируемый источник питания — схема

Как показано на рисунке выше, небольшой понижающий трансформатор используется для понижения уровня напряжения в соответствии с потребностями устройства. В Индии доступен источник питания 1 Ø на 230 вольт. На выходе трансформатора пульсирующее синусоидальное переменное напряжение преобразуется в пульсирующее постоянное с помощью выпрямителя.Этот выходной сигнал подается на схему фильтра, которая уменьшает пульсации переменного тока и пропускает компоненты постоянного тока. Но есть определенные недостатки в использовании нерегулируемого источника питания.

Недостатки нерегулируемого источника питания

1. Плохое регулирование — При изменении нагрузки выходная мощность не кажется постоянной. Выходное напряжение изменяется на большую величину из-за значительного изменения тока, потребляемого от источника питания. В основном это связано с высоким внутренним сопротивлением блока питания (> 30 Ом).

2. Основные отклонения в сети переменного тока — Максимальные отклонения в питающей сети переменного тока равны 6% от номинального значения. Но в некоторых странах это значение может быть выше (180–280 вольт). Когда значение выше, выходное напряжение постоянного тока будет сильно отличаться.

3. Изменение температуры — Использование полупроводниковых приборов в электронных устройствах может вызвать колебания температуры.

Эти колебания выходного постоянного напряжения могут вызывать неточную или неустойчивую работу или даже выход из строя многих электронных схем.Например, в генераторах частота будет сдвигаться, выход передатчиков будет искажаться, а в усилителях рабочая точка будет сдвигаться, вызывая нестабильность смещения.

Все вышеперечисленные проблемы решаются с помощью регулятора напряжения , который используется вместе с нерегулируемым источником питания. Таким образом, пульсации напряжения значительно снижаются. Таким образом, источник питания становится регулируемым.

Внутренняя схема регулируемого источника питания также содержит определенные цепи ограничения тока, которые помогают цепи питания не перегорать из-за непреднамеренных цепей.В настоящее время во всех источниках питания используется микросхема IC для уменьшения пульсаций, улучшения регулирования напряжения и расширения возможностей управления. Также доступны программируемые источники питания для удаленного управления, что полезно во многих случаях.

РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ

Регулируемый источник питания — это электронная схема, которая предназначена для обеспечения постоянного постоянного напряжения заданного значения на клеммах нагрузки независимо от колебаний сети переменного тока или колебаний нагрузки.

Регулируемый источник питания — блок-схема

Регулируемый источник питания по существу состоит из обычного источника питания и устройства регулирования напряжения, как показано на рисунке. Выход из обычного источника питания подается на устройство регулирования напряжения, которое обеспечивает конечный выход. Выходное напряжение остается постоянным независимо от изменений входного переменного напряжения или выходного тока (или тока нагрузки).

На приведенном ниже рисунке показана полная схема стабилизированного источника питания с последовательным транзисторным стабилизатором в качестве регулирующего устройства.Подробно объясняется каждая часть схемы.

Трансформатор

Понижающий трансформатор используется для понижения напряжения от входного переменного тока до требуемого напряжения электронного устройства. Это выходное напряжение трансформатора настраивается путем изменения коэффициента трансформации трансформатора в соответствии со спецификациями электронного устройства. Вход трансформатора составляет 230 В переменного тока, выход подается на полную мостовую схему выпрямителя.

Узнать больше: Трансформаторы

Схема двухполупериодного выпрямителя

FWR состоит из 4 диодов, которые выпрямляют выходное переменное напряжение или ток транзистора до эквивалентной величины постоянного тока.Как следует из названия, FWR выпрямляет обе половины входного переменного тока. Выпрямленный выход постоянного тока подается на вход схемы фильтра.

Подробнее: полноволновой выпрямитель и полуволновой выпрямитель

Цепь фильтра

Схема фильтра используется для преобразования выходного сигнала постоянного тока с высокой пульсацией FWR в содержимое постоянного тока без пульсаций. Фильтр ∏ используется для устранения пульсаций сигналов.

Подробнее: схемы фильтров

Вкратце

Напряжение переменного тока, обычно 230 В, действующее значение , подключено к трансформатору, который преобразует это напряжение переменного тока в уровень для желаемого выхода постоянного тока.Затем мостовой выпрямитель выдает двухполупериодное выпрямленное напряжение, которое сначала фильтруется ∏ (или C-L-C) фильтром для создания постоянного напряжения. Результирующее постоянное напряжение обычно имеет некоторую пульсацию или колебания переменного напряжения. Схема регулирования использует этот вход постоянного тока для обеспечения постоянного напряжения, которое не только имеет гораздо меньшее напряжение пульсаций, но также остается постоянным, даже если входное напряжение постоянного тока несколько изменяется или нагрузка, подключенная к выходному напряжению постоянного тока, изменяется. Стабилизированный источник постоянного тока доступен через делитель напряжения.

Регулируемый источник питания — схема

Часто для работы электронных схем требуется более одного напряжения постоянного тока. Один источник питания может обеспечивать любое необходимое напряжение за счет использования делителя напряжения (или потенциала), как показано на рисунке. Как показано на рисунке, делитель потенциала представляет собой резистор с одним ответвлением, подключенный к выходным клеммам источника питания. Резистор с ответвлениями может состоять из двух или трех резисторов, подключенных последовательно через источник питания.Фактически, резистор утечки также может использоваться в качестве делителя потенциала.

Характеристики блока питания

Качество источника питания определяется различными факторами, такими как напряжение нагрузки, ток нагрузки, регулировка напряжения, регулировка источника, выходное сопротивление, подавление пульсаций и т. Д. Некоторые характеристики кратко описаны ниже:

1. Регулировка нагрузки — Регулирование нагрузки или влияние нагрузки — это изменение регулируемого выходного напряжения, когда ток нагрузки изменяется с минимального на максимальное значение.

  Регулировка нагрузки = V без нагрузки - V полная нагрузка  

В без нагрузки относится к напряжению нагрузки без нагрузки

Vfull-load относится к напряжению нагрузки при полной нагрузке.

Из приведенного выше уравнения мы можем понять, что, когда возникает Vno-нагрузка, сопротивление нагрузки бесконечно, то есть выходные клеммы разомкнуты. Полная нагрузка возникает, когда сопротивление нагрузки имеет минимальное значение, при котором регулирование напряжения теряется.

 % Регулировка нагрузки = [(Vno-load - Vfull-load) / Vfull-load] * 100  

2. Минимальное сопротивление нагрузки — Сопротивление нагрузки, при котором источник питания выдает номинальный ток полной нагрузки при номинальном напряжении, называется минимальным сопротивлением нагрузки.

  Минимальное сопротивление нагрузки = Полная нагрузка / Полная нагрузка  

Значение тока полной нагрузки при полной нагрузке никогда не должно увеличиваться, чем указано в паспорте источника питания.

3. Регулирование источника / линии — На блок-схеме входное линейное напряжение имеет номинальное значение 230 В, но на практике здесь наблюдаются значительные колебания сетевого напряжения переменного тока.Поскольку это сетевое напряжение переменного тока является входом для обычного источника питания, отфильтрованный выход мостового выпрямителя почти прямо пропорционален сетевому напряжению переменного тока.

Регулировка источника определяется как изменение регулируемого выходного напряжения для заданного диапазона ложного напряжения.

4. Выходное сопротивление — Стабилизированный источник питания представляет собой очень жесткий источник постоянного напряжения. Это означает, что выходное сопротивление очень маленькое. Несмотря на то, что внешнее сопротивление нагрузки меняется, напряжение нагрузки почти не изменяется.Идеальный источник напряжения имеет нулевое выходное сопротивление.

5. Подавление пульсаций — Регуляторы напряжения стабилизируют выходное напряжение от изменений входного напряжения. Пульсация эквивалентна периодическому изменению входного напряжения. Таким образом, регулятор напряжения ослабляет пульсации, возникающие при нерегулируемом входном напряжении. Поскольку в регуляторе напряжения используется отрицательная обратная связь, искажение уменьшается в тот же раз, что и коэффициент усиления.

Источники питания | Electronics Club

Блоки питания | Клуб электроники

Трансформатор | Выпрямитель | Сглаживание | Регулятор | Двойные расходные материалы

Следующая страница: Преобразователи

См. Также: AC / DC | Диоды | Конденсаторы

Типы источников питания

Есть много типов источников питания.Большинство из них предназначены для преобразования сети переменного тока высокого напряжения. к подходящему низковольтному источнику питания для электронных схем и других устройств. Источник питания можно разбить на серию блоков, каждый из которых выполняет определенную функцию.

Например, регулируемое питание 5 В:

  • Трансформатор — понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
  • Выпрямитель — преобразует переменный ток в постоянный, но выходной постоянный ток меняется.
  • Smoothing (Сглаживание) — сглаживает постоянный ток от сильно варьирующегося до небольшой ряби.
  • Регулятор
  • — устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.

Блоки питания, изготовленные из этих блоков, описаны ниже со схемой и графиком их выхода:

Только трансформатор

Низковольтный выход переменного тока подходит для ламп, нагревателей и специальных двигателей переменного тока. не подходит для электронных схем, если они не включают выпрямитель и сглаживающий конденсатор.

