Простой блок питания с регулировкой напряжения и тока. — Радиомастер инфо
Довольно распространенная схема такого блока питания выполнена на двух транзисторах, силовом p-n-p КТ818 и усилителе КТ815. Схема для начинающих и они часто задают вопрос, можно ли выполнить эту схему на более распространенном силовом n-p-n транзисторе. Сделать можно, результаты даже лучше, чем на КТ818. О том, как это сделать рассказано в этой статье.
Для начала приведу, базовую, назовем ее так, схему простого блока питания на силовом p-n-p транзисторе КТ818.
Схема простого блока питания состоит из понижающего трансформатора Tr1, двухполупериодного выпрямителя на четырех диодах 1N4007, конденсатора фильтра С1, резистора R1, ограничивающего ток стабилитрона VD1, регулятора напряжения R4, усилителя на Т2, силового транзистора Т1, цепи регулировки тока R5 с ограничителем R2, диода развязки тока базы Т2 и резистора, повышающего стабильность работы схемы при разных токах нагрузки R3.
Максимальное выходное напряжение определяется напряжением вторичной обмотки трансформатора, рабочим напряжением стабилитрона VD1, допустимым напряжением транзисторов Т1 и Т2.
Максимальный ток нагрузки определяется мощностью трансформатора Tr1, соответственно диаметром провода вторичной обмотки, током диодов выпрямителя, максимальным током К-Э транзистора Т1, его коэффициентом усиления и как следствие, его током базы и параметрами транзистора Т2, который должен увеличить малый ток от стабилитрона до необходимого значения тока базы силового транзистора Т1, иначе Т1 полностью не откроется и на выходе не будет увеличения напряжения и тока при повороте соответствующих регуляторов (R4, R5).
Учитывая изложенный выше принцип работы схемы, был изготовлен вариант на силовом транзисторе n-p-n по следующей схеме.
В качестве транзисторов были опробованы несколько вариантов:
Т1 – КТ819, КТ805, КТ829, КТ8109, КТ8101
Т2 – КТ814, КТ816, КТ973
Сочетания транзисторов использовались разные. Наилучшие результаты получены на транзисторах Т1 КТ805БМ и Т2 КТ814В1.
Вот как выглядят детали, примененные в этой схеме:
Диапазон регулировки напряжения и тока самый широкий, падение напряжения на силовом транзисторе Т1 самое низкое и соответственно его нагрев меньше.
Что еще важно учитывать при изготовлении этой, и других подобных схем линейных стабилизаторов.
- Так как все лишнее напряжение падает на силовом транзисторе Т1, он греется. Больше всего он греется при больших тока и низких напряжениях на выходе. Например, при входном напряжении 16В, выходном 5В и токе 2А на транзисторе Т1 будет падать напряжение 11В. При токе 2А мощность, рассеиваемая на этом транзисторе будет равна 2А х 11В = 22Вт. При приблизительной оценке площади радиатора для Т1 получаем значение более 400 см кв. Это пластина 20х20 см или ребристый радиатор с такой же площадью охлаждения.
- Это понижает КПД устройства и делает его применение невыгодным при больших мощностях.
Самый простой выход для повышения КПД, подобрать трансформатор с отводами на вторичной обмотке и поставить переключатель. В таком случае при нужном напряжении на выходе 5В на входе можно установить 7В. В этом случае, при том же токе 2А, на транзисторе Т1 будет рассеиваться мощность 4Вт. Это более чем в 4 раза меньше, чем в предыдущем случае.
- Схема простого блока питания не имеет эффективной защиты от короткого замыкания в нагрузке и при неблагоприятных ситуациях (большом токе и нагретом Т1) силовой транзистор Т1 может выйти из строя.
- Вывод. Данная схема удобна при использовании для токов в нагрузке до 1А. Наиболее рациональным в этом случае является изготовление металлического корпуса для блока питания и использования его в качестве радиатора для транзистора Т1. Главное достоинство – простота, отсутствие дефицитных деталей, а также плавная регулировка напряжения и тока делает схему привлекательной.
Материал статьи продублирован на видео:
youtube.com/embed/9vHgOWv1oTQ?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Простой регулируемый БП 0-12В | AUDIO-CXEM.RU
Да, возможно проще собрать навесным монтажом, «на коленке», регулируемый блок питания (БП) на базе линейного регулятора LM317, который является очень распространенным и дешевым компонентом. Его минус в том, что его минимальное выходное напряжение составляет 1.25В. Схема, представленная ниже, не обладает таким недостатком и имеет минимум компонентов, всего два транзистора включенных по схеме Дарлингтона.
Блок питания позволяет регулировать выходное напряжение практически от 0 до 12В постоянного тока. Им можно питать различные схемы с током потребления до 1А.
Простой регулируемый блок питания выполнен на германиевых транзисторах, что позволяет уменьшить падение напряжения на переходах база-эмиттер, всего по 0.2В на каждый транзистор, вместо 0. 6В на каждый кремниевый транзистор. Помимо уменьшения падения относительно опорного потенциала (12В) это также уменьшает нагрев силового транзистора.
Схема простого регулируемого блока питания
Напряжение переменного тока 12В с вторичной обмотки трансформатора TV1 поступает на мостовой выпрямитель VD1-VD4. Пульсации выпрямленного напряжения сглаживаются конденсатором C1.
Источник опорного напряжения 12В выполнен на стабилитроне VD5 и ограничивающем ток резисторе R1. Опорное напряжение также имеет свои пульсации, которые сглаживаются конденсатором C2.
Потенциометр R2 делит опорное напряжение, которое поступает на базу эмиттерного повторителя VT1 и на выходе оно имеет такое же значение, но уже усиленное по току. Для увеличения коэффициента усиления VT1, транзистор VT2 включен по схеме Дарлингтона.
Верхний предел выходного напряжения нашего регулируемого блока питания зависит от номинала стабилитрона VD5. Таким образом, поставив стабилитрон на 7. 5В получим на выходе регулировку от 0В до 7В. Не стоит забывать про падение на переходах Б-Э, как говорилось выше. Таким образом, под нагрузкой, на выходе регулируемого блока питания напряжение будет меньше опорного примерно на 0.4-0.5В (при использовании германиевых транзисторов).
Схема не имеет защиты от короткого замыкания и ограничения по току.
Компоненты регулируемого блока питания
Трансформатор должен иметь вторичную обмотку 12В 1А.
Транзистор VT1 можно заменить на МП16, МП16А или МП40-МП42. Транзистор VT2 можно заменить на П214, П215, П216, П217.
Выпрямительные диоды VD1-VD4 на ток 1А и более.
VT2 необходимо установить на радиатор.
Печатная плата односторонняя и имеет размеры 40?50мм.
Печатная плата простого регулируемого блока питания СКАЧАТЬ
Блок питания с регулировкой тока и напряжения на энкодерах своими руками
В этой статье вы узнаете как собрать очень полезные блок питания с регулировкой напряжения и тока своими руками.
Все этапы сборки блока питания, а так же некоторые технические моменты, представлены в статье.
Данный блок питания будет полезен как начинающим радиолюбителям, так и опытным, вы обязательно найдете где применить этот блок питания!
Автор будет использовать блок питания от ноутбука, который выдает напряжение 15В и ток до 8А. Этого будет вполне достаточно.
- К шнуру блока питания нужно припаять подходящий разъем, с помощью которого будет подсоединять блок питания к понижающий схеме.
- В качестве понижающего преобразователя был выбран достаточно распространенный модуль, на котором можно изменять как напряжение, так и ток, с помощью вот этих вот 2-ух потенциометров.
Однако автор посчитал такие потенциометры не совсем удобными и поэтому решил заменить их на другие, так как скорее всего потребуется очень точная настройка напряжения.
Настройку тока же будем производить обычным потенциометром, так как тут не нужна большая точность. Но в принципе, вам решать какие потенциометры использовать. Далее очень важный компонент — это вольтамперметр вместе с дисплеем, на котором будут отображаться значения. Для подключения разного рода нагрузок были выбраны банановые штекеры.
Так же было решено, что брать 5В из порта USB тоже достаточно удобно, потому что таким образом можно запитывать, например, arduino. Поэтому давайте добавим еще один модуль.
Ну что ж, с компонентами разобрались, теперь давайте приступим к работе. Корпус будем изготавливать из фанеры толщиной 8 мм.
А так как у автора в наличие имеется 3d принтер, то он не смог удержаться и использовал его в этом проекте для печати лицевой панели. 3d принтер также использовался потому, что большинство отверстий передней панели абсолютно нестандартного размера, и найти сверла правильного диаметра почти невозможно, а без конца работать напильником тоже не хочется.
Далее следует деревообработка. Тут лучше воспользоваться циркулярной пилой (конечно если она у вас есть), а также можно использовать электролобзик.
Передняя панель печаталась примерно полтора часа.
В итоге большинство отверстий оказались как раз по размеру, но к сожалению расстояние между отверстиями для банановых штекеров оказались не точными и автору пришлось немножко поработать дрелью. Далее необходимо склеить корпус.
- Ну и пока клей сохнет, давайте посмотрим на схему подключения блока питания:
Итак, на вход мы получаем 15 В. Есть выключатель, с помощью которого мы включаем-выключаем схему, и когда он замкнут сразу же запитывается модуль с USB портом.
На нем есть понижающий преобразователь, поэтому он запитывается напрямую. Также автор добавил предохранитель. Как только выключатель замыкается, то также запитывается и дисплей с вольтамперметром.
Далее главная часть — это основной преобразователь.
Тут у нас конечно же 2 потенциометра, минусовой контакт от преобразователя подключается к дисплею как бы в разрыв цепи, и далее идет на минусовой контакт бананового штекера. Таким образом мы можем измерять ток.
А плюсовой же контакт от преобразователя идёт напрямую к контакту бананового штекера, и параллельно к нему подсоединяется контакт от вольтамперметра. Таким образом, мы измеряем напряжение. И в общем то, все, согласитесь, очень просто.
Сначала выпаиваем родные потенциометры.
- Ну и теперь просто собираем все по схеме.
- Итак, все собрано, первый тест.
- Для первого теста автор решил подключить мотор.
Как видим, все очень хорошо заработало. Мы также видим, что вольтамперметр показывает какой ток потребляет мотор.
Настройка напряжения тоже отлично работает, но одна из особенностей этого dc-dc преобразователя, это возможность настроить еще и ток. Для этого нам нужно закоротить плюс и минус.
- После этого мы можем с помощью нижнего потенциометра настроить ток.
- Это очень полезная функция если мы хотим, например, зарядить аккумуляторы или протестировать мощный светодиод.
- Ну вот и готов наш блок питания, получилось достаточно симпатично, а главное в деле пригодится обязательно! Спасибо за внимание, делитесь статьёй в соц весях, если понравилось )
Видео самоделки:
Похожее
Источник: https://kavmaster. ru/blok-pitaniya-s-regulirovkoj-napryazheniya-i-toka-svoimi-rukami/
Цифровой лабораторный блок питания с управлением через ПК
Наткнулся в интернете на схему лабораторного блока питания, да еще и с управлением от компьютера, и не смог устоять. Детали решил брать в российских магазинах, потому что доллар, санкции, ну и все такое.
Вот что из этого получилось…
Лабораторный блок питания нужен для запитывания различных махараек устройств на этапе разработки. Первое подобие лабораторника я сделал лет в 16. Это был леденящий душу ужас, который, тем не менее, худо-бедно справлялся со своими функциями.
Тогда я только начинал познавать электронику, и все ограничивалось кручением моторчиков. Мне бы в то время интернет и хоть какие то карманные деньги…
Первый блок питания
Потом был длительный перерыв, армия, несколько лет работы далеко от дома, но после этого периода я вернулся к этому хобби, все было гораздо серьезнее, и был изготовлен из подручных материалов этот монстр:
Фото
Он выдержал много издевательств, и жив до сих пор, но мне хотелось большего.
Для любопытствующих схема.
Ардуино следит за напряжением на выходе, за током, и посредством ШИМ пинает силовой транзистор так, чтобы блок питания выдавал установленные значения.
Блок питания умеет выдавать напряжение от 1 до 16 вольт, обеспечивать ток 0. 1 — 8 ампер (при нормальном источнике напряжения) уходить в защиту и ограничивать ток. То есть его можно использовать для зарядки аккумуляторов, но я не рискнул, да и зарядник у меня уже есть.
Еще одна особенность этого странного блока питания в том, что он питается от двух напряжений. Основное напряжение должно подкрепляться вольтодобавкой от батарейки, или второго блока питания. Это нужно для корректной работы операционного усилителя.
Я использовал ноутбучный блок питания 19в 4А в качестве основного, и зарядку 5в 350мА от какого-то телефона в качестве добавочного питания.
Сборку я решил начать с пайки основной платы с расчетом забить болт, если не заработает, так как начитался комментов от криворуких, как все у них дымит, взрывается и не работает, да и к тому же я внес некоторые изменения в схему.
Для изготовления платы я купил новый лазерный принтер, чтобы наконец то освоить ЛУТ, ранее рисовал платы маркером (вот пример), тот еще геморрой. Плата получилась со второго раза, потому что в первый раз я зачем-то отзеркалил плату, чего делать было не нужно.
Окончательный результат:
Пробный запуск обнадежил, все работало как надо После удачного запуска я принялся курочить корпус. Начал с самого габаритного — системы охлаждения силового транзистора. За основу взял кулер от ноутбука, вколхозил это дело в заднюю часть. Натыкал на переднюю панель кнопок управления и лампочек. Здоровенная крутилка это энкодер со встроенной кнопкой. Используется для управления и настройки. Зеленая кнопка переключает режимы индикации на дисплее, прорезь снизу для разъема юсб, три лампочки (слева направо) сигнализируют о наличии напряжения на клеммах, активации защиты при перегрузе, и об ограничении тока. Разъем между клеммами для подключения дополнительных устройств. Я втыкаю туда сверлилку для плат и резалку для оргстекла с нихромовой струной. Засунул все кишки в корпус, подсоединил провода После контрольного включения и калибровки закрыл крышкой.
Фото собранного
Отверстия проделаны под радиатором стабилизатора lm7805, который нехило греется. Подсос воздуха через них решил проблему охлаждения этой детали Сзади выхлопная труба, красная кнопка включения и разъем под сетевой кабель. Прибор обладает кое-какой точностью, китайский мультиметр с ним согласен. Конечно калибровать самопальную махарайку по китайскому мультиметру и говорить о точности достаточно смешно. Несмотря на это прибору найдется место на моем столе, так как для моих целей его вполне достаточно
Некоторые тесты
Взаимодействие с программой. На ней в реальном времени отображается напряжение и ток в виде графиков, так же с помощью этой программы можно управлять блоком питания. К блоку питания подключена 12-вольтовая лампа накаливания и амперметр. Внутренний амперметр после подстройки работает сносно Измерим напряжение на клеммах. Великолепно. В прошивке реализована ваттосчиталка. К блоку подключена все та же лампочка на 12 вольт, на цоколе которой написано «21W». Не самый паршивый результат. Изделием доволен на все сто, поэтому и пишу обзор. Может кому-то из читателей нехватает такого блока питания. О магазинах: Чип-нн порадовал скоростью доставки, но ассортимент маловат на мой взгляд. Этакий интернет магазин, аналогичный арадиомагазину в среднем городке. Цены ниже, кое на что в разы. Чип-дип… закупил там то, чего не было в чип-нн, иначе б не сунулся. розница дороговата, но все есть. Мои исходники:
Переделанная схема в протеусе+печатная плата
Животное
животных под руку не подвернулось, есть искусственный слон с испорченной платой для этого блока питания
Источник: https://mysku.ru/blog/russia-stores/34623.html
Регулируемый блок питания своими руками
Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела.
Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю.
В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.
Блок питания из старой платы компьютера
Stalevik
Мастера покупают изобретения в лучшем китайском интернет-магазине.
Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.
Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания.
Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель.
Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.
Электроника для самодельщиков в китайском магазине.
Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.
Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.
Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.
Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт.
То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый.
Нужно знать только 2 резистора – они задают выходное напряжение.
Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом.
Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине.
Менять выходное напряжение такого шим контроллера можно разве только перемычками.
Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.
Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи.
Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания.
Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.
Посмотрим, как блок питания выглядит в работе
Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.
Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.
Как сделать регулирующий БП из обычного, от принтера
Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.
Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт.
Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить.
Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.
Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус.
Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается.
Внутри видим блок питания.
Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.
Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.
Как сделать регулировку?
Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть.
От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать.
Берём паяльник, фен. Выпаял транзистор и резистор.
Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор.
Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной.
То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.
Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.
Видео канала “Технарь”.
Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков.
Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи.
Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.
Простой блок с регулировкой
Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.
Самодельный регулированный блок на одном транзисторе
Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания.
На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт.
Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.
Скачать схему с платой.
Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.
Приступаем к сборке
Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.
Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.
Видео Radioblogful. Видеоблог паяльщика.
Источник: https://izobreteniya.net/reguliruemyiy-blok-pitaniya/
РадиоКот :: БП с микроконтроллерным управлением и регулировкой параметров при помощи энкодера
Добавить ссылку на обсуждение статьи на форумеРадиоКот >Схемы >Питание >Блоки питания >
Теги статьи: | Добавить тег |
БП с микроконтроллерным управлением и регулировкой параметров при помощи энкодера.
