РазноеРазрядник высоковольтный своими руками – Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно

Разрядник высоковольтный своими руками – Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно

простой для повторения генератор высокого напряжения / Habr

Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса. Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.

Принцип работы

Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается. Я использовал 12 ступеней, то есть напряжение должно умножиться на 12 (12 х 35 = 420). 420 киловольт — это почти полуметровые разряды. Но на практике, с учетом всех потерь, получились разряды длиной 28 см. Потери были вследствие коронных разрядов.



О деталях:

Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:
1 — резисторы

Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения — дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней. Я захотел чего-то проще и сделал резисторы из дерева.

Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)

2 — конденсаторы

Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке — К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.
3 — источник питания

Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.

Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.

Процесс сборки

С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм — это будут разрядники.

Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:

Техника безопасности

Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.

Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.

Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.

Интересные наблюдения

Первое, что ощущаешь при включении — то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.

Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Постоянно слегка бьет током, иногда даже не поймёшь от чего: прикоснулся к двери — проскочила искра, захотел взять ножницы — стрельнуло от ножниц. В темноте заметил, что искры проскакивают между разными металлическими предметами, не связанными с генератором: в дипломате с инструментом проскакивали искорки между отвёртками, плоскогубцами, паяльником.

Лампочки загораются сами по себе, без проводов.

Озоном пахнет по всему дому, как после грозы.

Заключение

Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.

Самодельный лазер — Искровой рзрядник

Для любого лазера, работающего в импульсном режиме, требуется устройство, которое коммутирует энергию источника питания лазера на активное вещество или же лампу-вспышку. В коммерческих лазерах функцию коммутатора выполняют разнообразные полупроводниковые или газоразрядные устройства. В частности, одним из лучших коммутаторов для импульсных газоразрядных лазеров является водородный тиратрон, позволяющий формировать короткие импульсы высокого напряжения. Существует множество разновидностей водородных тиратронов, рассчитанных на разные токи и напряжения. На фото внизу показана отечественная конструкция водородного тиратрона типа ТГИ1- 1000/25.

 

 

водородный тиратрон

 

 

 

 

 

 

 

 

 

 

 

Этот прибор способен коммутировать импульсный ток 1000 А при напряжении на аноде 25 кВ.
Конечно, такая штука пригодится в мастерской любителя лазеростроения. Однако это дорогое удовольствие. Купить водородный тиратрон можно, но не у всех есть возможность выкладывать  ~ 10 000 руб за штуку. Кроме того, высоковольтные водородные тиратроны слишком громоздки. К примеру, габариты показанного на фото выше тиратрона ~ 110 х 160 мм. Поэтому для домашнего самоделкина будет проще и гораздо дешевле изготовить самодельный коммутатор, представляющий собой искровой разрядник.

Самый простой вариант искрового разрядника – это двухэлектродный не управляемый разрядник, работающий на воздухе. В Интернете можно найти множество описаний того, как изготовить такой разрядник. Тем не менее, на рисунке ниже приведу вариант схемки двухэлектродного разрядника.

 

 

 

схема искрового разрядника

 

 

 

 

 

 

 

1 — контакт разрядника (обрезок дюралевого профиля типа «уголок»)
2 — электрод разрядника (стальная гайка-колпак)
3 — прижимная гайка
4 — винт

 

 

На фото ниже показана гайка-колпак (колпачковая гайка), которую можно использовать в качестве электрода разрядника.

 

 

схема искрового разрядника

 

 

 

 

 

 

 

Конкретные размеры разрядника не имеют принципиального значения. Для получения коротких высоковольтных импульсов нужно стремиться к уменьшению длины токоведущих элементов разрядника, а также уменьшать искровой промежуток между электродами разрядника. Чем больше диаметр электродов разрядника (2), тем выше коммутируемое напряжение при неизменной длине межэлектродного промежутка.