См .: Трансформатор


Трансформатор + Выпрямитель

Регулируемый выход постоянного тока подходит для ламп, обогревателей и стандартных двигателей. не подходит для электронных схем, если они не содержат сглаживающий конденсатор.

См .: Трансформатор | Выпрямитель


Трансформатор + выпрямитель + сглаживание

Выходной сигнал smooth DC имеет небольшую пульсацию. Он подходит для большинства электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание


Трансформатор + выпрямитель + сглаживающий + регулятор

Регулируемый выход постоянного тока очень плавный, без пульсаций.Подходит для всех электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание | Регулятор



Трансформатор

Трансформаторы преобразуют электричество переменного тока из одного напряжения в другое с небольшими потерями мощности. Трансформаторы работают только с переменным током, и это одна из причин, почему в сети используется переменный ток.

Повышающие трансформаторы повышают напряжение, понижающие трансформаторы понижают напряжение. В большинстве источников питания используется понижающий трансформатор для снижения опасно высокого напряжения в сети. напряжение (230 В в Великобритании) на более безопасное низкое напряжение.

Трансформаторы расходуют очень мало энергии, поэтому выходная мощность (почти) равна входной мощности. Обратите внимание, что при понижении напряжения ток увеличивается.

Входная катушка называется первичной обмоткой , а выходная катушка — вторичной . Между двумя катушками нет электрического соединения, вместо этого они связаны переменное магнитное поле, создаваемое в сердечнике из мягкого железа трансформатора. Две линии в середине символа схемы представляют сердечник.

Rapid Electronics: трансформаторы

Обозначение схемы трансформатора

Передаточное число

Отношение числа витков на каждой катушке, называемое соотношением витков , определяет соотношение напряжений. Понижающий трансформатор имеет большое количество витков на первичной (входной) катушке, которая подключена к питающей сети высокого напряжения. и небольшое количество витков на его вторичной (выходной) катушке, чтобы обеспечить низкое выходное напряжение.

Передаточное число = Вп = Np
VS Ns
мощность на выходе = мощность в

Vp = первичное (входное) напряжение
Np = количество витков на первичной катушке
Ip = первичный (входной) ток

Vs = вторичное (выходное) напряжение
Ns = количество витков вторичной катушки
Is = вторичный (выходной) ток


Выпрямитель

Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель является наиболее важным, и он производит двухполупериодный переменный DC. Двухполупериодный выпрямитель также можно сделать всего из двух диодов, если используется трансформатор с центральным отводом, но сейчас этот метод редко используется, потому что диоды стали дешевле. Можно использовать одиночный диод как выпрямитель, но он использует только положительные (+) части волны переменного тока для создания полуволны переменного постоянного тока.

Мостовой выпрямитель

Мостовой выпрямитель может быть выполнен с использованием четырех отдельных диодов, но он также доступен в пакеты, содержащие четыре необходимых диода.Он называется двухполупериодным выпрямителем. потому что он использует всю волну переменного тока (как положительную, так и отрицательную части). Чередующиеся пары диодов проводят, это переключает соединения, поэтому переменные направления переменного тока преобразуются в одно направление постоянного тока.

1,4 В используется в мостовом выпрямителе, потому что на каждом диоде 0,7 В при проводящем соединении, и всегда есть два диоды проводящие, как показано на схеме.

Мостовые выпрямители

рассчитаны на максимальный ток, который они могут пропускать, и максимальное обратное напряжение, которое они могут выдержать.Их номинальное напряжение должно быть не менее трех раз больше среднеквадратичного напряжения источника питания. поэтому выпрямитель может выдерживать пиковые напряжения. Пожалуйста, смотрите страницу Диоды для получения более подробной информации, включая изображения мостовых выпрямителей.

Rapid Electronics: мостовые выпрямители

Мостовой выпрямитель

Выход: двухполупериодный переменный постоянный ток
(с использованием всей волны переменного тока)

Выпрямитель одинарный диод

Один диод можно использовать в качестве выпрямителя, но он дает полуволны переменного постоянного тока, который имеет промежутки когда переменный ток отрицательный.Трудно сгладить это достаточно хорошо, чтобы питать электронные схемы, если они не требуется очень небольшой ток, поэтому сглаживающий конденсатор существенно не разряжается во время промежутков. Пожалуйста, обратитесь к странице Диоды для некоторых примеров выпрямительных диодов.

Rapid Electronics: Выпрямительные диоды

Выпрямитель одинарный диод

Выход: полуволна переменного тока
(с использованием только половины переменного тока)


Сглаживание

Сглаживание выполняется электролитическим конденсатором большой емкости. подключен к источнику постоянного тока, чтобы действовать как резервуар, подающий ток на выход, когда изменяющееся напряжение постоянного тока от выпрямитель падает.На диаграмме показаны несглаженный изменяющийся постоянный ток (пунктирная линия) и сглаженный постоянный ток (сплошная линия). Конденсатор быстро заряжается около пика переменного постоянного тока, а затем разряжается, подавая ток на выход.

Обратите внимание, что сглаживание значительно увеличивает среднее напряжение постоянного тока почти до пикового значения. (1,4 × значение RMS). Например, выпрямляется переменный ток 6 В RMS. до полной волны постоянного тока около 4,6 В RMS (1,4 В теряется в мостовом выпрямителе), со сглаживанием этого увеличивается почти до пикового значения, что дает 1.4 × 4,6 = 6,4 В постоянного тока.

Неидеальное сглаживание из-за небольшого падения напряжения на конденсаторе при его разряде, давая небольшую пульсацию напряжения . Для многих цепей пульсация составляет 10% от напряжения питания. напряжение является удовлетворительным, и приведенное ниже уравнение дает необходимое значение для сглаживающего конденсатора. Конденсатор большего размера даст меньше пульсаций. При сглаживании полуволны постоянного тока емкость конденсатора должна быть увеличена вдвое.

Rapid Electronics: электролитические конденсаторы

Сглаживающий конденсатор, C, для пульсации 10%:

С = 5 × Io
Vs × f

где:
C = сглаживающая емкость в фарадах (Ф)
Io = выходной ток в амперах (A)
Vs = напряжение питания в вольтах (V), это пиковое значение несглаженного постоянного тока.
f = частота сети переменного тока в герцах (Гц), в Великобритании это 50 Гц



Регулятор

ИС регулятора напряжения доступны с фиксированными (обычно 5, 12 и 15 В) или переменное выходное напряжение.Они также рассчитаны на максимальный ток, который они могут пропускать. Доступны регуляторы отрицательного напряжения, в основном для использования в двойных источниках питания. Большинство регуляторов включают в себя автоматическую защиту от чрезмерного тока («защита от перегрузки»). и перегрев («тепловая защита»).

Многие микросхемы фиксированного стабилизатора напряжения имеют 3 вывода и выглядят как силовые транзисторы, например, регулятор 7805 + 5V 1A, показанный справа. В них есть отверстие для крепления при необходимости радиатор.

Rapid Electronics: регулятор 7805

Фотография регулятора напряжения © Рапид Электроникс

Стабилитрон

Для слаботочных источников питания можно сделать простой регулятор напряжения с резистором. и стабилитрон, подключенный в обратном направлении , как показано на схеме.Стабилитроны имеют номинальное напряжение пробоя и Vz . Максимальная мощность Pz (обычно 400 мВт или 1,3 Вт).

Резистор ограничивает ток (как светодиодный резистор). Ток через резистор постоянный, поэтому при отсутствии выходного тока весь ток течет через стабилитрон, и его номинальная мощность Pz должна быть достаточно большой, чтобы выдержать это.

Дополнительную информацию о стабилитронах см. На странице «Диоды».

Rapid Electronics: стабилитроны

стабилитрон
a = анод, k = катод

Выбор стабилитрона и резистора

Это шаги для выбора стабилитрона и резистора:

  1. Напряжение стабилитрона Vz — необходимое выходное напряжение
  2. Входное напряжение Vs должно быть на несколько вольт больше, чем Vz
    (это необходимо для небольших колебаний Vs из-за пульсации)
  3. Максимальный ток Imax — это требуемый выходной ток плюс 10%
  4. У стабилитрона мощность Pz определяется максимальным током: Pz> Vz × Imax
  5. Сопротивление резистора : R = (Vs — Vz) / Imax
  6. Номинальная мощность резистора : P> (Vs — Vz) × Imax

В этом примере показано, как использовать эти шаги для выбора стабилитрона и резистора с подходящими значениями и номинальной мощностью.

Например

Если требуемое выходное напряжение 5 В, а выходной ток 60 мА:

  1. Vz = 4,7 В (ближайшее доступное значение)
  2. Vs = 8V (на несколько вольт больше, чем Vz)
  3. Imax = 66 мА (ток плюс 10%)
  4. Pz> 4,7 В × 66 мА = 310 мВт, выберите Pz = 400 мВт
  5. R = (8 В — 4,7 В) / 66 мА = 0,05 кОм = 50,
    выберите R = 47
  6. Номинальная мощность резистора P> (8 В — 4.7 В) × 66 мА = 218 мВт, выберите P = 0,5 Вт

Двойные расходные материалы

Для некоторых электронных схем требуется источник питания с положительным и отрицательным выходами, а также нулевое напряжение (0 В). Это называется «двойным источником питания», потому что это похоже на два обычных источника питания, соединенных вместе, как показано на схеме.