Идея блока питания была взята на сайте. Хотелось что бы параметры блока устанавливались с помощью энкодера. Для этого пришлось немного изменить схему и программу.
В результате получилась схема:
Управление напряжением и током стабилизации осуществляется встроенным в контроллер ШИМ ом.
Его скважность регулируется энкодером, каждый шаг которого приводит к увеличению или уменьшению опорных напряжений по напряжению и току и как следствие к изменению напряжения на выходе БП или тока стабилизации.
При нажатии на кнопку энкодера на индикаторе напротив изменяемого параметра появляется стрелка и при последующем вращении изменяется выбранный параметр.
Если в течении некоторого времени не проводить никаких действий система управления переходит в ждущий режим и не реагирует на вращение энкодера.
Установленные параметры сохраняются в энергонезависимой памяти и при последующем включении устанавливаются по последнему выставленному значению. Индикатор в верхней строке отображает измеренное напряжение и ток.
В нижней строке отображается установленный ток ограничения. При выполнении условия Iizm>Iset БП переходит в режим стабилизации тока.
За основу был взят БП АТХ CODEGEN, который был переделан под напряжение 20В и добавлена плата управления.
В результате получился вот такой вот блок питания:
Файлы: Прошивка МК.
Вопросы, как обычно, складываем тут.
Как вам эта статья? | Заработало ли это устройство у вас? |
Источник: https://www.radiokot.ru/circuit/power/supply/19/
Блок питания с регулировкой тока и напряжения
Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер.
В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора.
Прежде чем собирать, прочитайте внимательно описание.
Схема БП с регулировкой тока и напряжения
Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.
Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.
При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.
Индикатор для блока питания
Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.
Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе.
Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля.
Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:
Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.
Дополнения от BFG5000
Максимальный ток ограничения можно сделать более 10 А. На кулер — кренка 12 вольт плюс температурный регулятор оборотов — с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ — появляется прирост проходящей мощности.
Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 — поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.
Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000.
Форум по БП
Обсудить статью Блок питания с регулировкой тока и напряжения
Источник: https://radioskot.ru/publ/bp/blok_pitanija_s_regulirovkoj_toka_i_naprjazhenija/7-1-0-887
Блок питания с регулировкой напряжения и тока 3 — DRIVE2
Всем привет! Давно хочу написать, но все не хватает времени, а сегодня вот как-то не могу найти чем заняться…напишу об очередной доработке блока питания. Предыдущая часть здесь www.drive2.ru/b/2195993/
Блок питания активно использовался все это время, и показал себя с отличной стороны. Использовал его в основном для всяких поделок и несколько раз для подкачки колес компрессором.
Подкачка колес была непростым испытанием, ток несколько раз переваливал за 10А.
Насчет самого блока питания, я не сомневался, что он выдержит такую нагрузку, но вольтамперметр рассчитан на ток до 10А, а глядя на проводки которыми он подключается и разъем, думаю, и того меньше! Но все на удивление выдержало.
Полный размер
Качаем колеса
Полный размер
Качаем колеса
И вот решил я расширить универсальность прибора, добавив ограничение по току, чтобы можно было заряжать автомобильный аккумулятор, да и любой другой аккум. В инете есть много схем о переделке компьютерного БП с ограничением по току.
Как и с регулировкой напряжения, с ограничением по току может справляться все та же TL494. Но эти переделки показались мне слишком сложными, и я решил пойти другим путем. На али был найден подходящий понижающий DC-DC преобразователь с регулировкой напряжения и тока. Вот ссылочка.
Вход от 7 до 32В, выход — от 0,8 до 28В, максимальный ток 12А.
DC-DC преобразователь на 12А с Али
После этого я принялся все переделывать. Выбросил все лишнее из БП, убрал регулировку напряжения, впаял в плату подстроечный резистор и выставил напряжение около 17В, чтобы на выходе было около 15В. Все провода заменил на качественный медный провод сечением более 3 квадратов.
Все разъемы выкинул, все на пайке. К вольтамперметру тоже протянул нормальный провод и припаял прямо к плате. Преобразователь закрепил внутри корпуса. Вентилятор запитал от шины +5В (на ней сейчас около 7В). Добавил на корпус резиновые ножки.
Вообщем все сделал не на страх, а на совесть.
Полный размер
С преобразователем внутри
Полный размер
С преобразователем внутри
Полный размер
С преобразователем внутри
Теперь всем доволен…почти))) Хочу еще вентилятор переставить, чтобы он вдувал воздух вовнутрь, но имеющийся кулер этого не позволяет сделать, так как крепеж у него только с одной стороны. И пора обновить красочку. Уже перестал считать, во сколько он мне обошелся, так как наверное уже смог бы купить готовый аналогичный БП, но самому сделать ведь интереснее))
Полный размер
актуальное состоянии
Полный размер
актуальное состоянии
Спасибо за внимание! Делитесь своими поделками))
Источник: https://www.drive2.ru/b/3148330/next
Сборка блока питания с регулировкой тока/напряжения своими руками
Вот очередная версия лабораторного блока питания с напряжением от 0 до 30 В и регулировкой потребляемого тока 0-2 А, что всегда бывает полезно, когда используется БП для настройки самодельных схем или когда они неизвестные приборы запускаются в первый раз.
Схема ИП с регулировкой тока и напряжения
Сама схема питания — это популярный комплект из таких элементов:
- Сам регулируемый стабилизатор, в котором заменен T1 — BC337 на BD139, T2 — BD243 на BD911
- D1-D4 — диоды 1N4001 заменены на RL-207
- C1 — 1000 мкФ / 40 В заменен на 4700 мкФ / 50 В
- D6, D7 — 1N4148 на 1N4001
У используемого трансформатора есть напряжения: 25 В, 2 А и 12 В, которое полезно для управления вентилятором, охлаждающим радиатор и силовые диоды на панели. Для этого была создана небольшая плата с мостовым выпрямителем, фильтрующими конденсаторами и стабилизатором LM7812 (с радиатором).
Внутри корпуса лабораторного источника питания размещены трансформатор, плата самого регулируемого блока питания, платы стабилизаторов — 12 В и 24 В, радиатор с охлаждающим вентилятором (запускается при 50 С).
На передней части корпуса установлены выключатель, три светодиода, информирующих о состоянии блока питания (сеть 220 В, включение вентилятора и защита — ограничение тока или короткое замыкание), синие и красные LED дисплеи с наклеенной на них затемняющей пленкой. Рядом с дисплеями расположены регулирующие потенциометры, а справа выводы питания. На задней части корпуса имеется разъем для сети, предохранитель и охлаждающий вентилятор 60×60 мм.
Полезное: Детектор аудио сигнала для включения по звуку
Что касается индикаторных дисплеев, они показывают:
- синий — текущее напряжение в вольтах V
- красный — текущий ток в амперах A
Источник питания получился реально удобный и надёжный. Вся сборка заняла несколько дней. Что касается охлаждения, оно включается только при высокой нагрузке и то на короткое время, примерно на пару минут.
С этим БП удобно работать даже при слабом освещении, так как яркости индикаторов хватает с головой. Если хотите повысить ток до 3-4 ампера, выбирайте трансформатор по-мощнее и транзисторы регулятора, с хорошим запасам по току. Ещё пару неплохих схем источников питания смотрите по ссылкам:
6— 4,50
НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ
Источник: https://2shemi.ru/sborka-bloka-pitaniya-s-regulirovkoj-svoimi-rukami/
Блок питания с микроконтроллерным управлением
Состоит из блока индикации и управления, измерительной части и блока защиты от КЗ.
Блок индикации и управления.
Индикатор — ЖКИ дисплей на основе контроллера НD44780, 2 сточки по 16 символов. Управление напряжением осуществляется встроенным в контроллер ШИМ ом.
Его скважность регулируется энкодером, каждый шаг которого приводит к увеличению или уменьшению напряжения на 0,1 вольт на выходе БП. Полный оборот энкодера – 2 вольта.
Поскольку ШИМ может изменять напряжение на накопительной емкости лишь в интервале от 0 до 5 вольт, применен ОУ с коэффициентом усиления 5. Таким образом фактическое напряжение на выходе БП регулируется в пределах 0 – 25 вольт.
Регулирующим элементом является мощный составной транзистор КТ827А. С эмиттера регулирующего транзистора через верхнее плечо делителя (2 Х 8,2 к) осуществляется обратная связь, благодаря чему даже при больших токах в нагрузке напряжение поддерживается на строго заданном уровне вплоть до сотых долей вольта.
Измерительная часть – двухканальный АЦП (Микрочип), измеряющий реальное напряжение на выходе БП и падение напряжения на шунтирующем резисторе, усиленное ОУ, что прямо пропорционально потребляемому нагрузкой току. Сердцем конструкции является контроллер.
Блок защиты от короткого замыкания в нагрузке. Выполнен виде отдельного устройства включенного между выпрямителем и регулирующим элементом. Ток срабатывания защиты — 5 А. Подбирается резистором 47к в базовой цепи транзистора управляющего ключом КТ825Г.
Настройка.
Заключается в подборе резисторов, обозначенных звездочкой, для соответствия показаний ЖКИ реальным току и напряжению на выходе БП.
Детали.
Шунт взят из разбитого мультиметра, его сопротивление около 0,01 Ом. Исходное состояние контактов энкодера описано в принципиальной схеме, он может быть любой соответствующий этим состояниям. Кроме вращения, он имеет вн контакты, которые замыкаются без фиксации при нажатии на вал.
Транзисторы n-p-n без маркировки могут быть КТ315 или любыми маломощными, подобными им в чип корпусе. Транзистор p-n-p в ключе, управляющем подсветкой может быть любой средней мощности.
Как пользоваться БП.
Энкодером регулируется напряжение 0 – 25 вольт с шагом 0,1 вольта. При кратком (менее 0,5 сек) нажатии на ручку включается/выключается подсветка. При нажатии более 0,5 сек происходит запись установленного напряжения в энергонезависимую память контроллера.
Полный проект для MPLAB вы можете скачать ниже.
Список радиоэлементов
Скачать список элементов (PDF)
Прикрепленные файлы:
Blaze Опубликована: 2008 г. 3 Вознаградить Я собрал 0 1
x
- Техническая грамотность
- Актуальность материала
- Изложение материала
- Полезность устройства
- Повторяемость устройства
- Орфография
Источник: https://cxem.net/pitanie/5-172.php
vip-cxema.org — Мощный стабилизатор тока и напряжения на TL494
Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат.
Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения.
При желании можно увеличить выходной ток до 20-и и более ампер.
В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант — это попытка создания простого и достаточно мощного стабилизатора.
За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.
Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.
Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к.
я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт.
Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.
- Устройство не боится коротких замыканий, просто сработает ограничение тока.
- Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.
Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.
Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к.
при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт.
Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.
Как это работает:
ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор, и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции.
Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ.
По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.
Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки.
При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное — микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.
Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.
Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494.
Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения.
Указанным резистором можно регулировать выходной ток.
- Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.
- Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.
Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.
- Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.
Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.
- Подробное описание и испытания блока можно посмотреть в видео
Печатная плата тут
Источник: http://vip-cxema.org/index.php/home/bloki-pitaniya/422-impulsnyj-stabilizator-toka-i-napryazheniya
Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.
Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в
Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …
Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.
Блок питания 12в 30а
Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.
Блок питания 3 — 24в
Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.
Схема блока питания на 1,5 в
Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.
Схема регулируемого блока питания от 1,5 до 12,5 в
Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.
Схема блока питания с фиксированным выходным напряжением
Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.
Схема блока питания мощностью 20 Ватт с защитой
Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.
Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.
Самодельный блок питания на 3.3v
Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.
Трансформаторный блок питания на КТ808
У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.
При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта
Блок питания на 1000в, 2000в, 3000в
Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.
В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.
Еще по теме
Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания
Схемы блоков питания
Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805
Радиосхемы. — Источники питания
Раздел
Схемы блоков питания, теория построения источников питания
Для любой аппаратуры требуется электропитание.
В некоторых случаях электроэнергию можно получить от электрохимических источников (батареек или аккумуляторов), но это когда речь идет о носимых устройствах, но на практике мы чаще всего используем промышленную сеть 220 Вольт, и вот здесь возникает целый ряд вопросов: ведь это напряжение необходимо преобразовывать: уменьшить (а иногда и увеличить), выпрямить, стабилизировать и так далее…
Устройства, которые преобразовывают электроэнергию принять называть вторичными источниками питания или просто блок питания (под понятием «первичный источник питания» подразумеваются химические источники) или просто блок питания, и именно блокам питания и посвящен данный раздел: здесь Вы сможете ознакомиться с теорией построения блоков питания, а также найдете различные схемы блоков питания.
Теория построения блоков питания
Параметрический стабилизатор
Компенсационный стабилизатор
Специализированные микросхемы стабилизаторов напряжения
Умножитель напряжения
Устройство импульсного источника питания
Защита стабилизаторов от перегрева
Транзисторные стабилизаторы с защитой от перегрузки (теория)
Практические схемы источников питания
Электронный ЛАТР
Регулятор температуры паяльника
Стабилизатор температуры паяльника
Стабилизированный Блок питания на 35 Вольт
Стабилизатор напряжения с защитой 13V/10A
Зарядное устройство для никель-кадмиевых аккумуляторов
Безтрансформаторный преобразователь напряжения
Бестрансформаторный удвоитель напряжения для малогабаритных устройств
Регулируемый источник питания 1…29V, 2A
Блок питания 13V, 20A
Схемы стабилизированных блоков питания
Блоки питания с регулировкой
Простой регулятор мощности
Блок питания с регулировкой напряжения и тока
Стабилизатор напряжения 0…25V с защитой по току
Зарядное устройство из компьютерного блока питания
Блок питания на 3V
Блок питания 13V, 20A на микросхеме серии КРЕН
Как увеличить мощность КРЕНки до 20 Ампер
Еще раз об увеличении мощности КРЕН8А
Импульсный блок питания для усилителя
Преобразователь напряжения 12-220V
Преобразователь 12V-220V на трансформаторе от компьютерного блока питания
Импульсные преобразователи напряжения
Электронный предохранитель
Устройство защиты радиоаппаратуры от повышенного и пониженного напряжения
Самодельный бесперебойник
Компьютерный блок питания в радиолюбительских конструкциях
Регуляторы напряжения с компаратором
Регуляторы постоянного напряжения на таймере 555
Регуляторы постоянного напряжения на ждущих мультивибраторах и и счетчиках
ШИМ-регулятор на простой логике
ШИМ-регулятор на операционном усилителе
Блок питания для цифровых и аналоговых микросхем
Преобразователь для питания варикапа
Стабилизатор с защитой от КЗ
Дополнительная цепь к регулируемому стабилизатору с цель защиты
Стабилизатор с установкой порогового тока для защиты
Электронно-механическое устройство защиты от перегрузки
Защита от перегрузки по току с использованием динисторного оптрона
Светодиодные индикаторы перегрузки по току
Электронный предохранитель до 10 Ампер
Схемы защиты устройств от всплесков тока и напряжения
Устройство защиты галогенных ламп
Аварийная защита низковольтной аппаратуры
Ограничитель пускового тока
Преобразователь напряжения 12В-220В для электробритвы
Звуковой сигнализатор перегрузки блока питания
Самовосстанавливающийся предохранитель на 12 Вольт
Регулируемый электронный предохранитель
Защита блока питания от КЗ
Стабилизатор напряжения К142ЕН2 и его применение
Мощный стабилизированный инвертор 24- 220 Вольт
Высоковольтный преобразователь напряжения
Преобразователи напряжения из 4,5В в двуполярное 15В
Преобразователь сетевого напряжения в трехфазное
Мощный двухполярный источник питания для лабораторных целей
Источник питания с регулировкой полярности
Зарядное устройство с цифровыми микросхемами
Не сложный импульсный стабилизатор
Транзисторный стабилизатор 9V с системой защиты
Стабилизатор переменного напряжения
Сигнализаторы разряда элементов питания
Стабилизатор напряжения на микросхеме К142ЕН2
Стабилизатор сетевого напряжения
Стабилизатор тока до 150 А
Стабилизированный источник питания с защитой от перегрузки
Преобразователь 1,5V в 9V
Ступенчатое включение мощной нагрузки
Тиристорный преобразователь 12V в 220V
Двуполярное напряжение от батарейки «Крона»
Уменьшение пульсаций выходного напряжения
Универсальное зарядное устройство
Универсальный блок питания на микросхеме КР142ЕН12
Устройство аварийного электропитания
Регулируемый стабилизатор тока
Регулируемое двуполярное из однополярного
Регулятор мощности не создающий помех
Регулятор сетевого напряжения
Тиристорный регулятор тока
Регулятор мощности для активной нагрузки
Преобразователь напряжения 12/220В-50Гц
Импульсный источник питания 30 вольт, 200 Вт
Преобразователь напряжения с 4,5 на 15 В
Преобразователь напряжения 12V-30V
Автоматическое отключение аккумуляторной батареи
Бесперебойное питание для цифровых микросхем
Стабилизированный блок питания 1-40V с защитой от перегрузки
Лабораторный блок питания 0-20V
Трехфазный инвертор для электродвигателей
Импульсный блок питания для мощного УМЗЧ
Резервный преобразователь напряжения
Электронный предохранитель для устройств с питанием до 25 Вольт
Электронный предохранитель 12V/1A
Преобразователь 50Гц\ 60Гц
Усовершенствованный лабораторный блок питания
Высоковольтный преобразователь
Устройство защиты источника питания от перегрузки
Симисторный регулятор повышенной мощности
Устройство для зарядки малогабаритных аккумуляторов
Мягкое включение УНЧ
Таймер для зарядки аккумулятора
Импульсный стабилизатор напряжения с высоким КПД
Универсальный эквивалент нагрузки для ремонта и настройки источников питания
Преобразователь напряжения для цифровых микросхем
Регулируемый стабилизатор напряжения и тока
Стабилизированный регулятор мощности для изменяющейся нагрузки
Блок бесперебойного питания
Импульсный понижающий стабилизатор 24V-12V
Лабораторный блок питания 5…100 Вольт
Звуковой сигнализатор разряда аккумулятора
Стабилизатор тока до 150 Ампер
Ограничение зарядного тока конденсаторов
Ni-Cd аккумуляторы и их эксплуатация
Импульсный сетевой источник 5 В с высокими параметрами
Зарядное устройство для Ni-Cd аккумуляторов
Преобразователь 12- 220V и зарядное устройство
Двуполярный источник питания на основе «электронного трансформатора»
Малогабаритный мощный стабилизатор 12V
Блок питания отключающийся без нагрузки
Преобразователь 12V- 24V на ячейке логической микросхемы
Двуполярное стабилизированное напряжение 5V из однополярного 12V
Преобразователь напряжения 12V\ 220V 50Гц
Регулируемый двуполярный блок питания с искусственной «средней точкой»
Стабилизированный блок питания 3V для аудиоплеера
Маломощный импульсный двуполярный
Агрегаты тиристорные серий ТЕ, ТП, ТПР, ТЕР схемы и документация
Источник опорного напряжения ИОНА
Мощный лабораторный источник с защитой и регулировкой
Вариант мощного двуполярного стабилизатора напряжения
Лабораторный источник питания с защитой и индикацией перегрузки
Преобразователь 12-220 вольт на NE555
ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ
ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ
ПРОСТОЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ С ФИКСИРОВАННЫМИ НАПРЯЖЕНИЯМИ
Стабилизированный блок питания имеет несколько фиксированных значений выходного напряжения, которые устанавливают нажатием на соответст вующие кнопки. Он обеспечивает выходной ток до 2,7 А и снабжен защитой от токовых перегрузок. Благодаря применению импульсного стабилизатора он обладает высоким КПД при любом значении выходного напряжения.