Подключение разрядника осуществляется через контакты (1), которые закрепляются на токоведущие линии внешней электрической цепи.
Во время работы разрядника возникает очень громкий звуковой шум, который желательно подавлять, дабы не раздражать окружающих (домочадцы, соседи и т.д.). Для подавления треска разрядника его можно поместить в какой-нибудь закрытый диэлектрический корпус. Хорошим звукоподавителем будет резина, но и пластиковая коробка то же подойдет. Можно склеить корпус из пластин оргстекла. На фото ниже показан вид самодельного двухэлектродного искрового разрядника. Для ослабления светового эффекта от искры внутрь корпуса дополнительно введен обрезок полипропиленовой трубки.

 

 

фото искрового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

Левый по фото электрод разрядника прикручивается к дюралевой пластине, а правый электрод накручен на латунный винт (можно и стальной), который на резьбе держится в корпусе. Правый электрод фиксируется на дюралевой пластине с помощью прижимной гайки. Такая конструкция позволяет оперативно изменять межэлектродное расстояние при неизменном положении контактных пластин разрядника.
На фото ниже показан разрядник в разобранном виде.

 

 

фото искрового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

В процессе работы разрядника внутренняя поверхность его корпуса засирается (загрязняется) продуктами микроразрушения электродов (частицы металла, оксиды и т.п.), что является причиной возникновения поверхностных разрядов, которые ухудшают параметры разрядника. В конце концов, разрядник полностью теряет свою эффективность, что проявляется в потере лазерной генерации. В таком случае требуется прочистка внутренней поверхности корпуса разрядника. При использовании упомянутой выше полипропиленовой трубки очистку поверхности легко провести с помощью круглого напильника.

В книге Т. Рапа «Эксперименты с самодельными лазерами» приводятся более эффективные схемы самодельных разрядников, которые имеют улучшенные характеристики. Это и управляемые разрядники, и разрядники повышенного давления, и разрядники с прокачкой воздуха.

 

Кроме обычного двухэлектродного искрового разрядника существует и так называемый рельсовый разрядник, который состоит из нескольких промежуточных электродов. Схема такого разрядника показана на рисунке ниже.

 

 

схема рельсового разрядника

 

 

 

 

 

 

1 — контакт разрядника (обрезок дюралевого профиля типа «уголок»)
2 — электрод разрядника (стальная гайка-колпак)
5 — промежуточные контакты разрядника (обрезок дюралевой пластины)

 

 

Использование нескольких промежуточных разрядников, расположенных последовательно друг за другом, позволяет повышать напряжение на электродах разрядника (1) при этом уменьшая межэлектродное расстояние. На рисунке только три промежуточных контактов. Однако их число можно увеличить. Чем больше промежуточных электродов, тем меньше межэлектродное расстояние при неизменном напряжении на разряднике и выше крутизна получаемых импульсов. Рельсовый разрядник дает более короткие импульсы, чем двухэлектродный разрядник.

Показанная на схеме конструкция рельсового разрядника несколько громоздка и может быть упрощена. Более практичной является схема приведенная ниже.

 

 

схема рельсового разрядника

 

 

 

 

 

 

1 — диэлектрический стержень
2 — диэлектрическая прокладка
3 — металлическая шайба

 

 

На диэлектрический стержень друг за другом (через диэлектрическую прокладку) надеваются металлические шайбы. Число шайб определяется напряжением блока питания лазера и расстоянием между шайбами. Опытным путем нужно подобрать число шайб так, чтобы при подключении разрядника к высоковольтному блоку питания лазера происходил пробой разрядника. Толщину диэлектрических прокладок следует выбирать в пределах 0,5 – 1 мм. При использовании более тонких прокладок возникают поверхностные разряды, ухудшающие эффективность разрядника. Диаметр шайб особого значения не имеет и выбирается из конструктивных соображений.
В качестве диэлектрического стержня желательно использовать керамический стержень, поскольку он «держит» температуру и его поверхность можно очищать. Но можно использовать и пластмассовый стержень. В этом случае ресурс работы разрядника будет ограничен обгоранием пластика.
В качестве диэлектрической прокладки желательно использовать фторопласт, но можно обойтись и обычной полиэтиленовой пленкой. Опять же в этом случае ресурс работы разрядника будет ограничен обгоранием полиэтилена.
На фото ниже показаны этапы изготовления самодельного рельсового разрядника с использованием стальных монтажных шайб диаметром 18 мм и полиэтиленовой пленки.