Двойные источники питания имеют три выхода, например, источник питания ± 9 В имеет выходы + 9 В, 0 В и -9 В.

Rapid Electronics: блоки питания


Следующая страница: Преобразователи | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Руководство по источникам питания

— B&K Precision

Введение

Источники питания являются одними из самых популярных единиц электронного испытательного оборудования. Это неудивительно, поскольку контролируемая электрическая энергия используется множеством способов.В этом руководстве мы рассмотрим различные типы источников питания, их элементы управления, способы их работы и некоторые примеры их применения.

Источником питания в широком смысле можно назвать все, что снабжает энергией, например плотину гидроэлектростанции, двигатель внутреннего сгорания или гидравлический насос. Однако мы ограничимся обсуждением типов источников питания, которые преимущественно используются для испытаний и измерений, технического обслуживания и разработки продуктов.

Этот документ предназначен для пользователей или потенциальных пользователей источников питания. Его цель — дать определение используемых терминов, познакомить с различными типами источников питания и лежащими в их основе технологиями, объяснить элементы управления типичными источниками питания и рассмотреть некоторые примеры их использования.

Вот таблица некоторых различных типов источников питания. Мы сосредоточимся на выделенных типах.

Выход = DC Выход = AC
Ввод = AC
  • «Бородавка стенка»
  • Настольные источники питания
  • Зарядное устройство
  • Изолирующий трансформатор
  • Источник переменного тока
  • Преобразователь частоты
Ввод = DC

Термин «настольный источник питания» здесь используется несколько мягко, так как некоторые из обсуждаемых нами источников питания могут быть слишком тяжелыми, чтобы их можно было поставить на скамейку.Тем не менее, номенклатура полезна, поскольку даже тяжелые источники питания с высокой выходной мощностью имеют много общего со своими меньшими собратьями. Но термин «стенд» является описательным для многих людей, поскольку он вызывает в воображении мысленный образ источника питания постоянного тока, используемого на скамейке инженера или техника для множества энергетических задач.

В оставшейся части этого документа стендовый источник питания будет рассмотрен более подробно после краткого обзора источников питания переменного тока.

Источник переменного тока

При тестировании электрического оборудования, которое питается от сети переменного тока, часто важно оценить оборудование, когда оно подвергается воздействию повышенного или пониженного напряжения.Нормальные колебания напряжения в сети переменного тока составляют порядка ± 10%, но могут быть больше, когда линия одновременно используется множеством тяжелых нагрузок. Разработчик может также захотеть провести испытания, выходящие за рамки нормальных изменений напряжения сети переменного тока, для целей нагрузочного тестирования (чтобы выяснить, в чем заключаются недостатки конструкции). Для этого типа тестирования требуется переменный источник переменного тока. Регулируемый источник переменного тока также может быть полезен во время «пониженного напряжения» (условия низкого напряжения в сети), чтобы поднять напряжение в сети до нормального уровня. Другое использование — повышение напряжения, когда нагрузка подключена через длинный удлинитель и падение напряжения на шнуре является значительным.

Различные напряжения переменного тока генерируются с помощью трансформатора (или автотрансформатора). Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных напряжений. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для (почти) непрерывного изменения напряжения 1 . Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.

Некоторые продукты, такие как блок питания переменного тока с регулируемой изоляцией B & K Precision модели 1655A, показанный ниже, объединяют в себе изолирующий трансформатор и регулируемый трансформатор.Этот продукт также включает в себя возможность выполнять испытания на утечку переменного тока и имеет удобный регулируемый источник питания для паяльников. Это практичный и полезный инструмент для стенда устранения неполадок.

Типы источников питания постоянного тока

Съемник аккумулятора

Эти типы расходных материалов, как правило, наименее дорогие. Название описывает их основное предназначение — действовать вместо батареи. Эти устройства недороги и удобны при работе с оборудованием с батарейным питанием, так как они позволяют работать с оборудованием без необходимости искать необходимые батареи.

Один из популярных типов выдает 13,8 В постоянного тока и предназначен для подачи постоянного тока на устройства, обычно питаемые от автомобильного аккумулятора. Типичное применение — обслуживание радиоприемников CB и автомобильного стереооборудования. Их характеристики линейного регулирования обычно шире, чем у лабораторных расходных материалов, но это нормально, поскольку напряжения в автомобилях существенно различаются.

Другой популярный тип (показан справа) заменяет различные схемы батарей на 1,5 вольта и батарей на 9 и 12 вольт. Единственными элементами управления являются двухпозиционный переключатель и поворотный переключатель, позволяющие выбрать желаемое выходное напряжение.

Поскольку это настоящие источники питания, они предназначены для безопасной непрерывной работы в условиях короткого замыкания.

Расстояние между банановыми разъемами составляет 0,75 дюйма (19 мм), чтобы можно было использовать переходники с двумя банановыми вилками, используемые с коаксиальными кабелями.

Источник постоянного напряжения

Чуть более сложный источник питания, чем разрядник батарей, обеспечивает постоянное регулируемое напряжение. Поскольку они регулируются, они обычно поставляются с измерителем, чтобы показать вам напряжение, на которое установлено напряжение.В некоторых также есть измерители, позволяющие контролировать ток. Типичная модель — B&K 1686A, показанная справа.

Основное поведение источника питания — поддержание установленного вами напряжения независимо от сопротивления нагрузки.

Эти модели имеют ручку для регулировки выходного напряжения. Некоторые модели не могут быть полностью настроены до нуля вольт, и их максимальный выходной ток может быть пропорционален выходному напряжению, а не обеспечивать номинальный ток при любом выходном напряжении.

В модели справа предусмотрены «связующие» точки, позволяющие контролировать выходное напряжение с помощью более точного цифрового измерителя или для подключения к другим цепям (обратите внимание, что связующие точки имеют предел 2 А).

Эти типы источников питания хорошо работают в качестве разрядников батарей, а также покажут вам ток, потребляемый нагрузкой.

Постоянное напряжение / постоянный ток

Вероятно, самый популярный тип лабораторных источников питания — это источники постоянного напряжения / постоянного тока.В дополнение к подаче постоянного напряжения эти источники также могут подавать постоянный ток. В режиме постоянного тока источник питания будет поддерживать установленный ток независимо от изменений сопротивления нагрузки. Типичным примером этого типа источника питания является B&K 1621A, показанный:

Этот источник питания выдает одно регулируемое напряжение, которое обозначается одним набором клемм типа «банановый джек». Вышеупомянутое расположение выходных клемм с клеммой заземления между клеммами + и — является наиболее распространенным и делает подключение любой клеммы к земле с помощью металлической перемычки очень удобно.Это полезно, если вы хотите, чтобы одна из клемм была заземлена. Конечно, то же самое можно сделать с помощью куска проволоки или перемычки со штабелируемыми банановыми вилками.

Указанный выше источник питания имеет грубую и точную регулировку как тока, так и напряжения. В некоторых источниках питания вместо этого для регулировки используются 10-оборотные потенциометры. В других используются дисковые переключатели или кнопочные переключатели. Дисковые и кнопочные переключатели полезны (если их настройки точны), потому что они могут устранить необходимость в измерителе.

У этих типов источников питания часто есть другие полезные функции:

  • Дистанционное измерение: вход с высоким сопротивлением, позволяющий измерять напряжение на нагрузке. Затем источник питания корректирует падение напряжения на выводах, соединяющих источник питания с нагрузкой.
  • Соединения ведущий / ведомый: существуют различные методы, позволяющие подключать источники питания одного семейства параллельно или последовательно для получения более высоких напряжений или более высоких токов.
  • Терминал дистанционного программирования: у некоторых источников питания есть входные терминалы для напряжения или сопротивления, которые можно использовать для управления выходным напряжением или током.Примечание: это называется аналоговым программированием, а не цифровым программированием с помощью компьютера.

Источник питания с несколькими выходами

Источники питания с несколькими выходами имеют более одного выхода постоянного тока, часто два или три. Они полезны и экономичны для систем, требующих нескольких напряжений. Часто используемый источник питания для разработки схем — это источник с тройным выходом. Один выход подает от 0 до 6 вольт, предназначенный для цифровой логики. Два других питают (обычно) от 0 до 20 вольт, которые могут использоваться с биполярной аналоговой схемой.Иногда для двух источников питания на 20 вольт предоставляется регулировка слежения, так что источники + и — 20 вольт можно регулировать вместе, поворачивая одну ручку.

Популярной моделью является модель 9130:

.

Три выхода можно настроить независимо с помощью ручки или клавиатуры. Выходы каналов 1 и 2 — 31 вольт при 3,1 ампера, а третий канал выдает 6 вольт при 3,1 ампера. Таким образом, источник питания может непрерывно выдавать более 200 Вт. Выходы можно включать и выключать независимо или все сразу (полезно для питания всей печатной платы).