|
Блок питания формирует семь фиксированных значений выходного напряжения: 3, 5, 7, 9, 12, 18 и 24 В или другие, которые можно устанавливать, по своему желанию, в процессе налаживания. Его основа — импульсный понижающий стабилизатор напряжения, собранный на микросхеме DA1 и мощном полевом переключательном транзисторе VT3. В узле управления применена микросхема К174КП3 (DA2). Микросхема DA2 совместно с транзистором VT2 защищают блок питания от перегрузки по выходному току.
|
А. АБРАМОВИЧ, Радио, 2011, №5, с. 24 — 26
Лабораторный источник питания = 2…20 В / 1 А
с регулируемой стабилизацией
напряжения и тока
Благодаря использованию недорогой специализированной микросхемы LM723CN, представленный
в статье источник питания отличается высокими эксплуатационными характеристиками при малом количестве
деталей , а использование вместо питающего трансформатора преобразователя для питания галогенных ламп
позволило сделать его компактным и легким .
• напряжение питания сети — 220 В;
• потребляемая мощность — до 35 Вт;
• максимальное выходное напряжение – 20 В постоянного тока;
• пульсации выходного напряжения — не более 20 мкВ;
• максимальный выходной ток — 1 А постоян ного тока;
• регулировка выходного напряжения — плав ная, в диапазоне 2…20 В;
• тип токовой защиты — ограничение выходно го тока;
• регулировка ограничения тока — плавная, в диапазоне 60… 1000 мА;
• индикац ия выходного напряжения/тока — с помощью аналогового микроамперметра.
Принципиальная схема используемого электронного трансформатора
Внешний вид используемого электронного трансформатора
Принципиальная схема лабораторного блока питания
Расположение деталей на печатной плате лабораторного блока питания
Д . В . Карелов , Радiоаматор, 2011, № 2 , с. 31 — 34
Электронный трансформатор различной мощности можно заказать ЗДЕСЬ.
ДВУПОЛЯРНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ
В инженерной и радиолюбительской практике есть необходимость иметь удобный регулируемый двуполярный стабилизатор напряжения с подходящим диапазоном подстройки обоих напряжений , то есть как положительной , так и отрицательной полярности. Кроме того, необходимо сохранять заданное отношение между этими двумя напряжениями в полном диапазоне регулирования и иметь автоматическое отключение второго напряжения , если первое напряжение было уменьшено , например , из-за перегрузки или короткого замыкания . Естественно, что регулировка выходного напряжения обоих стабилизаторов должна осуществляться одним переменным резистором .
Схема упрощенного варианта двуполярного стабилизатора, отвечающего изложенным критериям, показана на рис.1. Если необходима прецизионная работа устройства, то его можно дополнить усилителем сигнала ошибки. Для этой цели используется, например, схема на основе ОУ с соответствующими напряжениями питания. Этот вари ант показан на рис.2.
В . Рентюк , Радiоаматор, 2011, №3, с. 34 — 35
Проверка работоспособности одной из популярных схем лабораторного блока питания в симуляторе и реализация в железе. Блок питания показал вполне не плохие результаты.
Адрес администрации сайта: [email protected]
Как сделать лабораторный источник питания своими руками
Подборка рекомендаций и ссылок по сборке лабораторного источника питания (ЛБП) своими собственными руками из доступных комплектующих. Вариантов сделать для себя точный блок питания с регулировкой множество — начиная от простых и бюджетных, заканчивая серьезными устройствами с мощной стабилизацией, связью с компьютером и удаленным программированием.
Программируемые и управляемые модули для ЛБП
Простой способ собрать для себя лабораторный источник питания — это взять управляемый модуль-преобразователь со стабилизацией питания. Одни из самых мощных на Алиэкспресс — это модули RD DPS5015 и DPS5020, с выходными токами 15 и 20 Ампер соответственно. Для удаленного управления выбирайте версии «С» — communication для работы через USB/Bluetooth/Wi-Fi. Модули RD DPH5005 имеют встроенный Buck Boost конвертер для повышения напряжения (можно питать 12/24 вольта и получить на выходе, 30-40-50В. Один из самых продвинутых программируемых преобразователей питания — это модель RD 6006 (подробный обзор). Предыдущий список модулей с интересными вариантами.
Компактные преобразователи питания
Не всегда нужны громоздкие источники и приборы, но достаточно бывает компактного преобразователя для подключения и быстрого теста самоделок. На выбор могу предложить несколько вариантов. Например, простой карманный источник питания, который работает от USB зарядки или павербанка — DP3A, с поддержкой быстрой зарядки QC3.0 и возможностью выставить нужный ток или напряжение со стабилизацией до 15W. Подробный обзор DP3A по ссылке. Чуть мощнее и в отдельном корпусе под блочный монтаж — преобразователь 32В/4А с встроенными защитами (OVP/OСР/ОРР) и стабилизацией тока и напряжения CC/CV, а также возможностью поднять выходное напряжение (Buck Boost). Еще один полезный для домашних самоделок источник — простой блок питания наподобие ноутбучного, но со встроенным показометром и регулировкой. Заявлена стабилизация напряжения мощность до 72W (максимум 3А на выходе).
Стационарные источники питания все-в-одном
Для стационарной работы я бы рекомендовал иметь дома хотя бы один мощный источник типа KORAD. Цифры в названии подобных ЛБП обычно показывают максимальные режимы питания: 30/60 Вольт и 5/10 Ампер. То есть KORAD KA3005 — это 30В/5А, модели 6005 стабилизирует большее выходное напряжение, а типа 3010 — больший ток (до 10 А). Плюс подобных источников — встроенный сетевой преобразователь на 220В.
Модули сетевого питания для сборки ЛБП
Для питания управляемых модулей нужен сетевой преобразователь. Я бы не рекомендовал брать дешевые «народные» платы питания, а предложил бы посмотреть в сторону корпусных БП. В таких уже продумано охлаждение и монтаж, присутствует некоторая регулировка выхода. На выбор предлагаются источники с выходным напряжением на 5V, 12V, 24V, 36V, 48V, 60V и мощностью до 400 Вт. Конечно, можно использовать и компьютерные источники питания АТХ (с выходом 12В и преобразователем типа DPH5005, или с переделкой для повышения выходного напряжения), и другие от старой аппаратуры.
Таким образом, можно на базе готовых модулей и источников тока создать свой удобный и точный блок лабораторного питания. За основу можно взять как старую технику, так и полностью готовые комплектующие с Алиэкспресс и радиомагазинов. Цены варьируются от $5 за простой преобразователь с экраном и стабилизацией, и до $100 за мощное устройство. Из полезных функций — наличие Buck Boost конвертера, который помогает повышать напряжение при недостатке входного, функция заряда аккумуляторов (с наличием встроенной защиты и счетчиков емкости), функция стабилизации тока, функции удаленного управления.
Learning Регулируемый источник питания и его конструкция [Простое объяснение]
Привет. Надеюсь, вы хорошо проводите время. В этом посте я делюсь своими знаниями о регулируемом источнике питания.
Регулируемый — это общий термин, используемый для обозначения любого типа источника питания, который имеет стабильное выходное напряжение или ток независимо от входа или нагрузки. Это может быть линейный источник питания, регулируемый источник питания или регулируемый источник питания.
Единственное условие: он должен иметь выходное напряжение или ток независимо от входа (напряжения) или выходной нагрузки (сопротивления или тока).
Если вы искали просто, чтобы узнать, что такое регулируемый источник питания, я уже дал вам ответ. Но если вы хотите изучить его полностью, вы можете следить за моим обучением вместе со мной.
Будет весело.
Почему регулируемый источник питания?
В основном блоки питания рассчитаны на определенную нагрузку и среду. Но иногда основное напряжение питания, нагрузка и температура окружающей среды продолжают изменяться, изменяя параметры компонентов и, следовательно, изменяя выходное напряжение.Изменения выходного напряжения нежелательны.
Позвольте мне объяснить, почему изменение выходного напряжения нежелательно. Устройства имеют минимальное и максимальное входное напряжение и пороговые значения тока. И вы должны соблюдать эти пороговые значения, иначе вы можете повредить устройство.
Если выходное напряжение вашего источника питания изменится, есть вероятность, что оно превысит эти пороговые значения. Вот почему нам нужно постоянное выходное напряжение. И это достигается за счет регулируемого источника питания.
Стабилизированным источником питания может быть любой источник питания, поскольку я сказал, что он должен обладать постоянным выходным напряжением.Линейный источник питания, регулируемый источник питания или регулируемый источник питания могут быть регулируемым источником питания. Он может иметь любое значение напряжения, например 5 В, 10 В, 12 В и многие другие.
Важно помнить, что стабилизированный источник питания не всегда рассчитан только на постоянное выходное напряжение, он может быть рассчитан на постоянный выходной ток.
Так вы сможете понять, в чем разница между регулируемыми и нерегулируемыми источниками питания. Позвольте мне похвалить его за ваши примечания:
Нерегулируемый источник питания не имеет выходного напряжения или выходного тока независимо от входного основного напряжения или нагрузки.
Генеральное устройство регулируемого источника питания
Если вы попросите меня разработать регулируемый блок питания. Сразу спрошу, это регулируемый линейный источник питания с фиксированным напряжением, или регулируемый источник питания, или переменный источник питания?
В общем, изучение было бы идеальным решением для этого, поскольку основной принцип работы всех регулируемых источников питания одинаков.
Общая блок-схема
Проектирование любой схемы начинается с хорошо составленной общей блок-схемы.Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.
Общая блок-схема этого проекта представлена ниже. Все очень просто. Вам нужно понимать, какой блок что делает.
Сначала мы спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для наших проектов.
Входной трансформатор
Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.В зависимости от вашей страны переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В.
Нам нужен входной трансформатор для понижения входящего переменного тока до требуемого уровня.
Будьте осторожны, играя с этим устройством. Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами.
Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какие провода находятся под напряжением, идущие к трансформатору.
Схема выпрямителя
Если вы думаете, что трансформатор просто снизил напряжение до желаемого регулируемого постоянного напряжения.
Извините, вы ошибаетесь, как когда-то я.
Пониженное напряжение все еще равно переменному току. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.
Схема выпрямителя преобразует переменное напряжение в постоянное. В основном, существует два типа выпрямительной схемы; полуволна и полная волна.
Однако нас интересует полный выпрямитель, так как он более энергоэффективен, чем полупрямой.
Сглаживающий конденсатор / фильтр
В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящую сеть в постоянный ток, но, к сожалению, не может сделать ее чистым постоянным током.
Выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти колебания и обеспечивать совместимость напряжения для регулирования.
Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.
Лучшим фильтром в нашем случае является конденсаторный.Вы, наверное, слышали, конденсатор — это устройство для накопления заряда.
Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.
Регулятор
Стабилизатор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение.
Регулировка напряжения очень важна, потому что нам не нужно изменение выходного напряжения при изменении нагрузки. Всегда требуется нагрузка, не зависящая от выходного напряжения.
ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но также и от изменений напряжения в сети.
Надеюсь, вы разработали базовую концепцию конструкции регулируемого источника питания.
давайте продолжим с реальной принципиальной схемой для нашего конкретного источника питания с регулируемым напряжением 5 В, чтобы вы могли получить очень четкое представление о конструкции.
Я буду использовать программу NI Multisim, надеюсь, вы знакомы с ней. Если вы с ним не знакомы, нет проблем.Это не обязательно. Вы можете использовать любое программное обеспечение. Основная цель — изучить программное обеспечение для проектирования, а не для моделирования.
Конструкция регулируемого источника питания (с фиксированным напряжением)
Следующие этапы проектирования охватывают проектирование регулируемого источника питания с фиксированным выходным напряжением или регулируемого / регулируемого источника питания. С помощью этих шагов вы можете спроектировать регулируемый источник питания.
Я использую конкретный пример 5V, потому что я думаю, что таким образом было бы лучше всего понять весь процесс проектирования.
Вы думаете, я бы начал объяснение с трансформатора, но это не так. Трансформатор выбирается не сразу.
Ниже представлена принципиальная схема указанного проекта. Вы получаете основное питание, напряжение и частота могут зависеть от вашей страны; предохранитель для защиты цепи; трансформатор, выпрямитель, конденсаторный фильтр, светодиодный индикатор и стабилизатор IC.
Блок-схема реализована в NI Multisim, хорошей программе моделирования для студентов и начинающих электронщиков.Я рекомендую потратить немного времени на то, чтобы поиграть с ним. Поскольку, на мой взгляд, вы должны хорошо разбираться в программном обеспечении для моделирования, чтобы получать удовольствие от изучения базовой электроники.
Пошаговый метод проектирования источника питания постоянного тока 5 В
Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.
Шаг 1: Выбор регулятора IC
Выбор микросхемы регулятора зависит от вашего выходного напряжения.В нашем случае мы проектируем для выходного напряжения 5 В, мы выберем ИС линейного регулятора LM7805.
Далее нам нужно знать номинальные значения напряжения, тока и мощности выбранной ИС регулятора.
Это делается с помощью паспорта регулятора IC. Ниже приведены номинальные значения и схема контактов для LM7805.
Спецификация 7805 также предписывает использовать конденсатор 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки.
И 0,1 мкФ на входе регулятора, чтобы избежать пульсации, если фильтрация находится далеко от регулятора.
Шаг 2: Выбор трансформатораПравильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В. Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.
Но между регулятором и трансформатором тоже стоит выпрямитель на диодном мосту.На выпрямителе имеется собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.
Математически:
Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.
Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В или 12 В.
Шаг 3: Выбор диодов для моста
Видите ли, выпрямитель сделан из диодов, расположенных по некоторой схеме.Для изготовления выпрямителя необходимо подобрать для него подходящие диоды. При выборе диода для мостовой схемы.
Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае. Вместо отдельных диодов вы также можете использовать один отдельный мост, входящий в комплект IC.
Но я не хочу, чтобы вы использовали здесь только для обучения и игры с отдельными диодами.
Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки.И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора.
Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.
Шаг 4: Выбор сглаживающего конденсатора и расчеты
При выборе подходящего конденсаторного фильтра необходимо помнить о его напряжении, номинальной мощности и емкости. Т
Номинальное напряжение рассчитывается исходя из вторичного напряжения трансформатора.Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение.
Итак, если вторичное напряжение составляет 17 В (пиковое значение), то номинальное напряжение конденсатора должно быть не менее 50 В.
Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:
Где,Io = ток нагрузки i-e 500 мА в нашей конструкции, Vo = выходное напряжение i-e в нашем случае 5 В, f = частота
В нашем случае:
Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно. Затем, используя формулу конденсатора, практический стандарт, близкий к этому значению, i-e 3.1847E-4, составляет 470 мкФ.
Другая важная формула из книги «Электронные устройства Томаса Л. Флойда» приведена ниже. Это также можно использовать для расчета емкости конденсатора.