 

1. Изготовляем диэлектрический стержень

 

Вырезаем из полиэтиленовой пленки (любой толщины) полоску шириной 4 -5 см и длиной 15 — 20 см, которую сворачиваем в рулончик на какой-нибудь оправе диаметром 2 -3 мм до тех пор, пока диаметр рулончика не станет равным 5 — 6 мм.

 

 

сборка рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

С помощью ленты типа «скотч» фиксируем край свернутого рулончика и убираем оправу.

 

 

 

сборка рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

2. Изготовляем диэлектрические прокладки

 

Вырезаем из полиэтиленовой пленки кружки с отверстием в центре.
Внешний диаметр кружков ~ 12 мм, внутренний ~ 6 мм. На одну межэлектродную прокладку нужно нарезать несколько кружков, чтобы при наложении друг на друга они образовали прокладку толщиной ~ 0,5 мм.

 

 

 

сборка рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Изготовляем промежуточные электроды

 

Стальные монтажные шайбы можно купить в магазинах типа «Хозтовары», «Стройматериалы» или же на рынке стройматериалов. Прежде чем использовать шайбы в разряднике, их необходимо обработать. Все шайбы с одной стороны имеют острые кромки (дефект штамповки), которые следует округлить напильником во избежание образования коронных разрядов в процессе работы разрядника. Во избежание образования поверхностных разрядов отверстие в шайбах с двух сторон следует несколько расширить сверлом диаметром 8 мм.

 

 

 

сборка рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Собираем разрядник

 

Насаживаем металлические шайбы на полиэтиленовый рулончик, чередуя их с прокладками.

 

 

 

 

сборка рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

Полученную стопку промежуточных электродов помещаем внутрь обрезка полипропиленовой трубы Ø 32 мм, которая ослабляет световой и звуковой шум в процессе работы разрядника.

 

 

 

сборка рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

Теперь остается лишь зажать стопку промежуточных электродов между контактами внешней цепи и рельсовый разрядник готов.
Для облегчения крепления контактов внешней цепи к разряднику можно изменить конструкцию диэлектрического стержня. На рисунке ниже показан вариант с использованием шпилек с резьбой М5, которые вкручены в полипропиленовую трубку. Полипропиленовая трубка взята от сифона чистящего средства («Шуманит», «Утенок» и т.д.)

 

 

 

схема рельсового разрядника

 

 

 

 

 

 

 

1 — стальная шпилька с резьбой М5
2 — полипропиленовая трубка
3 — эпоксидная смола

 

 

На фото ниже показан готовый рельсовый разрядник.

 

 

рельсовый разрядник

 

 

 

 

 

 

 

 

 

 

 

 

 

Изготовленный разрядник имеет не очень большой срок службы, ибо пластик очень быстро обугливается, что приводит к перекрытию промежуточных электродов ( уголь, как известно, проводит ток) и потере лазерной генерации.
На фото ниже виды следы обгорания полиэтилена в разряднике после нескольких минут работы лазера.

 

 

дефект рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

Можно вместо полиэтилена использовать силиконовую трубку, из которой изготовляется диэлектрический стержень разрядника, а также межэлектродные прокладки. Однако силикон тоже не держит температуру и начинает обгорать.
На фото ниже виды следы обгорания силиконовой трубки (обрезок трубки омывателя переднего стекла автомобиля) в разряднике после нескольких минут работы лазера.
Межэлектродные прокладки изготовлены из листа фторопласта толщиной 1 мм.