Блок питания имеет ряд полезных функций. Выходы могут быть настроены на работу по таймеру: по прошествии определенного временного интервала выход отключается. Пределы напряжения устанавливаются для всех каналов, поэтому ваш прототип электрической конструкции может быть защищен от случайного перенапряжения. Два канала на 30 В могут быть подключены последовательно или параллельно для получения более высокого напряжения или тока соответственно. Существуют также регистры хранения для сохранения до 50 состояний прибора для последующего вызова (полезно для повторяющихся испытаний).

Приятной особенностью для автоматической работы является то, что источник питания может быть настроен так, чтобы его выход был включен при последних настройках включения. Таким образом, если он работает в цепи и отсутствует питание переменного тока, источник питания снова начнет подавать питание при возобновлении подачи питания переменного тока.

Этот конкретный блок питания также программируется с помощью компьютера, что подводит нас к следующему типу блока питания.

Программируемое питание

Программируемые блоки питания иногда называют «системными» блоками питания, поскольку они часто используются как часть компьютерной системы для тестирования или производства.Мы исключим из этого обсуждения «программирование» с помощью внешних напряжений или сопротивлений, которое использовалось в основном до того, как цифровое управление стало популярным.

На протяжении многих лет существовало множество типов компьютерных интерфейсов с контрольно-измерительными приборами. Двумя наиболее популярными из них были IEEE-488, также известный как GPIB (интерфейсная шина общего назначения), и последовательная связь RS-232. Также использовались сетевые интерфейсы (например, Ethernet) и USB-интерфейсы. Мы не будем здесь обсуждать достоинства различных типов интерфейсов, поскольку они выходят за рамки этого документа.

Командный язык для источника питания находится на несколько более высоком уровне, чем тип интерфейса. Это означает набор инструкций, отправляемых прибору по цифровому интерфейсу, и информацию, полученную компьютером от прибора. Вы увидите три категории:

Собственный

Собственные языки команд обычно специфичны для одного производителя, а иногда даже специфичны для определенного набора инструментов.Недостатком проприетарных командных языков является то, что пользователю необходимо написать программное обеспечение, специально предназначенное для этого инструмента. Переход на другой блок питания от другого производителя означает переписывание программного обеспечения.

SCPI

означает «Стандартные команды для программируемых инструментов», часто произносится как «скиппи» или «скуппи». Поскольку необходимость переписывать программное обеспечение при смене поставщика является болезненным, индустрия тестирования / измерения разработала SCPI для стандартизации команд для контрольно-измерительных приборов, чтобы упростить смену поставщиков приборов без необходимости переписывать большое количество программного обеспечения.

SCPI-подобный

SCPI очень помог, но это не полное решение, потому что добавляются новые функции, требующие новых команд. Несмотря на это, многие производители пытаются сделать свои языки командных инструментов SCPI-подобными, что означает, что они используют как можно больше стандартов. Синтаксис также выглядит знакомым разработчикам программного обеспечения, поэтому время разработки сокращается.

Здесь приводится типичный набор команд SCPI, общих для источников питания:

[SOURce:]
MODE {}
MODE?
НАПРЯЖЕНИЕ
[: LEVel] {}
[: LEVel]?
: ЗАЩИТА
: СОСТОЯНИЕ {}
: СОСТОЯНИЕ?
[: LEVel] {}
[: LEVel]?
ТОК
[: LEVel] {}
[: LEVel]?

Отправляя любую из приведенного выше списка команд через интерфейс, поддерживаемый прибором, можно управлять подачей с компьютера, а не нажимать клавиши на передней панели.Это очень полезно, особенно при выполнении более сложных настроек, таких как создание динамических ступеней напряжения с использованием режима списка.

Многодиапазонная поставка

Большинство обычных источников питания работают с фиксированными номинальными значениями напряжения и тока, например 30В / 3А. В этом примере максимальная выходная мощность 90 Вт может быть реализована только при напряжении питания 30 В / 3 А. Для всех других комбинаций напряжения / тока выходная мощность будет меньше. Многодиапазонные источники питания отличаются тем, что они пересчитывают пределы напряжения / тока для каждой настройки, образуя границу гиперболической формы с постоянной мощностью, как показано на диаграмме ниже.Модель B & K 9110, рассчитанная на 100 Вт / 60 В / 5 А, является примером этого типа источника питания. Возможны любые комбинации напряжения / тока, которые лежат на гиперболической кривой, например 20В / 5А или 60В / 1,66А, и в каждом случае источник питания работает на максимальной мощности. Преимущества этой архитектуры очевидны: источник питания с несколькими диапазонами обеспечивает большую гибкость в выборе выходных характеристик и позволяет пользователям заменять несколько фиксированных номиналов одним источником с несколькими диапазонами, что позволяет сэкономить средства и место на столе.

Характеристики источника питания

Режим постоянного тока и постоянного напряжения

Категория источников питания постоянного тока, обсуждаемая в этом разделе, изменяет напряжение сети переменного тока на напряжение постоянного тока.Наиболее распространенным и универсальным регулируемым источником питания постоянного тока является источник постоянного тока (CC) или постоянного напряжения (CV), который, как следует из названия, может обеспечивать либо постоянный ток, либо постоянное напряжение в определенном диапазоне, см. Изображение ниже.

Рабочая характеристика этого источника питания называется автоматическим кроссовером постоянного напряжения / постоянного тока. Это позволяет непрерывно переходить от режима постоянного тока к режиму постоянного напряжения в ответ на изменение нагрузки.Пересечение режимов постоянного напряжения и постоянного тока называется точкой кроссовера. На рисунке ниже показано соотношение между этой точкой кроссовера и нагрузкой.

Например, если нагрузка такова, что подключенный к ней источник питания работает в режиме постоянного напряжения, обеспечивается регулируемое выходное напряжение. Выходное напряжение остается постоянным по мере увеличения нагрузки до момента, когда будет достигнут заданный предел тока. В этот момент выходной ток становится постоянным, а выходное напряжение падает пропорционально дальнейшему увеличению нагрузки.На некоторых моделях блоков питания точка кроссовера обозначается светодиодными индикаторами на передней панели. Точка пересечения достигается, когда индикатор CV гаснет, а индикатор CC загорается.

Аналогично, переход из режима постоянного тока в режим постоянного напряжения автоматически происходит при уменьшении нагрузки. Хороший пример этого можно увидеть при зарядке 12-вольтовой батареи. Первоначально напряжение холостого хода источника питания может быть установлено равным 13,8 вольт. Низкий заряд батареи приведет к большой нагрузке на источник питания, и он будет работать в режиме постоянного тока, который можно отрегулировать для скорости зарядки 1 ампер.По мере того, как аккумулятор заряжается и его напряжение приближается к 13,8 вольт, его нагрузка уменьшается до точки, при которой он больше не требует полной зарядки в 1 ампер. Это точка кроссовера, когда источник питания переходит в режим постоянного напряжения.

В следующем списке спецификаций мы перечислим советы и вопросы, которые вы, возможно, захотите учесть при изучении характеристик источника питания. Внимательно читайте спецификации и всегда смотрите на мелкий шрифт.

Выход

Выходное напряжение и ток (или напряжения и токи для нескольких выходов), конечно, имеют фундаментальное значение.Если вы ищете источник питания для конкретного приложения, подумайте о том, чтобы быть консервативным и покупать больше возможностей, чем вам нужно — в проекты часто добавляются новые функции на поздних этапах цикла проектирования.

Советы и вопросы:

  • Убедитесь, что выходной сигнал указан в допустимом диапазоне входного линейного напряжения (пример: некоторые импульсные источники питания должны быть снижены, например, до 90 В переменного тока).
  • Некоторые блоки питания (обычно импульсные блоки питания) не рассчитаны на выходное напряжение до 0 В.
  • Насколько припас может плавать над или под землей?
  • Насколько выходной дрейф с течением времени? Типичное значение может составлять от 5 до 10 мВ в течение 10 часов при постоянной нагрузке и входном напряжении.
  • Если на выходе фиксированное напряжение, можно ли его немного отрегулировать до желаемого значения?
  • Проверьте, есть ли в источнике питания дистанционное зондирование. Дистанционное измерение использует две входные клеммы с высоким импедансом для измерения выходного напряжения источника питания. При подключении к нагрузке эта функция может корректировать падение напряжения в соединительных проводах питания и нагрузки.
  • Некоторые блоки питания имеют защиту на выходе. Иногда это называют «лом», «защитой от перенапряжения» или «защитой от предельного напряжения». Эта функция либо ограничивает выходное напряжение до значения, установленного пользователем, либо отключает выход, если выходное напряжение достигает установленного предела. Цель состоит в том, чтобы обеспечить защиту цепей, чувствительных к напряжению. Пример: вы запитываете логическую схему на 5 В с источником питания, способным обеспечить выходное напряжение 40 В. Вы устанавливаете защиту источника питания от перенапряжения на 5.5 вольт. Тогда выходное напряжение никогда не превысит 5,5 В независимо от того, на сколько вы повернете ручку регулировки напряжения. Примечание: «лом» обозначает устройство (обычно SCR), которое закорачивает выход при превышении установленного предела напряжения. Поведение лома может быть нежелательным — хотя отключение цепи защитит ее, это также может вызвать проблему из-за отсутствия питания цепи!