В данном случае R — сопротивление нагрузки. А Rf — это коэффициент пульсации, который для хорошей конструкции должен быть менее 10%. На этом мы заканчиваем проектирование блока питания на 5 В.
Сделайте блок питания безопасным
Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же в нашем простом источнике питания должен быть предохранитель на входе. Входной предохранитель защитит наш источник питания в случае перегрузки. Например, наша желаемая нагрузка может выдержать 500 мА.
Если в случае, если наша нагрузка начнет работать неправильно, есть вероятность заусенцев компонентов. Предохранитель защитит наши поставки. Практическое правило при выборе номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.
Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях можно использовать для этого. Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.
Комплект блока питания 5 В (DIY)
Итак, мы получили базовые знания о том, как устроен простой блок питания на 5 В.
Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.Было бы очень хорошее решение.
Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.
Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в безопасной среде. Это похоже на обучение на собственном опыте.
Для начала рекомендую комплект блока питания Elenco (Amazon Link). Он доступен по цене, высокого качества и хорошо документирован, чтобы направлять вас на каждом этапе. Поверьте, вы многому научитесь.Вы узнаете, как паять, собирать и изготавливать конечный продукт, который вы всегда видите в разных магазинах.
Регулируемый источник питания (с регулируемым / регулируемым выходом)
В большинстве случаев нам не требуется фиксированное напряжение. Иногда нам нужен регулируемый источник питания.
Например, чтобы проверить токи коллектора транзистора при различных базовых напряжениях, нам понадобится регулируемый источник питания. И это переменное напряжение необходимо регулировать.
Процедура проектирования такая же, как я объяснил выше, с небольшими изменениями в регуляторах мощности.
На этот раз нам потребуется переменный резистор, чтобы, изменяя его сопротивление, мы получали разные напряжения. Ниже приведена схема регулируемого источника питания или регулируемого источника питания:
До светодиодной части схема такая же, как и для стабилизированного источника питания 5 В при 500 мА. Схема усложняется после светодиодной части, не так ли? Не бойтесь.Все очень просто. Переменный резистор предназначен для изменения выходного напряжения.
Диоды используются для защиты схемы от обратного тока. Теперь давайте посмотрим на следующем видео, как изменение резистора изменяет выходное напряжение.
Преимущества регулируемого источника питания
Источник питания с регулируемым выходом имеет много преимуществ. Следующее имеет ключевое значение.
- низкий уровень шума
- по выгодной цене
- простота
- надежность
Регулируемый блок питания очень прост в конструкции, вы могли почувствовать это в этом посте.Простой дизайн делает его очень экономичным. Эти блоки питания имеют невысокую стоимость и очень надежны.
Они относительно бесшумны. ИС линейных регуляторов, которые используются на выходе, имеют низкие пульсации выходного напряжения, что делает их наиболее подходящими для приложений, где важна чувствительность к шуму.
Заключение
Проектный блок питания подойдет для поддержки других ваших небольших проектов или принесет вам хорошие оценки / деньги, если вас назначат на аналогичный проект.Я не знаю почему, но я уверен, что если вы выполните те же простые шаги со мной, вы получите свой первый разработанный блок питания.
Пожалуйста, не указывайте это только на 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА.
Для дополнительной информации, для вывода положительного напряжения используйте LM78XX. XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.
На этом конструирование регулируемого источника питания подошло к концу. Надеюсь, вам понравилось.
Спасибо и удачной жизни.
Другие полезные сообщения:
Как источник питания регулирует выходное напряжение и ток?
Практические руководства
Резюме
Как источник питания регулирует выходное напряжение и ток?Описание
CV и CC являются основными режимами работы большинства источников питания.Но что именно происходит внутри блока питания, что дает ему возможность регулировать выходное напряжение или ток в зависимости от нагрузки? Если вы когда-нибудь задумывались об этом, больше не удивляйтесь!
Большинство источников питания регулируют либо свое выходное напряжение, либо выходной ток на постоянном уровне, в зависимости от сопротивления нагрузки относительно выходного напряжения источника питания и настроек тока. Это можно резюмировать следующим образом:
· Если R нагрузка> (V out / I out), то источник питания находится в режиме CV
· Если R нагрузка <(V out / I out), то источник питания находится в режиме CC
Для достижения этой цели все источники питания имеют отдельные контуры управления с обратной связью по напряжению и току для ограничения выходного напряжения или тока в зависимости от нагрузки.Чтобы проиллюстрировать это, на рисунке 1 показана принципиальная схема базового блока питания с последовательным выходом 5 В и 1 А, работающего в режиме постоянного напряжения.
Рисунок 1: Базовая схема источника питания постоянного тока, работа при постоянном напряжении (CV)
В CV и управления CC петли / усилители каждый имеет значение опорного сигнала. В этом случае оба эталонных значения составляют 1 вольт. Для того, чтобы регулировать выходное напряжение усилитель ошибки CV сравнивает свою ссылку 1 вольт против резистора делителя, который делит выходной сигнал вниз напряжения на коэффициент 5, ограничение выходного напряжения до 5 вольт.Аналогичным образом, усилитель ошибки CC сравнивает свою ссылку 1 вольт против тока шунт 1 Ом, расположенного в выходном пути тока, что ограничивает выходной ток до 1 ампер. Для рисунка 1 сопротивление нагрузки составляет 10 Ом.
Поскольку это сопротивление нагрузки больше, чем (V out / I out) = 5 Ом, источник питания работает в режиме CV. Усилитель ошибки CV управляет последовательным транзистором, отводя избыточный базовый ток от последовательного транзистора через диодную схему «ИЛИ».Усилитель CV работает в замкнутом контуре, поддерживая напряжение ошибки на уровне нуля вольт. Для сравнения, поскольку фактический выходной ток составляет всего 0,5 А, усилитель CC пытается включить ток сильнее, но не может, потому что усилитель CV контролирует выход.
Усилитель CC работает без обратной связи. Его выход достигает положительного предела, а напряжение ошибки -0,5 В. Схема I-V на выходе для этой операции с постоянным напряжением показана на рисунке 2.
Рисунок 2: Схема I-V источника питания, работа CV
Теперь предположим, что мы увеличиваем нагрузку, уменьшая выходное сопротивление нагрузки с 10 Ом до 3 Ом.На рисунке 3 показана принципиальная схема нашего базового блока питания с последовательным выходом на 5 В и 1 А, пересмотренного для работы в режиме CC с нагрузочным резистором 3 Ом.
Рисунок 3: Базовая схема источника питания постоянного тока, работа при постоянном токе (CC)
Поскольку сопротивление нагрузки меньше (V out / I out) = 5 Ом, источник питания переключается в режим CC. Усилитель ошибки СС берет на себя управление, когда падение напряжения на текущих шунтирующих резисторах увеличиваются, чтобы соответствовать опорному значению 1 вольт, что соответствует выходу усилитель 1, рисунок избыточного тока базы из серии проходит транзистор, хотя диод «ИЛИ» сеть.
Усилитель CC теперь работает по замкнутому контуру, регулируя выходной ток для поддержания входного напряжения ошибки на нуле. Для сравнения, поскольку фактическое выходное напряжение теперь составляет всего 3 вольта, усилитель CV пытается увеличить выходное напряжение, но не может, потому что усилитель CC контролирует выход. Усилитель CV работает без обратной связи. Его выходной сигнал теперь достигает своего положительного предела, в то время как он имеет напряжение ошибки -0,4 В.
Выходная I-V-диаграмма для этой операции с постоянным током показана на рисунке 4.
Рисунок 4: Схема I-V источника питания, работа CC
Как мы уже видели, большинство источников питания имеют отдельные контуры управления током и напряжением для регулирования своих выходов либо в режиме постоянного напряжения (CV), либо в режиме постоянного тока (CC). Один или другой берет на себя управление, в зависимости от того, какое сопротивление нагрузки зависит от выходного напряжения и тока источника питания. Таким образом, и нагрузка, и источник питания защищены путем ограничения напряжения и тока, подаваемых источником питания на нагрузку.
Понимая эту теорию, лежащую в основе работы источника питания CV и CC, также легче понять основную причину того, почему различные характеристики источника питания такие, какие они есть, а также увидеть, как можно создать другие возможности источника питания, построив сверху. этого фонда.
Оставайтесь с нами!
См. Также
Основы постоянного напряжения CV и постоянного тока CC Часть 1
Основы постоянного напряжения CV и постоянного тока CC Часть 2
Руководство по выбору продуктов питания
Источники питания постоянного тока
Цепи питания | Практические аналоговые полупроводниковые схемы
Существует три основных типа источников питания: нерегулируемый (также называемый грубой силой ), линейный регулируемый и переключающий .Четвертый тип схемы источника питания, называемый с регулируемой пульсацией, , представляет собой гибрид между схемами «грубой силы» и «переключением» и заслуживает отдельного раздела.
нерегулируемый
Нерегулируемый источник питания — это самый примитивный тип, состоящий из трансформатора , выпрямителя и фильтра нижних частот . Эти источники питания обычно демонстрируют большое количество пульсаций напряжения (то есть быстро меняющуюся нестабильность) и другие «шумы» переменного тока, накладываемые на мощность постоянного тока.Если входное напряжение изменяется, выходное напряжение будет изменяться пропорционально. Преимущество нерегулируемых поставок в том, что они дешевы, просты и эффективны.
линейно регулируемый
Линейный регулируемый источник питания — это просто «грубый» (нерегулируемый) источник питания, за которым следует транзисторная схема, работающая в «активном» или «линейном» режиме, отсюда и название «линейный стабилизатор ». (В ретроспективе это очевидно, не так ли?) Типичный линейный регулятор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и он просто сбрасывает любое избыточное входное напряжение, чтобы обеспечить максимальное выходное напряжение на нагрузку.Это чрезмерное падение напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, транзисторная схема потеряет стабилизацию, что означает, что она не сможет поддерживать постоянное напряжение. Он может только снизить избыточное напряжение, но не восполнить недостаток напряжения в цепи грубой силы. Следовательно, вы должны поддерживать входное напряжение как минимум на 1–3 вольт выше желаемого выходного напряжения, в зависимости от типа регулятора. Это означает, что эквивалент мощности не менее от 1 до 3 вольт, умноженный на ток полной нагрузки, будет рассеиваться схемой регулятора, генерируя много тепла.Это делает источники питания с линейной регулировкой неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.
Переключение
Импульсный регулируемый источник питания («переключатель») — это попытка реализовать преимущества схем с прямым и линейным регулированием (компактность, эффективность и дешевизна, но также «чистое» стабильное выходное напряжение). Импульсные источники питания работают по принципу выпрямления входящего переменного напряжения линии электропередачи в постоянный ток, преобразования его в высокочастотный прямоугольный переменный ток через транзисторы, работающие как переключатели включения / выключения, повышая или понижая это напряжение переменного тока с помощью легкого веса. трансформатор, затем выпрямляет выход переменного тока трансформатора в постоянный ток и фильтрует его для конечного выхода.Регулировка напряжения достигается изменением «рабочего цикла» инверсии постоянного тока в переменный на первичной стороне трансформатора. Помимо меньшего веса из-за меньшего размера сердечника трансформатора, коммутаторы имеют еще одно огромное преимущество по сравнению с двумя предыдущими конструкциями: источник питания типа может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в России. мир; они называются «универсальными» источниками питания. Обратной стороной коммутаторов является то, что они более сложны и из-за своей работы имеют тенденцию генерировать много высокочастотных «шумов» переменного тока в линии электропередачи.Большинство коммутаторов также имеют на своих выходах значительные пульсации напряжения. У более дешевых типов этот шум и пульсации могут быть такими же сильными, как и для нерегулируемого источника питания; Такие бюджетные коммутаторы не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение, и есть «универсальные» входные возможности. Дорогие переключатели не имеют пульсаций и имеют почти такой же низкий уровень шума, как и некоторые линейные переключатели; эти переключатели обычно столь же дороги, как и линейные источники питания. Причина использования дорогого коммутатора вместо хорошего линейного в том, что вам нужна универсальная совместимость с энергосистемой или высокая эффективность.Высокая эффективность, малый вес и небольшие размеры — вот причины, по которым импульсные источники питания почти повсеместно используются для питания цифровых компьютерных схем.
Регулируемая пульсация
Источник питания с пульсационным регулированием является альтернативой линейно регулируемой проектной схеме: источник питания «грубой силы» (трансформатор, выпрямитель, фильтр) составляет «входной конец» схемы, но транзистор работает строго в его включенном состоянии. В режимах выключения (насыщение / отсечка) мощность постоянного тока передается на большой конденсатор по мере необходимости для поддержания выходного напряжения между высокой и низкой уставкой.Как и в переключателях, транзистор в стабилизаторе пульсаций никогда не пропускает ток, находясь в «активном» или «линейном» режиме в течение значительного промежутка времени, что означает, что очень мало энергии будет потрачено впустую в виде тепла. Однако самым большим недостатком этой схемы регулирования является необходимое присутствие некоторой пульсации напряжения на выходе, поскольку напряжение постоянного тока изменяется между двумя уставками управления напряжением. Кроме того, это пульсирующее напряжение изменяется по частоте в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию постоянного тока.Цепи регулятора пульсаций, как правило, немного проще, чем схемы переключателя, и им не нужно обрабатывать высокие напряжения в линии питания, с которыми должны работать переключающие транзисторы, что делает их более безопасными в эксплуатации.
СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:
Блок-схема регулируемого источника питания, принципиальная электрическая схема, рабочая
ВВЕДЕНИЕ
Почти все основные бытовые электронные схемы нуждаются в нерегулируемом переменном токе для преобразования в постоянный постоянный ток для работы электронного устройства.Все устройства будут иметь определенный лимит питания, и электронные схемы внутри этих устройств должны обеспечивать постоянное напряжение постоянного тока в пределах этого лимита. Этот источник постоянного тока регулируется и ограничен по напряжению и току. Но питание от сети может быть нестабильным и может легко вывести из строя электронное оборудование, если оно не будет должным образом ограничено. Эта работа по преобразованию нерегулируемого переменного тока (AC) или напряжения в ограниченный постоянный ток (DC) или напряжение, чтобы сделать выход постоянным независимо от колебаний на входе, выполняется регулируемой схемой источника питания.
Все активные и пассивные электронные устройства будут иметь определенную рабочую точку постоянного тока (точка Q или точка покоя), и эта точка должна достигаться источником питания постоянного тока.
Источник питания постоянного тока практически преобразован в каждую ступень электронной системы. Таким образом, общим требованием для всех этих фаз будет источник питания постоянного тока. Все системы с низким энергопотреблением могут работать от аккумулятора. Но в устройствах, долгое время эксплуатируемых, батареи могут оказаться дорогостоящими и сложными.Лучше всего использовать нерегулируемый источник питания — комбинацию трансформатора, выпрямителя и фильтра. Схема представлена ниже.
Нерегулируемый источник питания — схемаКак показано на рисунке выше, небольшой понижающий трансформатор используется для понижения уровня напряжения в соответствии с потребностями устройства. В Индии доступен источник питания 1 Ø на 230 вольт. На выходе трансформатора пульсирующее синусоидальное переменное напряжение преобразуется в пульсирующее постоянное с помощью выпрямителя.Этот выходной сигнал подается на схему фильтра, которая уменьшает пульсации переменного тока и пропускает компоненты постоянного тока. Но есть определенные недостатки в использовании нерегулируемого источника питания.
Недостатки нерегулируемого источника питания
1. Плохое регулирование — При изменении нагрузки выходная мощность не кажется постоянной. Выходное напряжение изменяется на большую величину из-за значительного изменения тока, потребляемого от источника питания. В основном это связано с высоким внутренним сопротивлением блока питания (> 30 Ом).
2. Основные отклонения в сети переменного тока — Максимальные отклонения в питающей сети переменного тока равны 6% от номинального значения. Но в некоторых странах это значение может быть выше (180–280 вольт). Когда значение выше, выходное напряжение постоянного тока будет сильно отличаться.
3. Изменение температуры — Использование полупроводниковых приборов в электронных устройствах может вызвать колебания температуры.
Эти колебания выходного постоянного напряжения могут вызывать неточную или неустойчивую работу или даже выход из строя многих электронных схем.Например, в генераторах частота будет сдвигаться, выход передатчиков будет искажаться, а в усилителях рабочая точка будет сдвигаться, вызывая нестабильность смещения.
Все вышеперечисленные проблемы решаются с помощью регулятора напряжения , который используется вместе с нерегулируемым источником питания. Таким образом, пульсации напряжения значительно снижаются. Таким образом, источник питания становится регулируемым.
Внутренняя схема регулируемого источника питания также содержит определенные цепи ограничения тока, которые помогают цепи питания не перегорать из-за непреднамеренных цепей.В настоящее время во всех источниках питания используется микросхема IC для уменьшения пульсаций, улучшения регулирования напряжения и расширения возможностей управления. Также доступны программируемые источники питания для удаленного управления, что полезно во многих случаях.
РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯРегулируемый источник питания — это электронная схема, которая предназначена для обеспечения постоянного постоянного напряжения заданного значения на клеммах нагрузки независимо от колебаний сети переменного тока или колебаний нагрузки.
Регулируемый источник питания — блок-схемаРегулируемый источник питания по существу состоит из обычного источника питания и устройства регулирования напряжения, как показано на рисунке. Выход из обычного источника питания подается на устройство регулирования напряжения, которое обеспечивает конечный выход. Выходное напряжение остается постоянным независимо от изменений входного переменного напряжения или выходного тока (или тока нагрузки).