Постановление

Регулировка нагрузки — это степень изменения выходного напряжения при изменении нагрузки, обычно от 0 до 100% номинального значения.Это удобно и легко можно измерить с помощью современных нагрузок постоянного тока. Типичные характеристики составляют от 0,1% до 0,01%. Если подумать, это отличное поведение — изменение до 1 части из 10 000 (это делается с помощью схем управления с отрицательной обратной связью).

Линейное регулирование — это степень изменения выхода при изменении входного переменного напряжения. Обычно он указывается как мВ на данное изменение входного сигнала или как процентное изменение во всем допустимом диапазоне входного сигнала. Типичные значения снова находятся в диапазоне 0.От 1% до 0,01%.

Для очень требовательных проектов можно узнать, как изменяется выход при изменении трех основных факторов: входного напряжения, нагрузки и температуры. Это редко указывается и, вероятно, придется измерить.

Вышеуказанные нормативные характеристики относятся к установившемуся режиму работы. Переходное поведение важно для некоторых приложений. Можно указать время переходного процесса, и оно связано с тем, сколько времени требуется источнику питания для восстановления заданного значения после внезапного изменения нагрузки или выхода.Это может быть важной спецификацией, когда источник питания используется с цифровой схемой, которая потребляет энергию пачками. Например, радиопередатчик быстро перейдет из состояния бездействия в состояние полной мощности, что приведет к скачкообразным изменениям спроса на источник питания. Источник питания с плохой переходной характеристикой (или нестабильной реакцией, вызывающей колебания) будет вредным для приложения, потому что он может быть не в состоянии обеспечить достаточную мощность, а его выходные переходные процессы могут быть связаны с цепью, которую он подает питание, что приведет к аномальное поведение.

Пульсация и шум

Не существует общепринятого метода измерения пульсаций и шума. Некоторые поставщики включают внешние схемы при проведении измерений, поэтому, чтобы дублировать их результаты, вам нужно будет связаться с ними, как они проводят свои измерения. Самый простой способ измерения — подключить осциллограф со связью по переменному току к выходу источника питания. Измерение может быть выполнено для синфазного шума (шум на обоих выходах + и — источника питания по отношению к заземлению источника питания переменного тока) или нормального (также называемого дифференциальным режимом) шума, который представляет собой шум, наблюдаемый между + и — клеммы источника питания.Примечание: поскольку внешняя сторона разъема BNC на многих прицелах подключена к заземлению, вам придется использовать изолирующий трансформатор для питания осциллографа или использовать дифференциальный усилитель для измерения шума в нормальном режиме.

Пульсации для линейных источников питания обычно измеряются при удвоенной частоте сети. Что касается импульсных источников питания, вам нужно проверить более высокие частоты, и вы можете увидеть скачки напряжения. Пульсация может быть определена как часть нефильтрованного переменного напряжения и шума, присутствующих на выходе фильтрованного источника питания при работе с полной нагрузкой, и обычно указывается в вольтах (среднеквадратичное значение).С другой стороны, шум обычно определяется как размах переменного напряжения и может быть определен как часть нефильтрованного и неэкранированного шума электромагнитных помех, присутствующего на выходе отфильтрованного источника питания при работе с полной нагрузкой.

Может быть важно знать, в какой полосе частот указан шум. Часто это 20 МГц, так как для его измерения используется осциллограф. Примечание: иногда рябь и шум обозначаются как PARD, что является аббревиатурой от «периодических и случайных отклонений».

Большинство линейных источников питания должны иметь пульсации менее 3 мВ RMS и менее 50 мВ пиковых значений для импульсных источников

* Практический пример : Вот несколько примеров измерений пульсации и шума.Выход блока питания B&K Precision 9130, установленного на 9 В, был подключен через коаксиальный кабель 50 Ом (с использованием адаптера с двумя банановыми вилками) к цифровому запоминающему осциллографу B&K Precision 2534 (полоса пропускания 60 МГц). Вход осциллографа был связан по переменному току (канал был проверен, чтобы убедиться, что связь по переменному току не оказывала заметного влияния на амплитуду входного сигнала до 30 Гц). Прицел питался от изоляционного трансформатора медицинского назначения, поэтому измерение шума было дифференциальным, а не синфазным.Не было измеримых пульсаций в линии электропередач, и шум был в основном широкополосным с некоторыми всплесками с основной частотой 40 МГц. Эти шипы не от этого источника питания, потому что i) они присутствовали при выключенном источнике питания и ii) они присутствовали на других приборах на скамейке автора, также выключенных. Вероятно, это цифровые помехи от компьютера автора, проходящие через линию электропередачи. 9130 должен иметь уровень шума менее 3 мВ (среднеквадратичное значение); эта конкретная поставка соответствовала спецификации.Обратите внимание, что это примерные измерения и не предназначены для определения каких-либо конкретных характеристик источников питания 9130 в целом. Тем не менее, мы надеемся, что это показывает, что такая «простая» вещь, как подключение одного кабеля к источнику питания и проведение измерения, включает в себя ряд вещей, о которых следует подумать. Если бы автор использовал на входе фильтр нижних частот 20 МГц, он бы не тратил время на отслеживание этого паразитного шума.


Рисунок 2: (A) Типичный тепловой шум (B) Более медленный захват (A), показывающий всплеск (~ 15 мВ) (C&D) Подробная информация о всплеске

Температура

Поскольку компоненты, из которых состоят блоки питания, чувствительны к температуре, неудивительно, что блоки питания в целом также могут быть чувствительными к температуре.Это верно даже тогда, когда дизайнеры стараются минимизировать влияние температуры. Современные источники питания лабораторного качества должны иметь температурный коэффициент ниже 0,05% на C. Обычно это указывается в диапазоне рабочих температур, который часто составляет от 0 до 40 ˚C. Обычно подразумевается или предполагается, что источник питания испытывается при постоянной нагрузке без колебаний линии переменного тока.

Вход переменного тока

Источники питания большей мощности могут использовать трехфазное питание. Они могут быть более экономичными и немного более эффективными, чем однофазные источники питания, хотя частота пульсаций будет выше.

Изоляция: определяется как напряжение постоянного или переменного тока, которое может быть приложено между входом и выходом без нарушения питания. Типичные числа от 500 до 1500 В. Изоляция источника питания между входом и выходом или шасси обеспечивается изоляцией, обеспечиваемой трансформатором источника питания.

Некоторые источники питания содержат фильтрующие конденсаторы большой емкости, которые, по сути, вызывают короткое замыкание на выпрямитель при первом включении источника питания. В некоторых источниках питания есть схемы, позволяющие минимизировать пусковой ток или распределить его по времени («плавный пуск»).

Спецификация удержания определяет, как долго вход переменного тока может отключиться, а источник питания будет оставаться в режиме регулирования. Заряд, накопленный на конденсаторах фильтра, используется для подачи питания при отключенном входе переменного тока.

По мере увеличения стоимости энергии эффективность энергоснабжения становится все более важной. Эффективность — это выходная мощность, деленная на входную, и, конечно же, всегда будет меньше 100% (обычно она преобразуется в проценты). Лучшие расходные материалы могут быть эффективными на 90% или лучше.Линейные источники питания обычно намного менее эффективны, чем импульсные источники питания.

Точность отслеживания

Некоторые блоки питания с двумя или более выходами могут иметь функцию отслеживания. Здесь один выход будет отслеживать выходное напряжение другого выхода. Это полезно при подаче питания на цепи, которым нужна положительная и отрицательная шина. Спецификация точности отслеживания определяет, насколько точно второй вывод отслеживает вывод первого вывода.

Изоляция постоянного тока

Изоляция означает, насколько клеммы + или — могут быть «плавающими» над или под землей линии питания.Эта спецификация часто включает выходное напряжение источника питания. Важно не превышать спецификацию, так как это может вызвать пробой диэлектрика внутреннего компонента и / или воздействие опасного напряжения. Довольно часто два блока питания подключаются последовательно, чтобы получить более высокое напряжение, чем может обеспечить любой из них. Например, рассмотрим следующую схему:

В, из будет суммой напряжений, установленных на источнике питания 1 и источнике питания 2. Обратите внимание, что эта последовательная работа должна быть такой, чтобы ток не превышал ток источника питания с минимальным номинальным током.

Чтобы быть уверенным, что вы соблюдаете технические требования производителя по изоляции постоянного тока, убедитесь, что ни одно из напряжений на любом из внешних проводов относительно земли не превышает спецификации изоляции постоянного тока.

Теория работы

Есть два основных способа работы источников питания: линейное регулирование и режим переключения.

Линейный регламент

Принцип действия источника питания с линейным регулированием показан на следующей схеме:

Входное напряжение обычно поступает от трансформатора, двухполупериодного выпрямителя и конденсаторного каскада фильтра.Выходное напряжение сравнивается с опорным напряжением (полученным, например, из настроек передней панели источника питания), и разница подается на транзистор, чтобы пропустить через него больший или меньший ток. Транзистор обычно биполярный или MOSFET (иногда как часть управляющей ИС для небольших источников питания) и работает в своей линейной области (отсюда и название «линейное» регулирование). Стратегия линейного регулирования имеет преимущества простоты, низкого уровня шума, быстрого времени отклика и отличного регулирования.Недостатком является то, что они неэффективны, так как всегда рассеивают мощность. В приведенной выше схеме вы можете видеть, что транзистор имеет V на входе — V на выходе через него. Умножьте эту разницу на ток, чтобы получить рассеиваемую мощность. При большой разнице напряжений (т. Е. При низком выходном напряжении источника питания) и большом токе общий КПД может упасть почти до 10%. Максимальный КПД для линейного источника питания обычно составляет около 60%. Типичный средний КПД находится в диапазоне 30-40%.

Режим переключения

Примечание. В этом разделе мы будем называть импульсный источник питания сокращенно SMPS.

Проблемой типичного линейного источника питания является размер и вес трансформатора. Размер нужен из-за низкой частоты (от 50 до 60 Гц). При той же выходной мощности размер трансформатора уменьшается (значительно) с увеличением частоты (до определенного значения). SMPS использует это преимущество, разделяя форму волны переменного тока на множество мелких частей и изменяя их до желаемого уровня напряжения с помощью трансформатора гораздо меньшего размера.Ключевым фактом является то, что переключающий элемент (транзистор) либо выключен, либо полностью включен (насыщен). Падение напряжения на транзисторе невелико (как для биполярного транзистора, так и для полевого МОП-транзистора), что означает, что в нем тратится мало энергии. Когда он выключен, мощность не рассеивается. Это одно из преимуществ эффективности ИИП.

Конденсаторы фильтра также могут быть меньше на этих более высоких частотах, и дроссели более эффективны. Нижний предел частоты составляет 25 кГц (чтобы оставаться выше диапазона человеческого слуха), а современный верхний предел в настоящее время составляет около 3 МГц.В большинстве коммутационных источников используются частоты в диапазоне от 50 кГц до 1 МГц.

Паразитное поведение и скин-эффект в проводимости становятся важными на более высоких частотах переключения, особенно потому, что формы волны представляют собой прямоугольные волны и богаты гармониками. В пассивных элементах, таких как конденсаторы и катушки индуктивности, значение ESR (эквивалентное последовательное сопротивление) становится важным и приводит к неэффективности. Резисторы должны быть неиндуктивными. Тщательно продуманные, оптимизированные схемы переключения режимов могут обеспечить эффективность 95%, но типичный SMPS имеет КПД около 75%, что все же намного лучше, чем у типичного линейного источника питания.Это одна из причин, по которой они повсеместно используются в персональных компьютерах.

Еще одним преимуществом SMPS является то, что переключение может модулироваться различными способами в зависимости от условий нагрузки. Выход источника питания регулируется с помощью цепи обратной связи, которая регулирует время (рабочий цикл), с которым MOSFETs включаются или выключаются.

Преимущества импульсных источников питания не связаны с некоторыми затратами. Более высокие частоты и переключение означают более высокие уровни электромагнитных помех (EMI), как излучаемых, так и кондуктивных.Это может вернуть коммутационный шум в линию электропередачи. Управляющая электроника также стала более сложной (особенно в последнее время из-за желания иметь более высокие коэффициенты мощности).

Импульсные источники питания могут с трудом вырабатывать низкое напряжение. Это связано с тем, что транзистор должен переключать ток, то есть SMPS не может работать, пока не будет протекать достаточный ток. Из-за этого импульсные источники питания часто имеют минимальное выходное напряжение.

Применение источника питания

http: // www.amtex.com.au/ApplicationNotesPower.htm

Использование источника питания для создания смещения постоянного тока с помощью функционального генератора

Если источник сигнала, такой как функциональный генератор, не имеет возможности смещения постоянного тока, вы можете эффективно добавить эту функцию, используя источник питания постоянного тока. Как и в спецификации на изоляцию постоянного тока источника постоянного тока, важно, чтобы такой режим работы источника сигнала был разрешен производителем и чтобы вы не превышали спецификации. Вам также понадобится источник сигнала, выходные клеммы которого (обычно разъем BNC) изолированы от земли.Если разъем не изолирован от земли, прибор можно изолировать от земли линии питания с помощью изолирующего трансформатора. Однако металлическое шасси инструмента может быть выше или ниже потенциала земли при смещении постоянного тока, поэтому примите соответствующие меры против поражения электрическим током. Способ подключения показан на следующей схеме.

Причина, по которой это может быть полезно, заключается в том, что сигнал функционального генератора затем может быть вставлен в схему, которая смещена выше или ниже земли (или источник питания постоянного тока может подавать смещение, например, для транзистора).Вы должны быть осторожны, чтобы не превысить текущие возможности функционального генератора.

Источники питания: вопросы и советы

Как измерить эффективность источника питания?

Если для вас важна эффективность, вы должны тщательно ее измерить. Для типичного источника постоянного тока, работающего от сети переменного тока, вам необходимо измерить входную мощность переменного тока и мощность постоянного тока, выдаваемую источником, как показано на следующей диаграмме:

Наверное, лучший инструмент для измерения мощности переменного тока, используемой источником постоянного тока, — это осциллограф.Вам нужно будет измерить переменное напряжение и переменный ток, поступающие в блок питания. Лучшим подходом, вероятно, является использование неиндуктивного токового шунта для измерения тока и двух независимых дифференциальных усилителей для измерения входного переменного напряжения источника питания и переменного напряжения на шунте. Форма волны мощности может быть получена путем умножения формы волны тока и напряжения с помощью осциллографа. При подходящей полосе пропускания осциллографа и усилителей это будет точное измерение, покажет вам коэффициент мощности и расскажет о любых гармониках / переходных процессах линии питания, связанных с работой источника питания постоянного тока.Если ваш осциллограф не может выполнить умножение, вы все равно можете измерить среднеквадратичные значения напряжения и тока, измерить коэффициент мощности и умножить эти три вместе.

Для измерения мощности, потребляемой нагрузкой, вы можете использовать измерители напряжения и тока источника постоянного тока, если вы знаете, что они точны. Для подтверждения вы можете вместо этого использовать нагрузку постоянного тока с такими же характеристиками нагрузки.

Тогда измеренный КПД в процентах будет

.

, где P in — это измеренная входная мощность переменного тока, а P out — измеренная выходная мощность постоянного тока, оба в одних и тех же блоках питания.

Почему существует такая большая разница в ценах на блоки питания?

Аналогичный вопрос можно задать об автомобилях. Оба вопроса имеют один и тот же ответ: существует множество факторов, и простой ответ, вероятно, невозможен. Некоторые из факторов:

  • Имя и репутация продавца

  • Насколько консервативен дизайн

  • Количество и тип конкурирующих единиц

  • Сертификаты (e.г., безопасность, EMI и др.)

  • Надежность конструкции (и усилия, затраченные на проверку конструкции)

  • Качество используемых компонентов и конструкции

  • Количество функций

При оценке источника питания (или любого другого оборудования) следует учитывать общую стоимость владения. Включите стоимость ежегодных калибровок и любые предполагаемые потери из-за недоступности или необходимости ремонта или замены устройства в случае его выхода из строя.Через десять или более лет эти затраты могут легко превысить первоначальную стоимость источника питания.

Что лучше: режим переключения или линейный?

Это зависит от того, что вы подразумеваете под словом «лучший». Вы можете получить некоторую информацию из следующей таблицы:

Тип

Сильные стороны

Слабые стороны

Линейная

  • Низкий уровень шума и электромагнитных помех
  • Хорошая регулировка линии и нагрузки
  • Быстрая переходная характеристика
  • Может производить очень слабый выходной ток
  • Низкий КПД (в среднем 30-40%)
  • Масса (трансформатор)
  • Радиаторы большего размера
  • Дороже для большей мощности

Режим переключения

  • Высокая эффективность (в среднем 75%, в некоторых случаях около 95%)
  • Более доступный для большей мощности
  • Более легкий
  • Невозможно подавать низкое напряжение, требуется минимальный ток
  • Больше шума (включая импульсный шум и помехи ЭМС)
  • Значительно более медленная переходная характеристика по сравнению с линейной

Дополнительные комментарии по этим двум типам см. В разделе «Теория работы».

Все большую популярность приобретают гибридные технологии, использующие как линейные, так и переключающие схемы. Целью этого подхода является создание источников питания, характеристики которых сочетают в себе преимущества технологий линейного и импульсного режимов.

Что такое лом?

Это защитное устройство, используемое на выходе источников питания (обычно SCR) для короткого замыкания выхода, если выходное напряжение превышает установленный уровень. См. Раздел «Выход» в разделе «Характеристики источника питания».

Как лучше всего проверить блок питания под нагрузкой?

Безусловно, отличный способ — протестировать его с реальной нагрузкой, которую он предназначен, если это возможно. Однако это может не повлиять на поставку настолько, чтобы много рассказать о ее пригодности и надежности для вашего приложения. Отличным инструментом для проверки блоков питания является нагрузка постоянного тока. Их можно запрограммировать на применение самых разных нагрузок к источнику питания, и они могут делать это безостановочно. После того, как определенная поставка квалифицирована, они становятся хорошими инструментами для текущей или входящей проверки.