На приведенном ниже рисунке показана полная схема стабилизированного источника питания с последовательным транзисторным стабилизатором в качестве регулирующего устройства.Подробно объясняется каждая часть схемы.
Трансформатор
Понижающий трансформатор используется для понижения напряжения от входного переменного тока до требуемого напряжения электронного устройства. Это выходное напряжение трансформатора настраивается путем изменения коэффициента трансформации трансформатора в соответствии со спецификациями электронного устройства. Вход трансформатора составляет 230 В переменного тока, выход подается на полную мостовую схему выпрямителя.
Узнать больше: Трансформаторы
Схема двухполупериодного выпрямителя
FWR состоит из 4 диодов, которые выпрямляют выходное переменное напряжение или ток транзистора до эквивалентной величины постоянного тока.Как следует из названия, FWR выпрямляет обе половины входного переменного тока. Выпрямленный выход постоянного тока подается на вход схемы фильтра.
Подробнее: полноволновой выпрямитель и полуволновой выпрямитель
Цепь фильтра
Схема фильтра используется для преобразования выходного сигнала постоянного тока с высокой пульсацией FWR в содержимое постоянного тока без пульсаций. Фильтр ∏ используется для устранения пульсаций сигналов.
Подробнее: схемы фильтров
Вкратце
Напряжение переменного тока, обычно 230 В, действующее значение , подключено к трансформатору, который преобразует это напряжение переменного тока в уровень для желаемого выхода постоянного тока.Затем мостовой выпрямитель выдает двухполупериодное выпрямленное напряжение, которое сначала фильтруется ∏ (или C-L-C) фильтром для создания постоянного напряжения. Результирующее постоянное напряжение обычно имеет некоторую пульсацию или колебания переменного напряжения. Схема регулирования использует этот вход постоянного тока для обеспечения постоянного напряжения, которое не только имеет гораздо меньшее напряжение пульсаций, но также остается постоянным, даже если входное напряжение постоянного тока несколько изменяется или нагрузка, подключенная к выходному напряжению постоянного тока, изменяется. Стабилизированный источник постоянного тока доступен через делитель напряжения.
Регулируемый источник питания — схемаЧасто для работы электронных схем требуется более одного напряжения постоянного тока. Один источник питания может обеспечивать любое необходимое напряжение за счет использования делителя напряжения (или потенциала), как показано на рисунке. Как показано на рисунке, делитель потенциала представляет собой резистор с одним ответвлением, подключенный к выходным клеммам источника питания. Резистор с ответвлениями может состоять из двух или трех резисторов, подключенных последовательно через источник питания.Фактически, резистор утечки также может использоваться в качестве делителя потенциала.
Характеристики блока питанияКачество источника питания определяется различными факторами, такими как напряжение нагрузки, ток нагрузки, регулировка напряжения, регулировка источника, выходное сопротивление, подавление пульсаций и т. Д. Некоторые характеристики кратко описаны ниже:
1. Регулировка нагрузки — Регулирование нагрузки или влияние нагрузки — это изменение регулируемого выходного напряжения, когда ток нагрузки изменяется с минимального на максимальное значение.
Регулировка нагрузки = V без нагрузки - V полная нагрузка
В без нагрузки относится к напряжению нагрузки без нагрузки
Vfull-load относится к напряжению нагрузки при полной нагрузке.
Из приведенного выше уравнения мы можем понять, что, когда возникает Vno-нагрузка, сопротивление нагрузки бесконечно, то есть выходные клеммы разомкнуты. Полная нагрузка возникает, когда сопротивление нагрузки имеет минимальное значение, при котором регулирование напряжения теряется.
% Регулировка нагрузки = [(Vno-load - Vfull-load) / Vfull-load] * 100
2. Минимальное сопротивление нагрузки — Сопротивление нагрузки, при котором источник питания выдает номинальный ток полной нагрузки при номинальном напряжении, называется минимальным сопротивлением нагрузки.
Минимальное сопротивление нагрузки = Полная нагрузка / Полная нагрузка
Значение тока полной нагрузки при полной нагрузке никогда не должно увеличиваться, чем указано в паспорте источника питания.
3. Регулирование источника / линии — На блок-схеме входное линейное напряжение имеет номинальное значение 230 В, но на практике здесь наблюдаются значительные колебания сетевого напряжения переменного тока.Поскольку это сетевое напряжение переменного тока является входом для обычного источника питания, отфильтрованный выход мостового выпрямителя почти прямо пропорционален сетевому напряжению переменного тока.
Регулировка источника определяется как изменение регулируемого выходного напряжения для заданного диапазона ложного напряжения.
4. Выходное сопротивление — Стабилизированный источник питания представляет собой очень жесткий источник постоянного напряжения. Это означает, что выходное сопротивление очень маленькое. Несмотря на то, что внешнее сопротивление нагрузки меняется, напряжение нагрузки почти не изменяется.Идеальный источник напряжения имеет нулевое выходное сопротивление.
5. Подавление пульсаций — Регуляторы напряжения стабилизируют выходное напряжение от изменений входного напряжения. Пульсация эквивалентна периодическому изменению входного напряжения. Таким образом, регулятор напряжения ослабляет пульсации, возникающие при нерегулируемом входном напряжении. Поскольку в регуляторе напряжения используется отрицательная обратная связь, искажение уменьшается в тот же раз, что и коэффициент усиления.
Источники питания | Electronics Club
Блоки питания | Клуб электроникиТрансформатор | Выпрямитель | Сглаживание | Регулятор | Двойные расходные материалы
Следующая страница: Преобразователи
См. Также: AC / DC | Диоды | Конденсаторы
Типы источников питания
Есть много типов источников питания.Большинство из них предназначены для преобразования сети переменного тока высокого напряжения. к подходящему низковольтному источнику питания для электронных схем и других устройств. Источник питания можно разбить на серию блоков, каждый из которых выполняет определенную функцию.
Например, регулируемое питание 5 В:
- Трансформатор — понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
- Выпрямитель — преобразует переменный ток в постоянный, но выходной постоянный ток меняется.
- Smoothing (Сглаживание) — сглаживает постоянный ток от сильно варьирующегося до небольшой ряби. Регулятор
- — устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.
Блоки питания, изготовленные из этих блоков, описаны ниже со схемой и графиком их выхода:
Только трансформатор
Низковольтный выход переменного тока подходит для ламп, нагревателей и специальных двигателей переменного тока. не подходит для электронных схем, если они не включают выпрямитель и сглаживающий конденсатор.
См .: Трансформатор
Трансформатор + Выпрямитель
Регулируемый выход постоянного тока подходит для ламп, обогревателей и стандартных двигателей. не подходит для электронных схем, если они не содержат сглаживающий конденсатор.
См .: Трансформатор | Выпрямитель
Трансформатор + выпрямитель + сглаживание
Выходной сигнал smooth DC имеет небольшую пульсацию. Он подходит для большинства электронных схем.
См .: Трансформатор | Выпрямитель | Сглаживание
Трансформатор + выпрямитель + сглаживающий + регулятор
Регулируемый выход постоянного тока очень плавный, без пульсаций.Подходит для всех электронных схем.
См .: Трансформатор | Выпрямитель | Сглаживание | Регулятор
Трансформатор
Трансформаторы преобразуют электричество переменного тока из одного напряжения в другое с небольшими потерями мощности. Трансформаторы работают только с переменным током, и это одна из причин, почему в сети используется переменный ток.
Повышающие трансформаторы повышают напряжение, понижающие трансформаторы понижают напряжение. В большинстве источников питания используется понижающий трансформатор для снижения опасно высокого напряжения в сети. напряжение (230 В в Великобритании) на более безопасное низкое напряжение.
Трансформаторы расходуют очень мало энергии, поэтому выходная мощность (почти) равна входной мощности. Обратите внимание, что при понижении напряжения ток увеличивается.
Входная катушка называется первичной обмоткой , а выходная катушка — вторичной . Между двумя катушками нет электрического соединения, вместо этого они связаны переменное магнитное поле, создаваемое в сердечнике из мягкого железа трансформатора. Две линии в середине символа схемы представляют сердечник.
Rapid Electronics: трансформаторы
Обозначение схемы трансформатора
Передаточное число
Отношение числа витков на каждой катушке, называемое соотношением витков , определяет соотношение напряжений. Понижающий трансформатор имеет большое количество витков на первичной (входной) катушке, которая подключена к питающей сети высокого напряжения. и небольшое количество витков на его вторичной (выходной) катушке, чтобы обеспечить низкое выходное напряжение.
Передаточное число = | Вп | = | Np |
VS | Ns |
мощность на выходе = мощность в |
Vp = первичное (входное) напряжение
Np = количество витков на первичной катушке
Ip = первичный (входной) ток
Vs = вторичное (выходное) напряжение
Ns = количество витков вторичной катушки
Is = вторичный (выходной) ток
Выпрямитель
Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель является наиболее важным, и он производит двухполупериодный переменный DC. Двухполупериодный выпрямитель также можно сделать всего из двух диодов, если используется трансформатор с центральным отводом, но сейчас этот метод редко используется, потому что диоды стали дешевле. Можно использовать одиночный диод как выпрямитель, но он использует только положительные (+) части волны переменного тока для создания полуволны переменного постоянного тока.
Мостовой выпрямитель
Мостовой выпрямитель может быть выполнен с использованием четырех отдельных диодов, но он также доступен в пакеты, содержащие четыре необходимых диода.Он называется двухполупериодным выпрямителем. потому что он использует всю волну переменного тока (как положительную, так и отрицательную части). Чередующиеся пары диодов проводят, это переключает соединения, поэтому переменные направления переменного тока преобразуются в одно направление постоянного тока.
1,4 В используется в мостовом выпрямителе, потому что на каждом диоде 0,7 В при проводящем соединении, и всегда есть два диоды проводящие, как показано на схеме.
Мостовые выпрямителирассчитаны на максимальный ток, который они могут пропускать, и максимальное обратное напряжение, которое они могут выдержать.Их номинальное напряжение должно быть не менее трех раз больше среднеквадратичного напряжения источника питания. поэтому выпрямитель может выдерживать пиковые напряжения. Пожалуйста, смотрите страницу Диоды для получения более подробной информации, включая изображения мостовых выпрямителей.
Rapid Electronics: мостовые выпрямители
Мостовой выпрямитель
Выход: двухполупериодный переменный постоянный ток
(с использованием всей волны переменного тока)
Выпрямитель одинарный диод
Один диод можно использовать в качестве выпрямителя, но он дает полуволны переменного постоянного тока, который имеет промежутки когда переменный ток отрицательный.Трудно сгладить это достаточно хорошо, чтобы питать электронные схемы, если они не требуется очень небольшой ток, поэтому сглаживающий конденсатор существенно не разряжается во время промежутков. Пожалуйста, обратитесь к странице Диоды для некоторых примеров выпрямительных диодов.
Rapid Electronics: Выпрямительные диоды
Выпрямитель одинарный диод
Выход: полуволна переменного тока
(с использованием только половины переменного тока)
Сглаживание
Сглаживание выполняется электролитическим конденсатором большой емкости. подключен к источнику постоянного тока, чтобы действовать как резервуар, подающий ток на выход, когда изменяющееся напряжение постоянного тока от выпрямитель падает.На диаграмме показаны несглаженный изменяющийся постоянный ток (пунктирная линия) и сглаженный постоянный ток (сплошная линия). Конденсатор быстро заряжается около пика переменного постоянного тока, а затем разряжается, подавая ток на выход.
Обратите внимание, что сглаживание значительно увеличивает среднее напряжение постоянного тока почти до пикового значения. (1,4 × значение RMS). Например, выпрямляется переменный ток 6 В RMS. до полной волны постоянного тока около 4,6 В RMS (1,4 В теряется в мостовом выпрямителе), со сглаживанием этого увеличивается почти до пикового значения, что дает 1.4 × 4,6 = 6,4 В постоянного тока.
Неидеальное сглаживание из-за небольшого падения напряжения на конденсаторе при его разряде, давая небольшую пульсацию напряжения . Для многих цепей пульсация составляет 10% от напряжения питания. напряжение является удовлетворительным, и приведенное ниже уравнение дает необходимое значение для сглаживающего конденсатора. Конденсатор большего размера даст меньше пульсаций. При сглаживании полуволны постоянного тока емкость конденсатора должна быть увеличена вдвое.
Rapid Electronics: электролитические конденсаторы
Сглаживающий конденсатор, C, для пульсации 10%:
С = | 5 × Io |
Vs × f |
где:
C = сглаживающая емкость в фарадах (Ф)
Io = выходной ток в амперах (A)
Vs = напряжение питания в вольтах (V), это пиковое значение несглаженного постоянного тока.
f = частота сети переменного тока в герцах (Гц), в Великобритании это 50 Гц
Регулятор
ИС регулятора напряжения доступны с фиксированными (обычно 5, 12 и 15 В) или переменное выходное напряжение.Они также рассчитаны на максимальный ток, который они могут пропускать. Доступны регуляторы отрицательного напряжения, в основном для использования в двойных источниках питания. Большинство регуляторов включают в себя автоматическую защиту от чрезмерного тока («защита от перегрузки»). и перегрев («тепловая защита»).
Многие микросхемы фиксированного стабилизатора напряжения имеют 3 вывода и выглядят как силовые транзисторы, например, регулятор 7805 + 5V 1A, показанный справа. В них есть отверстие для крепления при необходимости радиатор.
Rapid Electronics: регулятор 7805
Фотография регулятора напряжения © Рапид Электроникс
Стабилитрон
Для слаботочных источников питания можно сделать простой регулятор напряжения с резистором. и стабилитрон, подключенный в обратном направлении , как показано на схеме.Стабилитроны имеют номинальное напряжение пробоя и Vz . Максимальная мощность Pz (обычно 400 мВт или 1,3 Вт).
Резистор ограничивает ток (как светодиодный резистор). Ток через резистор постоянный, поэтому при отсутствии выходного тока весь ток течет через стабилитрон, и его номинальная мощность Pz должна быть достаточно большой, чтобы выдержать это.
Дополнительную информацию о стабилитронах см. На странице «Диоды».
Rapid Electronics: стабилитроны
стабилитрон
a = анод, k = катод
Выбор стабилитрона и резистора
Это шаги для выбора стабилитрона и резистора:
- Напряжение стабилитрона Vz — необходимое выходное напряжение
- Входное напряжение Vs должно быть на несколько вольт больше, чем Vz
(это необходимо для небольших колебаний Vs из-за пульсации) - Максимальный ток Imax — это требуемый выходной ток плюс 10%
- У стабилитрона мощность Pz определяется максимальным током: Pz> Vz × Imax
- Сопротивление резистора : R = (Vs — Vz) / Imax
- Номинальная мощность резистора : P> (Vs — Vz) × Imax
В этом примере показано, как использовать эти шаги для выбора стабилитрона и резистора с подходящими значениями и номинальной мощностью.
Например
Если требуемое выходное напряжение 5 В, а выходной ток 60 мА:
- Vz = 4,7 В (ближайшее доступное значение)
- Vs = 8V (на несколько вольт больше, чем Vz)
- Imax = 66 мА (ток плюс 10%)
- Pz> 4,7 В × 66 мА = 310 мВт, выберите Pz = 400 мВт
- R = (8 В — 4,7 В) / 66 мА = 0,05 кОм
= 50,
выберите R = 47 - Номинальная мощность резистора P> (8 В — 4.7 В) × 66 мА = 218 мВт, выберите P = 0,5 Вт
Двойные расходные материалы
Для некоторых электронных схем требуется источник питания с положительным и отрицательным выходами, а также нулевое напряжение (0 В). Это называется «двойным источником питания», потому что это похоже на два обычных источника питания, соединенных вместе, как показано на схеме.
Двойные источники питания имеют три выхода, например, источник питания ± 9 В имеет выходы + 9 В, 0 В и -9 В.
Rapid Electronics: блоки питания
Следующая страница: Преобразователи | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Руководство по источникам питания— B&K Precision
Введение
Источники питания являются одними из самых популярных единиц электронного испытательного оборудования. Это неудивительно, поскольку контролируемая электрическая энергия используется множеством способов.В этом руководстве мы рассмотрим различные типы источников питания, их элементы управления, способы их работы и некоторые примеры их применения.
Источником питания в широком смысле можно назвать все, что снабжает энергией, например плотину гидроэлектростанции, двигатель внутреннего сгорания или гидравлический насос. Однако мы ограничимся обсуждением типов источников питания, которые преимущественно используются для испытаний и измерений, технического обслуживания и разработки продуктов.
Этот документ предназначен для пользователей или потенциальных пользователей источников питания. Его цель — дать определение используемых терминов, познакомить с различными типами источников питания и лежащими в их основе технологиями, объяснить элементы управления типичными источниками питания и рассмотреть некоторые примеры их использования.
Вот таблица некоторых различных типов источников питания. Мы сосредоточимся на выделенных типах.