Как измерить пульсацию и шум?

Это можно сделать с помощью осциллографа или широкополосного среднеквадратичного вольтметра переменного тока. Но есть нюансы, о которых следует знать — см. Раздел «Пульсация и шум» в разделе «Характеристики источника питания».

Сопротивление провода и контакта

Контактное сопротивление в плохих соединениях или плохо выполненных механических соединениях может добавить значительные нагрузки, особенно в сильноточных устройствах. Плохое или корродированное гофрированное соединение может иметь сопротивление в сотни миллиомов или даже выше ома.Это снижает эффективность и создает горячие точки. Если вам когда-либо приходилось чистить клеммы аккумулятора на вашем автомобиле, чтобы он завелся, вы видели проблему.

Медный провод 10 калибра имеет сопротивление немногим более 3 Ом / м. Для цепи с проводом длиной 10 м это 30 мОм. Таким образом, соединение 100 мОм обеспечит 75% сопротивления проводки (а также потеряет 75% мощности, потерянной в проводке).

Плохие соединения относительно легко найти, если вы можете получить доступ к проводу под нагрузкой. Цифровой мультиметр можно использовать для измерения падения напряжения на соединениях (будьте осторожны, когда по проводам передаются значительные напряжения).Зная ток (измерьте его с помощью накладного амперметра постоянного тока, если измеритель источника питания не подходит), вы можете рассчитать сопротивление соединения. Если провод изолирован, доступны специальные пробивающие изоляцию щупы, такие как CalTest Electronics CT3044 или Pomona 5913. Если вы используете пробивные щупы, сначала отключите питание — случайная дуга может повредить острые наконечники (кроме потенциальная угроза безопасности).

Могу ли я подключиться параллельно?

Нагрузке для работы требуется n источников питания, поэтому используется n + 1 источник питания, что позволяет одному из них выйти из строя.Диоды должны изолировать источники питания друг от друга (они могут понадобиться, а могут и не понадобиться; опять же, спросите своего поставщика). Для источников питания может потребоваться соединение линий управления, чтобы они могли разумно распределять нагрузку. Требование состоит в том, чтобы на выходе каждого источника было одинаковое напряжение, чтобы они поровну распределяли нагрузку. Проводка должна быть короткой, и каждая ветвь должна быть одинаковой для каждого источника питания.

М. Шварц, Передача информации, модуляция и шум, 2-е изд., McGraw-Hill, 1970, ISBN 07-055761-6.

http://www.abbottelectronics.com/engineer/glossary.htm

http://www.currentsolutions.com/knowledge/glossary.htm

Регулировка линии
Насколько изменяется напряжение или ток нагрузки, когда источник питания работает при различных линейных напряжениях в заданном диапазоне. Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
Регулировка нагрузки
Насколько изменяется напряжение или ток нагрузки при работе источника питания на холостом ходу и при полной нагрузке.Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
КПД
Измеренный в процентах, он указывает количество выходной мощности по сравнению с мощностью, потребляемой в системе.
EMI
Электромагнитные помехи
Пусковой ток
Начальная величина тока, потребляемого источником питания при запуске.Иногда его называют пусковым током, и обычно он на несколько значений превышает установившееся значение источника питания.
Инвертор
Электрическое устройство, используемое для преобразования постоянного тока в переменный ток.
Дистанционное считывание
Предоставляется в некоторых приборах, которые можно использовать для измерения напряжения тестируемого устройства на его клеммах, чтобы обеспечить точные показания для компенсации падений напряжения на выводах, подключенных к прибору и тестируемому устройству.
Постоянное напряжение
Стабилизированный источник питания, который подает постоянное напряжение на нагрузку, даже когда сопротивление нагрузки изменяется до значения, не превышающего предельный ток источника питания.
Постоянный ток
Регулируемый источник питания, который подает постоянный ток на нагрузку даже при изменении сопротивления нагрузки. Обратите внимание, что источник питания должен соответствовать закону Ома.
Предел тока
Значение, заданное как предел тока, который может выдавать блок питания.Когда ток достигает предела, типичный источник питания CV / CC переключается из режима CV в режим CC. Это также известно как точка пересечения.
Защита от перегрузки
Функция защиты в большинстве источников питания постоянного тока, предотвращающая потребление каким-либо устройством большей мощности, чем предназначены для выработки.
Защита от перенапряжения
Защита, используемая во многих источниках питания, ограничивает величину выходного напряжения.
Параллельная работа
Этот режим работы, применяемый во многих источниках питания с двойным и тройным выходом, позволяет подключать два или более независимых выхода параллельно для увеличения токового выхода.
Последовательная работа
Режим работы многих источников питания с двойным и тройным выходом, в котором два или более независимых выхода последовательно подключаются для увеличения выходного напряжения.
PARD
Периодические (пульсации) и случайные (шум) отклонения выходного напряжения от заданного значения.
PWM
Широтно-импульсная модуляция
Разрешение
Наименьшее изменение напряжения или тока, которое может быть выполнено регулировкой органов управления.
Тепловая защита
Защита от повреждения источника питания из-за чрезмерной температуры.
Переходное время восстановления
Время, необходимое источнику питания для восстановления своей выходной мощности после ступенчатого изменения.
AC
Переменный ток. Описывает напряжение и ток, которые меняются по амплитуде, обычно синусоидальной формы по времени. Электропитание переменного тока почти повсеместно используется для распределения электроэнергии.
Blackout
Потеря мощности переменного тока.
Brownout
Запланированное снижение напряжения переменного тока энергокомпанией для противодействия чрезмерному спросу.
Емкостная связь
Два отдельных проводника всегда образуют конденсатор. Чем они ближе, тем больше вероятность того, что колебания напряжения на одном проводе будут электростатически индуцированы на другом проводе (в отличие от индуктивной связи).
Индуктивная связь
Когда в одном проводе протекает изменяющийся ток, в соседнем проводе индуцируется напряжение из-за магнитного поля, вызванного током (в отличие от емкостной связи).
Пик-фактор
В сигнале переменного тока пик-фактор — это отношение пикового значения к среднеквадратичному значению.
DC
Постоянный ток. Используется для описания неизменного напряжения, тока или электрической мощности.
Drift
Изменение во времени выходного напряжения или тока.
Электронная нагрузка
Тип прибора, который служит в качестве нагрузки, обычно динамической, и может использоваться для тестирования источников питания и источников питания.
ESR
Эквивалентное последовательное сопротивление. Простая «последовательная» модель конденсатора или катушки индуктивности помещает чистое реактивное сопротивление последовательно с чистым резистором, значение которого обычно называют ESR. Часто измеряется на электролитических конденсаторах большего размера, и высокое значение ESR обычно указывает на неисправный конденсатор.
Заземление
Электрическое заземление в системе переменного тока — это провод, который соединен с землей, отсюда и название «земля». Причина такого подключения кроется в необходимости защиты пользователей электрического оборудования от поражения электрическим током.Электроэнергия доставляется к месту использования с помощью трансформатора, установленного на опоре или другого типа. Выход такого трансформатора состоит в основном из двух выводных проводов, между которыми имеется напряжение использования. По ряду сложных причин, связанных с безопасностью, один из этих выводных проводов трансформатора подключается к земле с помощью медной шины, вбитой в землю.
Минимальная нагрузка
Если указан для источника питания, это минимальный ток нагрузки, который должен быть получен от источника питания, чтобы он соответствовал его рабочим характеристикам.
Скачок
Кратковременное повышение напряжения сети переменного тока.
Выходное сопротивление
Отношение изменения выходного напряжения к изменению тока нагрузки.
Коэффициент мощности
Отношение активной и полной мощности. Это определяет, сколько тока требуется для выработки определенного количества энергии. Всегда желательно, чтобы отношение было как можно ближе к 1. Система с более низким коэффициентом мощности означала бы большую потерю мощности для выполнения того же объема работы по сравнению с системой с более высоким коэффициентом мощности.
Пульсации напряжения
Часть нефильтрованного переменного напряжения и шума, присутствующие на выходе фильтрованного источника питания, работающего при полной нагрузке. Обычно указывается в среднеквадратичных значениях напряжения переменного тока (с нулевыми пульсациями напряжения, представляющими идеально отфильтрованный источник питания).
Пульсирующий ток
Часть нефильтрованного переменного тока на выходе фильтрованного источника питания.
RMS
Среднеквадратичное значение. Для любой формы сигнала среднеквадратичное значение представляет собой квадратный корень из среднего значения суммы квадратов выбранных значений.Для непрерывной функции применима аналогичная интегральная формула.
Защитное заземление
Цепь, предназначенная для отвода опасного напряжения (вызванного дефектом или несчастным случаем), тем самым защищая людей от случайных ударов. Металлические крышки инструментов и приборов заземлены (и, следовательно, называются защитным заземлением). Таким образом, если электрически «горячий» провод внутри устройства случайно касается металлического корпуса, подключение к защитному заземлению означает, что металл будет оставаться рядом с потенциалом земли.Обычно в таком состоянии срабатывает автоматический выключатель.
Диапазон температур
Диапазон, в котором рассчитан источник питания. Он также может обозначать диапазон температур, в котором может храниться источник питания.
Истинная мощность
Также называемая реальной мощностью, обычно измеряется в ваттах.
Полная мощность
Произведение среднеквадратичного значения тока и среднеквадратичного напряжения, обычно измеряемое в единицах ВА (вольт-амперы).