Выход = DC | Выход = AC | |
Ввод = AC |
|
|
Ввод = DC |
Термин «настольный источник питания» здесь используется несколько мягко, так как некоторые из обсуждаемых нами источников питания могут быть слишком тяжелыми, чтобы их можно было поставить на скамейку.Тем не менее, номенклатура полезна, поскольку даже тяжелые источники питания с высокой выходной мощностью имеют много общего со своими меньшими собратьями. Но термин «стенд» является описательным для многих людей, поскольку он вызывает в воображении мысленный образ источника питания постоянного тока, используемого на скамейке инженера или техника для множества энергетических задач.
В оставшейся части этого документа стендовый источник питания будет рассмотрен более подробно после краткого обзора источников питания переменного тока.
Источник переменного тока
При тестировании электрического оборудования, которое питается от сети переменного тока, часто важно оценить оборудование, когда оно подвергается воздействию повышенного или пониженного напряжения.Нормальные колебания напряжения в сети переменного тока составляют порядка ± 10%, но могут быть больше, когда линия одновременно используется множеством тяжелых нагрузок. Разработчик может также захотеть провести испытания, выходящие за рамки нормальных изменений напряжения сети переменного тока, для целей нагрузочного тестирования (чтобы выяснить, в чем заключаются недостатки конструкции). Для этого типа тестирования требуется переменный источник переменного тока. Регулируемый источник переменного тока также может быть полезен во время «пониженного напряжения» (условия низкого напряжения в сети), чтобы поднять напряжение в сети до нормального уровня. Другое использование — повышение напряжения, когда нагрузка подключена через длинный удлинитель и падение напряжения на шнуре является значительным.
Различные напряжения переменного тока генерируются с помощью трансформатора (или автотрансформатора). Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных напряжений. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для (почти) непрерывного изменения напряжения 1 . Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.
Некоторые продукты, такие как блок питания переменного тока с регулируемой изоляцией B & K Precision модели 1655A, показанный ниже, объединяют в себе изолирующий трансформатор и регулируемый трансформатор.Этот продукт также включает в себя возможность выполнять испытания на утечку переменного тока и имеет удобный регулируемый источник питания для паяльников. Это практичный и полезный инструмент для стенда устранения неполадок.
Типы источников питания постоянного тока
Съемник аккумулятора
Эти типы расходных материалов, как правило, наименее дорогие. Название описывает их основное предназначение — действовать вместо батареи. Эти устройства недороги и удобны при работе с оборудованием с батарейным питанием, так как они позволяют работать с оборудованием без необходимости искать необходимые батареи.Один из популярных типов выдает 13,8 В постоянного тока и предназначен для подачи постоянного тока на устройства, обычно питаемые от автомобильного аккумулятора. Типичное применение — обслуживание радиоприемников CB и автомобильного стереооборудования. Их характеристики линейного регулирования обычно шире, чем у лабораторных расходных материалов, но это нормально, поскольку напряжения в автомобилях существенно различаются.
Другой популярный тип (показан справа) заменяет различные схемы батарей на 1,5 вольта и батарей на 9 и 12 вольт. Единственными элементами управления являются двухпозиционный переключатель и поворотный переключатель, позволяющие выбрать желаемое выходное напряжение.
Поскольку это настоящие источники питания, они предназначены для безопасной непрерывной работы в условиях короткого замыкания.
Расстояние между банановыми разъемами составляет 0,75 дюйма (19 мм), чтобы можно было использовать переходники с двумя банановыми вилками, используемые с коаксиальными кабелями.
Источник постоянного напряжения
Чуть более сложный источник питания, чем разрядник батарей, обеспечивает постоянное регулируемое напряжение. Поскольку они регулируются, они обычно поставляются с измерителем, чтобы показать вам напряжение, на которое установлено напряжение.В некоторых также есть измерители, позволяющие контролировать ток. Типичная модель — B&K 1686A, показанная справа.
Основное поведение источника питания — поддержание установленного вами напряжения независимо от сопротивления нагрузки.
Эти модели имеют ручку для регулировки выходного напряжения. Некоторые модели не могут быть полностью настроены до нуля вольт, и их максимальный выходной ток может быть пропорционален выходному напряжению, а не обеспечивать номинальный ток при любом выходном напряжении.
В модели справа предусмотрены «связующие» точки, позволяющие контролировать выходное напряжение с помощью более точного цифрового измерителя или для подключения к другим цепям (обратите внимание, что связующие точки имеют предел 2 А).
Эти типы источников питания хорошо работают в качестве разрядников батарей, а также покажут вам ток, потребляемый нагрузкой.
Постоянное напряжение / постоянный ток
Вероятно, самый популярный тип лабораторных источников питания — это источники постоянного напряжения / постоянного тока.В дополнение к подаче постоянного напряжения эти источники также могут подавать постоянный ток. В режиме постоянного тока источник питания будет поддерживать установленный ток независимо от изменений сопротивления нагрузки. Типичным примером этого типа источника питания является B&K 1621A, показанный:
Этот источник питания выдает одно регулируемое напряжение, которое обозначается одним набором клемм типа «банановый джек». Вышеупомянутое расположение выходных клемм с клеммой заземления между клеммами + и — является наиболее распространенным и делает подключение любой клеммы к земле с помощью металлической перемычки очень удобно.Это полезно, если вы хотите, чтобы одна из клемм была заземлена. Конечно, то же самое можно сделать с помощью куска проволоки или перемычки со штабелируемыми банановыми вилками.
Указанный выше источник питания имеет грубую и точную регулировку как тока, так и напряжения. В некоторых источниках питания вместо этого для регулировки используются 10-оборотные потенциометры. В других используются дисковые переключатели или кнопочные переключатели. Дисковые и кнопочные переключатели полезны (если их настройки точны), потому что они могут устранить необходимость в измерителе.
У этих типов источников питания часто есть другие полезные функции:
- Дистанционное измерение: вход с высоким сопротивлением, позволяющий измерять напряжение на нагрузке. Затем источник питания корректирует падение напряжения на выводах, соединяющих источник питания с нагрузкой.
- Соединения ведущий / ведомый: существуют различные методы, позволяющие подключать источники питания одного семейства параллельно или последовательно для получения более высоких напряжений или более высоких токов.
- Терминал дистанционного программирования: у некоторых источников питания есть входные терминалы для напряжения или сопротивления, которые можно использовать для управления выходным напряжением или током.Примечание: это называется аналоговым программированием, а не цифровым программированием с помощью компьютера.
Источник питания с несколькими выходами
Источники питания с несколькими выходами имеют более одного выхода постоянного тока, часто два или три. Они полезны и экономичны для систем, требующих нескольких напряжений. Часто используемый источник питания для разработки схем — это источник с тройным выходом. Один выход подает от 0 до 6 вольт, предназначенный для цифровой логики. Два других питают (обычно) от 0 до 20 вольт, которые могут использоваться с биполярной аналоговой схемой.Иногда для двух источников питания на 20 вольт предоставляется регулировка слежения, так что источники + и — 20 вольт можно регулировать вместе, поворачивая одну ручку.
Популярной моделью является модель 9130:
.Три выхода можно настроить независимо с помощью ручки или клавиатуры. Выходы каналов 1 и 2 — 31 вольт при 3,1 ампера, а третий канал выдает 6 вольт при 3,1 ампера. Таким образом, источник питания может непрерывно выдавать более 200 Вт. Выходы можно включать и выключать независимо или все сразу (полезно для питания всей печатной платы).
Блок питания имеет ряд полезных функций. Выходы могут быть настроены на работу по таймеру: по прошествии определенного временного интервала выход отключается. Пределы напряжения устанавливаются для всех каналов, поэтому ваш прототип электрической конструкции может быть защищен от случайного перенапряжения. Два канала на 30 В могут быть подключены последовательно или параллельно для получения более высокого напряжения или тока соответственно. Существуют также регистры хранения для сохранения до 50 состояний прибора для последующего вызова (полезно для повторяющихся испытаний).
Приятной особенностью для автоматической работы является то, что источник питания может быть настроен так, чтобы его выход был включен при последних настройках включения. Таким образом, если он работает в цепи и отсутствует питание переменного тока, источник питания снова начнет подавать питание при возобновлении подачи питания переменного тока.
Этот конкретный блок питания также программируется с помощью компьютера, что подводит нас к следующему типу блока питания.
Программируемое питание
Программируемые блоки питания иногда называют «системными» блоками питания, поскольку они часто используются как часть компьютерной системы для тестирования или производства.Мы исключим из этого обсуждения «программирование» с помощью внешних напряжений или сопротивлений, которое использовалось в основном до того, как цифровое управление стало популярным.
На протяжении многих лет существовало множество типов компьютерных интерфейсов с контрольно-измерительными приборами. Двумя наиболее популярными из них были IEEE-488, также известный как GPIB (интерфейсная шина общего назначения), и последовательная связь RS-232. Также использовались сетевые интерфейсы (например, Ethernet) и USB-интерфейсы. Мы не будем здесь обсуждать достоинства различных типов интерфейсов, поскольку они выходят за рамки этого документа.
Командный язык для источника питания находится на несколько более высоком уровне, чем тип интерфейса. Это означает набор инструкций, отправляемых прибору по цифровому интерфейсу, и информацию, полученную компьютером от прибора. Вы увидите три категории:
Собственный
Собственные языки команд обычно специфичны для одного производителя, а иногда даже специфичны для определенного набора инструментов.Недостатком проприетарных командных языков является то, что пользователю необходимо написать программное обеспечение, специально предназначенное для этого инструмента. Переход на другой блок питания от другого производителя означает переписывание программного обеспечения.
SCPI
означает «Стандартные команды для программируемых инструментов», часто произносится как «скиппи» или «скуппи». Поскольку необходимость переписывать программное обеспечение при смене поставщика является болезненным, индустрия тестирования / измерения разработала SCPI для стандартизации команд для контрольно-измерительных приборов, чтобы упростить смену поставщиков приборов без необходимости переписывать большое количество программного обеспечения.
SCPI-подобный
SCPI очень помог, но это не полное решение, потому что добавляются новые функции, требующие новых команд. Несмотря на это, многие производители пытаются сделать свои языки командных инструментов SCPI-подобными, что означает, что они используют как можно больше стандартов. Синтаксис также выглядит знакомым разработчикам программного обеспечения, поэтому время разработки сокращается.
Здесь приводится типичный набор команд SCPI, общих для источников питания:
- [SOURce:]
- MODE {
}
MODE? - НАПРЯЖЕНИЕ
[: LEVel] {} - [: LEVel]?
: ЗАЩИТА - : СОСТОЯНИЕ {
}
: СОСТОЯНИЕ? - [: LEVel] {
}
[: LEVel]? - ТОК
[: LEVel] {} - [: LEVel]?
Отправляя любую из приведенного выше списка команд через интерфейс, поддерживаемый прибором, можно управлять подачей с компьютера, а не нажимать клавиши на передней панели.Это очень полезно, особенно при выполнении более сложных настроек, таких как создание динамических ступеней напряжения с использованием режима списка.
Многодиапазонная поставка
Большинство обычных источников питания работают с фиксированными номинальными значениями напряжения и тока, например 30В / 3А. В этом примере максимальная выходная мощность 90 Вт может быть реализована только при напряжении питания 30 В / 3 А. Для всех других комбинаций напряжения / тока выходная мощность будет меньше. Многодиапазонные источники питания отличаются тем, что они пересчитывают пределы напряжения / тока для каждой настройки, образуя границу гиперболической формы с постоянной мощностью, как показано на диаграмме ниже.Модель B & K 9110, рассчитанная на 100 Вт / 60 В / 5 А, является примером этого типа источника питания. Возможны любые комбинации напряжения / тока, которые лежат на гиперболической кривой, например 20В / 5А или 60В / 1,66А, и в каждом случае источник питания работает на максимальной мощности. Преимущества этой архитектуры очевидны: источник питания с несколькими диапазонами обеспечивает большую гибкость в выборе выходных характеристик и позволяет пользователям заменять несколько фиксированных номиналов одним источником с несколькими диапазонами, что позволяет сэкономить средства и место на столе.
Характеристики источника питания
Режим постоянного тока и постоянного напряжения
Категория источников питания постоянного тока, обсуждаемая в этом разделе, изменяет напряжение сети переменного тока на напряжение постоянного тока.Наиболее распространенным и универсальным регулируемым источником питания постоянного тока является источник постоянного тока (CC) или постоянного напряжения (CV), который, как следует из названия, может обеспечивать либо постоянный ток, либо постоянное напряжение в определенном диапазоне, см. Изображение ниже.
Рабочая характеристика этого источника питания называется автоматическим кроссовером постоянного напряжения / постоянного тока. Это позволяет непрерывно переходить от режима постоянного тока к режиму постоянного напряжения в ответ на изменение нагрузки.Пересечение режимов постоянного напряжения и постоянного тока называется точкой кроссовера. На рисунке ниже показано соотношение между этой точкой кроссовера и нагрузкой.
Например, если нагрузка такова, что подключенный к ней источник питания работает в режиме постоянного напряжения, обеспечивается регулируемое выходное напряжение. Выходное напряжение остается постоянным по мере увеличения нагрузки до момента, когда будет достигнут заданный предел тока. В этот момент выходной ток становится постоянным, а выходное напряжение падает пропорционально дальнейшему увеличению нагрузки.На некоторых моделях блоков питания точка кроссовера обозначается светодиодными индикаторами на передней панели. Точка пересечения достигается, когда индикатор CV гаснет, а индикатор CC загорается.
Аналогично, переход из режима постоянного тока в режим постоянного напряжения автоматически происходит при уменьшении нагрузки. Хороший пример этого можно увидеть при зарядке 12-вольтовой батареи. Первоначально напряжение холостого хода источника питания может быть установлено равным 13,8 вольт. Низкий заряд батареи приведет к большой нагрузке на источник питания, и он будет работать в режиме постоянного тока, который можно отрегулировать для скорости зарядки 1 ампер.По мере того, как аккумулятор заряжается и его напряжение приближается к 13,8 вольт, его нагрузка уменьшается до точки, при которой он больше не требует полной зарядки в 1 ампер. Это точка кроссовера, когда источник питания переходит в режим постоянного напряжения.
В следующем списке спецификаций мы перечислим советы и вопросы, которые вы, возможно, захотите учесть при изучении характеристик источника питания. Внимательно читайте спецификации и всегда смотрите на мелкий шрифт.
Выход
Выходное напряжение и ток (или напряжения и токи для нескольких выходов), конечно, имеют фундаментальное значение.Если вы ищете источник питания для конкретного приложения, подумайте о том, чтобы быть консервативным и покупать больше возможностей, чем вам нужно — в проекты часто добавляются новые функции на поздних этапах цикла проектирования.
Советы и вопросы:
- Убедитесь, что выходной сигнал указан в допустимом диапазоне входного линейного напряжения (пример: некоторые импульсные источники питания должны быть снижены, например, до 90 В переменного тока).
- Некоторые блоки питания (обычно импульсные блоки питания) не рассчитаны на выходное напряжение до 0 В.
- Насколько припас может плавать над или под землей?
- Насколько выходной дрейф с течением времени? Типичное значение может составлять от 5 до 10 мВ в течение 10 часов при постоянной нагрузке и входном напряжении.
- Если на выходе фиксированное напряжение, можно ли его немного отрегулировать до желаемого значения?
- Проверьте, есть ли в источнике питания дистанционное зондирование. Дистанционное измерение использует две входные клеммы с высоким импедансом для измерения выходного напряжения источника питания. При подключении к нагрузке эта функция может корректировать падение напряжения в соединительных проводах питания и нагрузки.
- Некоторые блоки питания имеют защиту на выходе. Иногда это называют «лом», «защитой от перенапряжения» или «защитой от предельного напряжения». Эта функция либо ограничивает выходное напряжение до значения, установленного пользователем, либо отключает выход, если выходное напряжение достигает установленного предела. Цель состоит в том, чтобы обеспечить защиту цепей, чувствительных к напряжению. Пример: вы запитываете логическую схему на 5 В с источником питания, способным обеспечить выходное напряжение 40 В. Вы устанавливаете защиту источника питания от перенапряжения на 5.5 вольт. Тогда выходное напряжение никогда не превысит 5,5 В независимо от того, на сколько вы повернете ручку регулировки напряжения. Примечание: «лом» обозначает устройство (обычно SCR), которое закорачивает выход при превышении установленного предела напряжения. Поведение лома может быть нежелательным — хотя отключение цепи защитит ее, это также может вызвать проблему из-за отсутствия питания цепи!
Постановление
Регулировка нагрузки — это степень изменения выходного напряжения при изменении нагрузки, обычно от 0 до 100% номинального значения.Это удобно и легко можно измерить с помощью современных нагрузок постоянного тока. Типичные характеристики составляют от 0,1% до 0,01%. Если подумать, это отличное поведение — изменение до 1 части из 10 000 (это делается с помощью схем управления с отрицательной обратной связью).
Линейное регулирование — это степень изменения выхода при изменении входного переменного напряжения. Обычно он указывается как мВ на данное изменение входного сигнала или как процентное изменение во всем допустимом диапазоне входного сигнала. Типичные значения снова находятся в диапазоне 0.От 1% до 0,01%.
Для очень требовательных проектов можно узнать, как изменяется выход при изменении трех основных факторов: входного напряжения, нагрузки и температуры. Это редко указывается и, вероятно, придется измерить.