Регулируемая поставка »Электроника

Источники питания с линейной стабилизацией могут обеспечивать чрезвычайно низкий уровень выходного шума и хорошую стабилизацию, но за счет размера и эффективности.


Схемы линейного источника питания Праймер и руководство Включает:
Линейный источник питания Шунтирующий регулятор Регулятор серии Ограничитель тока Регуляторы серий 7805, 7812 и 78 **

См. Также: Обзор электроники блока питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Линейные источники питания широко используются из-за преимуществ, которые они предлагают с точки зрения общей производительности, а также благодаря этой технологии, которая хорошо зарекомендовала себя, поскольку была доступна уже много лет.

Хотя линейные источники питания могут быть не такими эффективными, как импульсные источники питания, они обеспечивают лучшую производительность и поэтому используются во многих приложениях, где шум имеет большое значение.

Одна из основных областей, где почти всегда используются линейные источники питания, — это аудиовизуальные приложения, усилители Hi-Fi и тому подобное. Здесь шум и всплески переключения от импульсных источников питания могут вызвать проблемы — при этом говорится, что SMPS постоянно улучшают производительность, но линейные источники, как правило, используются большую часть времени.

Типовой регулируемый линейный источник питания для лабораторного использования

Основы линейного источника питания

Источники питания с линейной стабилизацией получили свое название от того факта, что в них используются линейные, т. Е. Не коммутационные методы, для регулирования выходного напряжения источника питания. Термин линейный источник питания означает, что источник питания регулируется для обеспечения правильного напряжения на выходе.

Измеряется напряжение, и этот сигнал подается обратно, обычно в какой-либо дифференциальный усилитель, где он сравнивается с опорным напряжением, и результирующий сигнал используется для обеспечения того, чтобы на выходе оставалось требуемое напряжение.

Иногда измерение напряжения может осуществляться на выходных клеммах, а в некоторых случаях — непосредственно на нагрузке. Дистанционное измерение используется там, где могут быть омические потери между источником питания и нагрузкой. Часто такая возможность есть у лабораторных стендов.

Различные линейные источники питания будут иметь разные схемы и включать разные схемные блоки, если требуются дополнительные возможности, но они всегда будут включать в себя базовые блоки, а также некоторые дополнительные дополнительные.

Входной трансформатор питания

Поскольку многие регулируемые источники питания получают питание от сети переменного тока, для линейных источников питания часто используется понижающий или иногда повышающий трансформатор. Это также служит для изоляции источника питания от сетевого входа в целях безопасности.

Трансформатор обычно представляет собой относительно большой электронный компонент, особенно если он используется в линейно регулируемом источнике питания большей мощности. Трансформатор может значительно увеличить вес источника питания, а также может быть довольно дорогим, особенно для более мощных.

В зависимости от используемого выпрямителя трансформатор может быть с одной вторичной обмоткой или с центральным ответвлением. Также могут присутствовать дополнительные обмотки, если требуются дополнительные напряжения.

Для старинных радиоприемников и другой старинной электронной электроники многократные вторичные обмотки были обычным явлением. Обычно основная вторичная обмотка имела центральный отвод, чтобы обеспечить двухполупериодное выпрямление с помощью двойного диодного клапана или трубчатого выпрямителя, а дополнительные вторичные обмотки требовались для вентильных или трубчатых нагревателей — часто 5 вольт для выпрямителя, а затем 6.3в для самих клапанов / трубок.

Выпрямитель

Поскольку вход от источника переменного тока является переменным, его необходимо преобразовать в формат постоянного тока. Доступны различные формы выпрямительной схемы.

Самая простая форма выпрямителя, которую можно использовать в источнике питания, — это одиночный диод, обеспечивающий полуволновое выпрямление. Этот подход обычно не используется, потому что сложнее удовлетворительно сгладить вывод.

Обычно используется двухполупериодное выпрямление с использованием обеих половин цикла.Это обеспечивает более легкое сглаживание формы волны.

Есть два основных подхода к обеспечению полуволнового выпрямления. Один из них — использовать трансформатор с отводом от центра и два диода. Другой — использовать одну обмотку на трансформаторе источника питания и использовать мостовой выпрямитель с четырьмя диодами. Поскольку диоды очень дешевы, а стоимость трансформатора с центральным ответвлением выше, наиболее распространенным подходом в наши дни является использование мостового выпрямителя.

Примечание по схемам диодного выпрямителя:

Диодные выпрямительные схемы используются во многих областях, от источников питания до радиочастотной демодуляции.В схемах диодного выпрямителя используется способность диода пропускать ток только в одном направлении. Есть несколько разновидностей от полуволнового до двухполупериодного, мостовые выпрямители, пиковые детекторы и многое другое.

Подробнее о Диодные выпрямительные схемы

Даже для регуляторов с питанием от постоянного тока на входе может быть установлен выпрямитель для защиты от обратного подключения источника питания.

Электропитание сглаживающее

После выпрямления из сигнала переменного тока необходимо сглаживать постоянный ток, чтобы удалить изменяющийся уровень напряжения.Для этого используются большие емкостные конденсаторы.

Сглаживающее действие накопительного конденсатора

В сглаживающем элементе схемы используется большой конденсатор. Он заряжается по мере того, как сигнал, поступающий от выпрямителя, достигает своего пика. По мере того, как напряжение выпрямленной формы волны падает, как только напряжение становится ниже напряжения конденсатора, конденсатор начинает подавать заряд, поддерживая напряжение до тех пор, пока не появится следующий нарастающий сигнал от выпрямителя.

Сглаживание не идеальное, и всегда будет некоторая остаточная пульсация, но это позволяет устранить огромные колебания напряжения.


Линейные регуляторы питания

Большинство источников питания в наши дни обеспечивают регулируемую мощность. С современной электроникой довольно просто и не слишком дорого включить линейный стабилизатор напряжения. Это обеспечивает постоянное выходное напряжение независимо от нагрузки — в указанных пределах.

Поскольку многие электронные компоненты, электронные устройства и т. Д. Требуют аккуратно обслуживаемых источников питания, регулируемый источник питания является необходимостью.

Существует два основных типа линейных источников питания:

  • Шунтирующий регулятор: Шунтирующий регулятор менее широко используется в качестве основного элемента в линейном регуляторе напряжения.Для этой формы линейного источника питания переменный элемент размещается поперек нагрузки. Сопротивление истока установлено последовательно со входом, а шунтирующий стабилизатор регулируется, чтобы гарантировать, что напряжение на нагрузке остается постоянным.

    Источник питания рассчитан на заданный ток, и с приложенной нагрузкой шунтирующий стабилизатор поглощает любой ток, не требуемый нагрузкой, так что выходное напряжение сохраняется.


  • Регулятор серии : Это наиболее широко используемый формат линейного регулятора напряжения.Как следует из названия, в цепь помещается последовательный элемент, и его сопротивление изменяется с помощью управляющей электроники, чтобы гарантировать, что правильное выходное напряжение генерируется для потребляемого тока. Блок-схема регулятора напряжения серии

    В этой блок-схеме, опорное напряжение используется для привода серии прохода элемента, который может представлять собой биполярный транзистор или полевой транзистор. Ссылка может быть просто напряжение берется из источника опорного напряжения, например, электронный компонент, такой как стабилитрон.

    Более обычный подход состоит в том, чтобы выбрать выходное напряжение и подать его в дифференциальный усилитель для сравнения выходного сигнала с эталоном, а затем использовать его для управления схемой элемента конечного прохода.


Оба этих типа линейных регуляторов используются в источниках питания, и хотя последовательный стабилизатор используется более широко, в некоторых случаях также используется шунтирующий регулятор.

Преимущества / недостатки линейного источника питания

Использование любой технологии часто представляет собой тщательный баланс нескольких преимуществ и недостатков.Это справедливо для линейных источников питания, которые имеют ряд явных преимуществ, но также имеют свои недостатки.

Преимущества линейного блока питания

  • Установленная технология: Линейные источники питания широко используются в течение многих лет, а их технология хорошо отработана и изучена.
  • Низкий уровень шума: Использование линейной технологии без какого-либо переключающего элемента означает, что шум сведен к минимуму, а раздражающие всплески, обнаруживаемые в импульсных источниках питания, теперь обнаруживаются.

Линейный БП Недостатки

  • КПД: Принимая во внимание тот факт, что линейный источник питания использует линейную технологию, он не особенно эффективен. Эффективность около 50% не является чем-то необычным, а при некоторых условиях может предлагать гораздо более низкие уровни.
  • Рассеивание тепла: Использование последовательного или параллельного (менее распространенного) регулирующего элемента означает, что рассеивается значительное количество тепла, и его необходимо удалить.
  • Размер: Использование линейной технологии означает, что размер линейного источника питания, как правило, больше, чем у других форм источника питания.
Добавить комментарий

Ваш адрес email не будет опубликован.