Вышеуказанные нормативные характеристики относятся к установившемуся режиму работы. Переходное поведение важно для некоторых приложений. Можно указать время переходного процесса, и оно связано с тем, сколько времени требуется источнику питания для восстановления заданного значения после внезапного изменения нагрузки или выхода.Это может быть важной спецификацией, когда источник питания используется с цифровой схемой, которая потребляет энергию пачками. Например, радиопередатчик быстро перейдет из состояния бездействия в состояние полной мощности, что приведет к скачкообразным изменениям спроса на источник питания. Источник питания с плохой переходной характеристикой (или нестабильной реакцией, вызывающей колебания) будет вредным для приложения, потому что он может быть не в состоянии обеспечить достаточную мощность, а его выходные переходные процессы могут быть связаны с цепью, которую он подает питание, что приведет к аномальное поведение.
Пульсация и шум
Не существует общепринятого метода измерения пульсаций и шума. Некоторые поставщики включают внешние схемы при проведении измерений, поэтому, чтобы дублировать их результаты, вам нужно будет связаться с ними, как они проводят свои измерения. Самый простой способ измерения — подключить осциллограф со связью по переменному току к выходу источника питания. Измерение может быть выполнено для синфазного шума (шум на обоих выходах + и — источника питания по отношению к заземлению источника питания переменного тока) или нормального (также называемого дифференциальным режимом) шума, который представляет собой шум, наблюдаемый между + и — клеммы источника питания.Примечание: поскольку внешняя сторона разъема BNC на многих прицелах подключена к заземлению, вам придется использовать изолирующий трансформатор для питания осциллографа или использовать дифференциальный усилитель для измерения шума в нормальном режиме.
Пульсации для линейных источников питания обычно измеряются при удвоенной частоте сети. Что касается импульсных источников питания, вам нужно проверить более высокие частоты, и вы можете увидеть скачки напряжения. Пульсация может быть определена как часть нефильтрованного переменного напряжения и шума, присутствующих на выходе фильтрованного источника питания при работе с полной нагрузкой, и обычно указывается в вольтах (среднеквадратичное значение).С другой стороны, шум обычно определяется как размах переменного напряжения и может быть определен как часть нефильтрованного и неэкранированного шума электромагнитных помех, присутствующего на выходе отфильтрованного источника питания при работе с полной нагрузкой.
Может быть важно знать, в какой полосе частот указан шум. Часто это 20 МГц, так как для его измерения используется осциллограф. Примечание: иногда рябь и шум обозначаются как PARD, что является аббревиатурой от «периодических и случайных отклонений».
Большинство линейных источников питания должны иметь пульсации менее 3 мВ RMS и менее 50 мВ пиковых значений для импульсных источников
* Практический пример : Вот несколько примеров измерений пульсации и шума.Выход блока питания B&K Precision 9130, установленного на 9 В, был подключен через коаксиальный кабель 50 Ом (с использованием адаптера с двумя банановыми вилками) к цифровому запоминающему осциллографу B&K Precision 2534 (полоса пропускания 60 МГц). Вход осциллографа был связан по переменному току (канал был проверен, чтобы убедиться, что связь по переменному току не оказывала заметного влияния на амплитуду входного сигнала до 30 Гц). Прицел питался от изоляционного трансформатора медицинского назначения, поэтому измерение шума было дифференциальным, а не синфазным.Не было измеримых пульсаций в линии электропередач, и шум был в основном широкополосным с некоторыми всплесками с основной частотой 40 МГц. Эти шипы не от этого источника питания, потому что i) они присутствовали при выключенном источнике питания и ii) они присутствовали на других приборах на скамейке автора, также выключенных. Вероятно, это цифровые помехи от компьютера автора, проходящие через линию электропередачи. 9130 должен иметь уровень шума менее 3 мВ (среднеквадратичное значение); эта конкретная поставка соответствовала спецификации.Обратите внимание, что это примерные измерения и не предназначены для определения каких-либо конкретных характеристик источников питания 9130 в целом. Тем не менее, мы надеемся, что это показывает, что такая «простая» вещь, как подключение одного кабеля к источнику питания и проведение измерения, включает в себя ряд вещей, о которых следует подумать. Если бы автор использовал на входе фильтр нижних частот 20 МГц, он бы не тратил время на отслеживание этого паразитного шума.
Рисунок 2: (A) Типичный тепловой шум (B) Более медленный захват (A), показывающий всплеск (~ 15 мВ) (C&D) Подробная информация о всплеске
Температура
Поскольку компоненты, из которых состоят блоки питания, чувствительны к температуре, неудивительно, что блоки питания в целом также могут быть чувствительными к температуре.Это верно даже тогда, когда дизайнеры стараются минимизировать влияние температуры. Современные источники питания лабораторного качества должны иметь температурный коэффициент ниже 0,05% на C. Обычно это указывается в диапазоне рабочих температур, который часто составляет от 0 до 40 ˚C. Обычно подразумевается или предполагается, что источник питания испытывается при постоянной нагрузке без колебаний линии переменного тока.
Вход переменного тока
Источники питания большей мощности могут использовать трехфазное питание. Они могут быть более экономичными и немного более эффективными, чем однофазные источники питания, хотя частота пульсаций будет выше.
Изоляция: определяется как напряжение постоянного или переменного тока, которое может быть приложено между входом и выходом без нарушения питания. Типичные числа от 500 до 1500 В. Изоляция источника питания между входом и выходом или шасси обеспечивается изоляцией, обеспечиваемой трансформатором источника питания.
Некоторые источники питания содержат фильтрующие конденсаторы большой емкости, которые, по сути, вызывают короткое замыкание на выпрямитель при первом включении источника питания. В некоторых источниках питания есть схемы, позволяющие минимизировать пусковой ток или распределить его по времени («плавный пуск»).
Спецификация удержания определяет, как долго вход переменного тока может отключиться, а источник питания будет оставаться в режиме регулирования. Заряд, накопленный на конденсаторах фильтра, используется для подачи питания при отключенном входе переменного тока.
По мере увеличения стоимости энергии эффективность энергоснабжения становится все более важной. Эффективность — это выходная мощность, деленная на входную, и, конечно же, всегда будет меньше 100% (обычно она преобразуется в проценты). Лучшие расходные материалы могут быть эффективными на 90% или лучше.Линейные источники питания обычно намного менее эффективны, чем импульсные источники питания.
Точность отслеживания
Некоторые блоки питания с двумя или более выходами могут иметь функцию отслеживания. Здесь один выход будет отслеживать выходное напряжение другого выхода. Это полезно при подаче питания на цепи, которым нужна положительная и отрицательная шина. Спецификация точности отслеживания определяет, насколько точно второй вывод отслеживает вывод первого вывода.
Изоляция постоянного тока
Изоляция означает, насколько клеммы + или — могут быть «плавающими» над или под землей линии питания.Эта спецификация часто включает выходное напряжение источника питания. Важно не превышать спецификацию, так как это может вызвать пробой диэлектрика внутреннего компонента и / или воздействие опасного напряжения. Довольно часто два блока питания подключаются последовательно, чтобы получить более высокое напряжение, чем может обеспечить любой из них. Например, рассмотрим следующую схему:
В, из будет суммой напряжений, установленных на источнике питания 1 и источнике питания 2. Обратите внимание, что эта последовательная работа должна быть такой, чтобы ток не превышал ток источника питания с минимальным номинальным током.
Чтобы быть уверенным, что вы соблюдаете технические требования производителя по изоляции постоянного тока, убедитесь, что ни одно из напряжений на любом из внешних проводов относительно земли не превышает спецификации изоляции постоянного тока.
Теория работы
Есть два основных способа работы источников питания: линейное регулирование и режим переключения.
Линейный регламент
Принцип действия источника питания с линейным регулированием показан на следующей схеме:
Входное напряжение обычно поступает от трансформатора, двухполупериодного выпрямителя и конденсаторного каскада фильтра.Выходное напряжение сравнивается с опорным напряжением (полученным, например, из настроек передней панели источника питания), и разница подается на транзистор, чтобы пропустить через него больший или меньший ток. Транзистор обычно биполярный или MOSFET (иногда как часть управляющей ИС для небольших источников питания) и работает в своей линейной области (отсюда и название «линейное» регулирование). Стратегия линейного регулирования имеет преимущества простоты, низкого уровня шума, быстрого времени отклика и отличного регулирования.Недостатком является то, что они неэффективны, так как всегда рассеивают мощность. В приведенной выше схеме вы можете видеть, что транзистор имеет V на входе — V на выходе через него. Умножьте эту разницу на ток, чтобы получить рассеиваемую мощность. При большой разнице напряжений (т. Е. При низком выходном напряжении источника питания) и большом токе общий КПД может упасть почти до 10%. Максимальный КПД для линейного источника питания обычно составляет около 60%. Типичный средний КПД находится в диапазоне 30-40%.
Режим переключения
Примечание. В этом разделе мы будем называть импульсный источник питания сокращенно SMPS.
Проблемой типичного линейного источника питания является размер и вес трансформатора. Размер нужен из-за низкой частоты (от 50 до 60 Гц). При той же выходной мощности размер трансформатора уменьшается (значительно) с увеличением частоты (до определенного значения). SMPS использует это преимущество, разделяя форму волны переменного тока на множество мелких частей и изменяя их до желаемого уровня напряжения с помощью трансформатора гораздо меньшего размера.Ключевым фактом является то, что переключающий элемент (транзистор) либо выключен, либо полностью включен (насыщен). Падение напряжения на транзисторе невелико (как для биполярного транзистора, так и для полевого МОП-транзистора), что означает, что в нем тратится мало энергии. Когда он выключен, мощность не рассеивается. Это одно из преимуществ эффективности ИИП.
Конденсаторы фильтра также могут быть меньше на этих более высоких частотах, и дроссели более эффективны. Нижний предел частоты составляет 25 кГц (чтобы оставаться выше диапазона человеческого слуха), а современный верхний предел в настоящее время составляет около 3 МГц.В большинстве коммутационных источников используются частоты в диапазоне от 50 кГц до 1 МГц.
Паразитное поведение и скин-эффект в проводимости становятся важными на более высоких частотах переключения, особенно потому, что формы волны представляют собой прямоугольные волны и богаты гармониками. В пассивных элементах, таких как конденсаторы и катушки индуктивности, значение ESR (эквивалентное последовательное сопротивление) становится важным и приводит к неэффективности. Резисторы должны быть неиндуктивными. Тщательно продуманные, оптимизированные схемы переключения режимов могут обеспечить эффективность 95%, но типичный SMPS имеет КПД около 75%, что все же намного лучше, чем у типичного линейного источника питания.Это одна из причин, по которой они повсеместно используются в персональных компьютерах.
Еще одним преимуществом SMPS является то, что переключение может модулироваться различными способами в зависимости от условий нагрузки. Выход источника питания регулируется с помощью цепи обратной связи, которая регулирует время (рабочий цикл), с которым MOSFETs включаются или выключаются.
Преимущества импульсных источников питания не связаны с некоторыми затратами. Более высокие частоты и переключение означают более высокие уровни электромагнитных помех (EMI), как излучаемых, так и кондуктивных.Это может вернуть коммутационный шум в линию электропередачи. Управляющая электроника также стала более сложной (особенно в последнее время из-за желания иметь более высокие коэффициенты мощности).
Импульсные источники питания могут с трудом вырабатывать низкое напряжение. Это связано с тем, что транзистор должен переключать ток, то есть SMPS не может работать, пока не будет протекать достаточный ток. Из-за этого импульсные источники питания часто имеют минимальное выходное напряжение.
Применение источника питания
http: // www.amtex.com.au/ApplicationNotesPower.htm
Использование источника питания для создания смещения постоянного тока с помощью функционального генератора
Если источник сигнала, такой как функциональный генератор, не имеет возможности смещения постоянного тока, вы можете эффективно добавить эту функцию, используя источник питания постоянного тока. Как и в спецификации на изоляцию постоянного тока источника постоянного тока, важно, чтобы такой режим работы источника сигнала был разрешен производителем и чтобы вы не превышали спецификации. Вам также понадобится источник сигнала, выходные клеммы которого (обычно разъем BNC) изолированы от земли.Если разъем не изолирован от земли, прибор можно изолировать от земли линии питания с помощью изолирующего трансформатора. Однако металлическое шасси инструмента может быть выше или ниже потенциала земли при смещении постоянного тока, поэтому примите соответствующие меры против поражения электрическим током. Способ подключения показан на следующей схеме.
Причина, по которой это может быть полезно, заключается в том, что сигнал функционального генератора затем может быть вставлен в схему, которая смещена выше или ниже земли (или источник питания постоянного тока может подавать смещение, например, для транзистора).Вы должны быть осторожны, чтобы не превысить текущие возможности функционального генератора.
Источники питания: вопросы и советы
Как измерить эффективность источника питания?
Если для вас важна эффективность, вы должны тщательно ее измерить. Для типичного источника постоянного тока, работающего от сети переменного тока, вам необходимо измерить входную мощность переменного тока и мощность постоянного тока, выдаваемую источником, как показано на следующей диаграмме:
Наверное, лучший инструмент для измерения мощности переменного тока, используемой источником постоянного тока, — это осциллограф.Вам нужно будет измерить переменное напряжение и переменный ток, поступающие в блок питания. Лучшим подходом, вероятно, является использование неиндуктивного токового шунта для измерения тока и двух независимых дифференциальных усилителей для измерения входного переменного напряжения источника питания и переменного напряжения на шунте. Форма волны мощности может быть получена путем умножения формы волны тока и напряжения с помощью осциллографа. При подходящей полосе пропускания осциллографа и усилителей это будет точное измерение, покажет вам коэффициент мощности и расскажет о любых гармониках / переходных процессах линии питания, связанных с работой источника питания постоянного тока.Если ваш осциллограф не может выполнить умножение, вы все равно можете измерить среднеквадратичные значения напряжения и тока, измерить коэффициент мощности и умножить эти три вместе.
Для измерения мощности, потребляемой нагрузкой, вы можете использовать измерители напряжения и тока источника постоянного тока, если вы знаете, что они точны. Для подтверждения вы можете вместо этого использовать нагрузку постоянного тока с такими же характеристиками нагрузки.
Тогда измеренный КПД в процентах будет
., где P in — это измеренная входная мощность переменного тока, а P out — измеренная выходная мощность постоянного тока, оба в одних и тех же блоках питания.
Почему существует такая большая разница в ценах на блоки питания?
Аналогичный вопрос можно задать об автомобилях. Оба вопроса имеют один и тот же ответ: существует множество факторов, и простой ответ, вероятно, невозможен. Некоторые из факторов:
Имя и репутация продавца
Насколько консервативен дизайн
Количество и тип конкурирующих единиц
Сертификаты (e.г., безопасность, EMI и др.)
Надежность конструкции (и усилия, затраченные на проверку конструкции)
Качество используемых компонентов и конструкции
Количество функций
При оценке источника питания (или любого другого оборудования) следует учитывать общую стоимость владения. Включите стоимость ежегодных калибровок и любые предполагаемые потери из-за недоступности или необходимости ремонта или замены устройства в случае его выхода из строя.Через десять или более лет эти затраты могут легко превысить первоначальную стоимость источника питания.
Что лучше: режим переключения или линейный?
Это зависит от того, что вы подразумеваете под словом «лучший». Вы можете получить некоторую информацию из следующей таблицы:
Тип | Сильные стороны | Слабые стороны |
---|---|---|
Линейная |
|
|
Режим переключения |
|
|
Дополнительные комментарии по этим двум типам см. В разделе «Теория работы».
Все большую популярность приобретают гибридные технологии, использующие как линейные, так и переключающие схемы. Целью этого подхода является создание источников питания, характеристики которых сочетают в себе преимущества технологий линейного и импульсного режимов.
Что такое лом?
Это защитное устройство, используемое на выходе источников питания (обычно SCR) для короткого замыкания выхода, если выходное напряжение превышает установленный уровень. См. Раздел «Выход» в разделе «Характеристики источника питания».
Как лучше всего проверить блок питания под нагрузкой?
Безусловно, отличный способ — протестировать его с реальной нагрузкой, которую он предназначен, если это возможно. Однако это может не повлиять на поставку настолько, чтобы много рассказать о ее пригодности и надежности для вашего приложения. Отличным инструментом для проверки блоков питания является нагрузка постоянного тока. Их можно запрограммировать на применение самых разных нагрузок к источнику питания, и они могут делать это безостановочно. После того, как определенная поставка квалифицирована, они становятся хорошими инструментами для текущей или входящей проверки.
Как измерить пульсацию и шум?
Это можно сделать с помощью осциллографа или широкополосного среднеквадратичного вольтметра переменного тока. Но есть нюансы, о которых следует знать — см. Раздел «Пульсация и шум» в разделе «Характеристики источника питания».
Сопротивление провода и контакта
Контактное сопротивление в плохих соединениях или плохо выполненных механических соединениях может добавить значительные нагрузки, особенно в сильноточных устройствах. Плохое или корродированное гофрированное соединение может иметь сопротивление в сотни миллиомов или даже выше ома.Это снижает эффективность и создает горячие точки. Если вам когда-либо приходилось чистить клеммы аккумулятора на вашем автомобиле, чтобы он завелся, вы видели проблему.
Медный провод 10 калибра имеет сопротивление немногим более 3 Ом / м. Для цепи с проводом длиной 10 м это 30 мОм. Таким образом, соединение 100 мОм обеспечит 75% сопротивления проводки (а также потеряет 75% мощности, потерянной в проводке).
Плохие соединения относительно легко найти, если вы можете получить доступ к проводу под нагрузкой. Цифровой мультиметр можно использовать для измерения падения напряжения на соединениях (будьте осторожны, когда по проводам передаются значительные напряжения).Зная ток (измерьте его с помощью накладного амперметра постоянного тока, если измеритель источника питания не подходит), вы можете рассчитать сопротивление соединения. Если провод изолирован, доступны специальные пробивающие изоляцию щупы, такие как CalTest Electronics CT3044 или Pomona 5913. Если вы используете пробивные щупы, сначала отключите питание — случайная дуга может повредить острые наконечники (кроме потенциальная угроза безопасности).
Могу ли я подключиться параллельно?
Нагрузке для работы требуется n источников питания, поэтому используется n + 1 источник питания, что позволяет одному из них выйти из строя.Диоды должны изолировать источники питания друг от друга (они могут понадобиться, а могут и не понадобиться; опять же, спросите своего поставщика). Для источников питания может потребоваться соединение линий управления, чтобы они могли разумно распределять нагрузку. Требование состоит в том, чтобы на выходе каждого источника было одинаковое напряжение, чтобы они поровну распределяли нагрузку. Проводка должна быть короткой, и каждая ветвь должна быть одинаковой для каждого источника питания.
М. Шварц, Передача информации, модуляция и шум, 2-е изд., McGraw-Hill, 1970, ISBN 07-055761-6.
http://www.abbottelectronics.com/engineer/glossary.htm
http://www.currentsolutions.com/knowledge/glossary.htm
- Регулировка линии
- Насколько изменяется напряжение или ток нагрузки, когда источник питания работает при различных линейных напряжениях в заданном диапазоне. Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
- Регулировка нагрузки
- Насколько изменяется напряжение или ток нагрузки при работе источника питания на холостом ходу и при полной нагрузке.Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
- КПД
- Измеренный в процентах, он указывает количество выходной мощности по сравнению с мощностью, потребляемой в системе.
- EMI
- Электромагнитные помехи
- Пусковой ток
- Начальная величина тока, потребляемого источником питания при запуске.Иногда его называют пусковым током, и обычно он на несколько значений превышает установившееся значение источника питания.
- Инвертор
- Электрическое устройство, используемое для преобразования постоянного тока в переменный ток.
- Дистанционное считывание
- Предоставляется в некоторых приборах, которые можно использовать для измерения напряжения тестируемого устройства на его клеммах, чтобы обеспечить точные показания для компенсации падений напряжения на выводах, подключенных к прибору и тестируемому устройству.
- Постоянное напряжение
- Стабилизированный источник питания, который подает постоянное напряжение на нагрузку, даже когда сопротивление нагрузки изменяется до значения, не превышающего предельный ток источника питания.
- Постоянный ток
- Регулируемый источник питания, который подает постоянный ток на нагрузку даже при изменении сопротивления нагрузки. Обратите внимание, что источник питания должен соответствовать закону Ома.
- Предел тока
- Значение, заданное как предел тока, который может выдавать блок питания.Когда ток достигает предела, типичный источник питания CV / CC переключается из режима CV в режим CC. Это также известно как точка пересечения.
- Защита от перегрузки
- Функция защиты в большинстве источников питания постоянного тока, предотвращающая потребление каким-либо устройством большей мощности, чем предназначены для выработки.
- Защита от перенапряжения
- Защита, используемая во многих источниках питания, ограничивает величину выходного напряжения.
- Параллельная работа
- Этот режим работы, применяемый во многих источниках питания с двойным и тройным выходом, позволяет подключать два или более независимых выхода параллельно для увеличения токового выхода.
- Последовательная работа
- Режим работы многих источников питания с двойным и тройным выходом, в котором два или более независимых выхода последовательно подключаются для увеличения выходного напряжения.
- PARD
- Периодические (пульсации) и случайные (шум) отклонения выходного напряжения от заданного значения.
- PWM
- Широтно-импульсная модуляция
- Разрешение
- Наименьшее изменение напряжения или тока, которое может быть выполнено регулировкой органов управления.
- Тепловая защита
- Защита от повреждения источника питания из-за чрезмерной температуры.
- Переходное время восстановления
- Время, необходимое источнику питания для восстановления своей выходной мощности после ступенчатого изменения.
- AC
- Переменный ток. Описывает напряжение и ток, которые меняются по амплитуде, обычно синусоидальной формы по времени. Электропитание переменного тока почти повсеместно используется для распределения электроэнергии.
- Blackout
- Потеря мощности переменного тока.
- Brownout
- Запланированное снижение напряжения переменного тока энергокомпанией для противодействия чрезмерному спросу.
- Емкостная связь
- Два отдельных проводника всегда образуют конденсатор. Чем они ближе, тем больше вероятность того, что колебания напряжения на одном проводе будут электростатически индуцированы на другом проводе (в отличие от индуктивной связи).
- Индуктивная связь
- Когда в одном проводе протекает изменяющийся ток, в соседнем проводе индуцируется напряжение из-за магнитного поля, вызванного током (в отличие от емкостной связи).
- Пик-фактор
- В сигнале переменного тока пик-фактор — это отношение пикового значения к среднеквадратичному значению.
- DC
- Постоянный ток. Используется для описания неизменного напряжения, тока или электрической мощности.
- Drift
- Изменение во времени выходного напряжения или тока.
- Электронная нагрузка
- Тип прибора, который служит в качестве нагрузки, обычно динамической, и может использоваться для тестирования источников питания и источников питания.
- ESR
- Эквивалентное последовательное сопротивление. Простая «последовательная» модель конденсатора или катушки индуктивности помещает чистое реактивное сопротивление последовательно с чистым резистором, значение которого обычно называют ESR. Часто измеряется на электролитических конденсаторах большего размера, и высокое значение ESR обычно указывает на неисправный конденсатор.
- Заземление
- Электрическое заземление в системе переменного тока — это провод, который соединен с землей, отсюда и название «земля». Причина такого подключения кроется в необходимости защиты пользователей электрического оборудования от поражения электрическим током.Электроэнергия доставляется к месту использования с помощью трансформатора, установленного на опоре или другого типа. Выход такого трансформатора состоит в основном из двух выводных проводов, между которыми имеется напряжение использования. По ряду сложных причин, связанных с безопасностью, один из этих выводных проводов трансформатора подключается к земле с помощью медной шины, вбитой в землю.
- Минимальная нагрузка
- Если указан для источника питания, это минимальный ток нагрузки, который должен быть получен от источника питания, чтобы он соответствовал его рабочим характеристикам.
- Скачок
- Кратковременное повышение напряжения сети переменного тока.
- Выходное сопротивление
- Отношение изменения выходного напряжения к изменению тока нагрузки.
- Коэффициент мощности
- Отношение активной и полной мощности. Это определяет, сколько тока требуется для выработки определенного количества энергии. Всегда желательно, чтобы отношение было как можно ближе к 1. Система с более низким коэффициентом мощности означала бы большую потерю мощности для выполнения того же объема работы по сравнению с системой с более высоким коэффициентом мощности.
- Пульсации напряжения
- Часть нефильтрованного переменного напряжения и шума, присутствующие на выходе фильтрованного источника питания, работающего при полной нагрузке. Обычно указывается в среднеквадратичных значениях напряжения переменного тока (с нулевыми пульсациями напряжения, представляющими идеально отфильтрованный источник питания).
- Пульсирующий ток
- Часть нефильтрованного переменного тока на выходе фильтрованного источника питания.
- RMS
- Среднеквадратичное значение. Для любой формы сигнала среднеквадратичное значение представляет собой квадратный корень из среднего значения суммы квадратов выбранных значений.Для непрерывной функции применима аналогичная интегральная формула.
- Защитное заземление
- Цепь, предназначенная для отвода опасного напряжения (вызванного дефектом или несчастным случаем), тем самым защищая людей от случайных ударов. Металлические крышки инструментов и приборов заземлены (и, следовательно, называются защитным заземлением). Таким образом, если электрически «горячий» провод внутри устройства случайно касается металлического корпуса, подключение к защитному заземлению означает, что металл будет оставаться рядом с потенциалом земли.Обычно в таком состоянии срабатывает автоматический выключатель.
- Диапазон температур
- Диапазон, в котором рассчитан источник питания. Он также может обозначать диапазон температур, в котором может храниться источник питания.
- Истинная мощность
- Также называемая реальной мощностью, обычно измеряется в ваттах.
- Полная мощность
- Произведение среднеквадратичного значения тока и среднеквадратичного напряжения, обычно измеряемое в единицах ВА (вольт-амперы).
Регулируемая поставка »Электроника
Источники питания с линейной стабилизацией могут обеспечивать чрезвычайно низкий уровень выходного шума и хорошую стабилизацию, но за счет размера и эффективности.
Схемы линейного источника питания Праймер и руководство Включает:
Линейный источник питания
Шунтирующий регулятор
Регулятор серии
Ограничитель тока
Регуляторы серий 7805, 7812 и 78 **
См. Также: Обзор электроники блока питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания
Линейные источники питания широко используются из-за преимуществ, которые они предлагают с точки зрения общей производительности, а также благодаря этой технологии, которая хорошо зарекомендовала себя, поскольку была доступна уже много лет.
Хотя линейные источники питания могут быть не такими эффективными, как импульсные источники питания, они обеспечивают лучшую производительность и поэтому используются во многих приложениях, где шум имеет большое значение.
Одна из основных областей, где почти всегда используются линейные источники питания, — это аудиовизуальные приложения, усилители Hi-Fi и тому подобное. Здесь шум и всплески переключения от импульсных источников питания могут вызвать проблемы — при этом говорится, что SMPS постоянно улучшают производительность, но линейные источники, как правило, используются большую часть времени.
Типовой регулируемый линейный источник питания для лабораторного использованияОсновы линейного источника питания
Источники питания с линейной стабилизацией получили свое название от того факта, что в них используются линейные, т. Е. Не коммутационные методы, для регулирования выходного напряжения источника питания. Термин линейный источник питания означает, что источник питания регулируется для обеспечения правильного напряжения на выходе.
Измеряется напряжение, и этот сигнал подается обратно, обычно в какой-либо дифференциальный усилитель, где он сравнивается с опорным напряжением, и результирующий сигнал используется для обеспечения того, чтобы на выходе оставалось требуемое напряжение.
Иногда измерение напряжения может осуществляться на выходных клеммах, а в некоторых случаях — непосредственно на нагрузке. Дистанционное измерение используется там, где могут быть омические потери между источником питания и нагрузкой. Часто такая возможность есть у лабораторных стендов.
Различные линейные источники питания будут иметь разные схемы и включать разные схемные блоки, если требуются дополнительные возможности, но они всегда будут включать в себя базовые блоки, а также некоторые дополнительные дополнительные.
Входной трансформатор питания
Поскольку многие регулируемые источники питания получают питание от сети переменного тока, для линейных источников питания часто используется понижающий или иногда повышающий трансформатор. Это также служит для изоляции источника питания от сетевого входа в целях безопасности.
Трансформатор обычно представляет собой относительно большой электронный компонент, особенно если он используется в линейно регулируемом источнике питания большей мощности. Трансформатор может значительно увеличить вес источника питания, а также может быть довольно дорогим, особенно для более мощных.
В зависимости от используемого выпрямителя трансформатор может быть с одной вторичной обмоткой или с центральным ответвлением. Также могут присутствовать дополнительные обмотки, если требуются дополнительные напряжения.
Для старинных радиоприемников и другой старинной электронной электроники многократные вторичные обмотки были обычным явлением. Обычно основная вторичная обмотка имела центральный отвод, чтобы обеспечить двухполупериодное выпрямление с помощью двойного диодного клапана или трубчатого выпрямителя, а дополнительные вторичные обмотки требовались для вентильных или трубчатых нагревателей — часто 5 вольт для выпрямителя, а затем 6.3в для самих клапанов / трубок.
Выпрямитель
Поскольку вход от источника переменного тока является переменным, его необходимо преобразовать в формат постоянного тока. Доступны различные формы выпрямительной схемы.
Самая простая форма выпрямителя, которую можно использовать в источнике питания, — это одиночный диод, обеспечивающий полуволновое выпрямление. Этот подход обычно не используется, потому что сложнее удовлетворительно сгладить вывод.
Обычно используется двухполупериодное выпрямление с использованием обеих половин цикла.Это обеспечивает более легкое сглаживание формы волны.
Есть два основных подхода к обеспечению полуволнового выпрямления. Один из них — использовать трансформатор с отводом от центра и два диода. Другой — использовать одну обмотку на трансформаторе источника питания и использовать мостовой выпрямитель с четырьмя диодами. Поскольку диоды очень дешевы, а стоимость трансформатора с центральным ответвлением выше, наиболее распространенным подходом в наши дни является использование мостового выпрямителя.
Примечание по схемам диодного выпрямителя:
Диодные выпрямительные схемы используются во многих областях, от источников питания до радиочастотной демодуляции.В схемах диодного выпрямителя используется способность диода пропускать ток только в одном направлении. Есть несколько разновидностей от полуволнового до двухполупериодного, мостовые выпрямители, пиковые детекторы и многое другое.
Подробнее о Диодные выпрямительные схемы
Даже для регуляторов с питанием от постоянного тока на входе может быть установлен выпрямитель для защиты от обратного подключения источника питания.
Электропитание сглаживающее
После выпрямления из сигнала переменного тока необходимо сглаживать постоянный ток, чтобы удалить изменяющийся уровень напряжения.Для этого используются большие емкостные конденсаторы.
Сглаживающее действие накопительного конденсатораВ сглаживающем элементе схемы используется большой конденсатор. Он заряжается по мере того, как сигнал, поступающий от выпрямителя, достигает своего пика. По мере того, как напряжение выпрямленной формы волны падает, как только напряжение становится ниже напряжения конденсатора, конденсатор начинает подавать заряд, поддерживая напряжение до тех пор, пока не появится следующий нарастающий сигнал от выпрямителя.
Сглаживание не идеальное, и всегда будет некоторая остаточная пульсация, но это позволяет устранить огромные колебания напряжения.
Линейные регуляторы питания
Большинство источников питания в наши дни обеспечивают регулируемую мощность. С современной электроникой довольно просто и не слишком дорого включить линейный стабилизатор напряжения. Это обеспечивает постоянное выходное напряжение независимо от нагрузки — в указанных пределах.
Поскольку многие электронные компоненты, электронные устройства и т. Д. Требуют аккуратно обслуживаемых источников питания, регулируемый источник питания является необходимостью.
Существует два основных типа линейных источников питания:
- Шунтирующий регулятор: Шунтирующий регулятор менее широко используется в качестве основного элемента в линейном регуляторе напряжения.Для этой формы линейного источника питания переменный элемент размещается поперек нагрузки. Сопротивление истока установлено последовательно со входом, а шунтирующий стабилизатор регулируется, чтобы гарантировать, что напряжение на нагрузке остается постоянным.
Источник питания рассчитан на заданный ток, и с приложенной нагрузкой шунтирующий стабилизатор поглощает любой ток, не требуемый нагрузкой, так что выходное напряжение сохраняется.
- Регулятор серии : Это наиболее широко используемый формат линейного регулятора напряжения.Как следует из названия, в цепь помещается последовательный элемент, и его сопротивление изменяется с помощью управляющей электроники, чтобы гарантировать, что правильное выходное напряжение генерируется для потребляемого тока.
Блок-схема регулятора напряжения серии
В этой блок-схеме, опорное напряжение используется для привода серии прохода элемента, который может представлять собой биполярный транзистор или полевой транзистор. Ссылка может быть просто напряжение берется из источника опорного напряжения, например, электронный компонент, такой как стабилитрон.
Более обычный подход состоит в том, чтобы выбрать выходное напряжение и подать его в дифференциальный усилитель для сравнения выходного сигнала с эталоном, а затем использовать его для управления схемой элемента конечного прохода.
Оба этих типа линейных регуляторов используются в источниках питания, и хотя последовательный стабилизатор используется более широко, в некоторых случаях также используется шунтирующий регулятор.
Преимущества / недостатки линейного источника питания
Использование любой технологии часто представляет собой тщательный баланс нескольких преимуществ и недостатков.Это справедливо для линейных источников питания, которые имеют ряд явных преимуществ, но также имеют свои недостатки.
Преимущества линейного блока питания
- Установленная технология: Линейные источники питания широко используются в течение многих лет, а их технология хорошо отработана и изучена.
- Низкий уровень шума: Использование линейной технологии без какого-либо переключающего элемента означает, что шум сведен к минимуму, а раздражающие всплески, обнаруживаемые в импульсных источниках питания, теперь обнаруживаются.
Линейный БП Недостатки
- КПД: Принимая во внимание тот факт, что линейный источник питания использует линейную технологию, он не особенно эффективен. Эффективность около 50% не является чем-то необычным, а при некоторых условиях может предлагать гораздо более низкие уровни.
- Рассеивание тепла: Использование последовательного или параллельного (менее распространенного) регулирующего элемента означает, что рассеивается значительное количество тепла, и его необходимо удалить.
- Размер: Использование линейной технологии означает, что размер линейного источника питания, как правило, больше, чем у других форм источника питания.