 

 

дефект рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

Рельсовый разрядник можно изготовить не только из металлических шайб, но и из дюралюминиевых пластин. Причем можно применять даже анодированные пластины. Схема рельсового разрядника из пластин показана на рисунке ниже.

 

схема рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

схема рельсового разрядника

 

 

 

 

 

 

 

 

1 – дюралевая пластина
2 – липкая пленка типа «скотч»
3 – полиэтиленовая пленка

 

 

Разрядник набирается из отдельных пластин в виде стопки, которая сжимается между контактными электродами внешней цепи разрядника. Ширина и длина дюралевых пластин особого значения не имеет. Число пластин определяется напряжением блока питания лазера. Чем больше будет пластин, тем при большем напряжении произойдет пробой разрядника. Для предотвращения возникновения коронных разрядов кромки пластин желательно округлить напильником. Для предотвращения возникновения поверхностных разрядов концы каждой пластины обматываются двумя-тремя слоями ленты типа «скотч». Поверх ленты несколько отступив от края (5 – 7 мм) наматывается полиэтиленовая пленка. Число слоев выбирается так, чтобы межэлектродное расстояние в разряднике составляло 0,5 – 1 мм. В ходе экспериментов можно менять число слоев пленки. Чем больше будет межэлектродное расстояние, тем выше напряжение пробоя разрядника.
На фото ниже показан собранный в пакет рельсовый разрядник из дюралевых пластин толщиной 2 мм и шириной 15 мм. Пакет сжимается по краям электродов скотч-лентой.

 

 

пакет пластин рельсового разрядника

 

 

 

 

 

 

 

 

 

 

 

 

 

На фото ниже показан пакет пластин разрядника, размещенный в корпусе из оргстекла.

 

рельсовый разрядник

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Источник высокого напряжения своими руками

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС.

Давайте посмотрим схему:

Схема высоковольтного генератора

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6[0,03MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор ~30kV 470pf – 2.2n и выходной токоограничительный резистор.

Please enable JavaScript to view the comments powered by Disqus.

Уничтожитель электроники | Мастер-класс своими руками

Представьте, что у вас есть некое устройство, которое способно вывести из строя любую электронику на расстоянии. Согласитесь, похоже на сценарий какого-то фантастического фильма. Но это не фантастика, а вполне реальность. Такое устройство сможет сделать почти любой желающий своими руками, из деталей, которые свободно можно достать.
Уничтожитель электроники - электромагнитная пушка

Описание устройства


Уничтожитель электроники – электромагнитная пушка, посылающая мощные направленные электромагнитные импульсы высокой амплитуды, способные вывести из строя микропроцессорную технику.

Принцип работы уничтожителя


Принцип работы отдаленно напоминает работу трансформатора Тесла и электрошокера. От элемента питания питается электронный высоковольтный повышающий преобразователь. Нагрузкой высоковольтного преобразователя является последовательная цепь из катушки и разрядника. Как только напряжение достигнет уровня пробивки разрядника, происходит разряд. Этот разряд дает возможность передать всю энергию высоковольтного импульса катушке из проволоки. Эта катушка преобразовывает высоковольтный импульс в электромагнитный импульс высокой амплитуды. Цикл повторяется несколько сот раз в секунду и зависит от частоты работы преобразователя.

Схема прибора


В роли разрядника будет использоваться один переключатель – его не нужно будет нажимать. А другой для коммутации.
Уничтожитель электроники - электромагнитная пушка

Что нужно для сборки?


— Аккумуляторы 3,7 В – aliexpress
— Корпус – aliexpress
— Преобразователь высокого напряжения – aliexpress
— Переключатели две штуки – aliexpress
— Супер клей.
— Горячий клей.

Сборка


Берем корпус и сверлим отверстия под переключатели. Один с низу, другой с верху. Теперь делаем катушку. Наматываем по периметру корпуса. Витки фиксируем горячим клеем. Каждый виток отделен друг от друга. Катушка состоит из 5 витков. Собираем все по схеме, припаиваем элементы. Вставляем изоляционную прокладку между контактами высоковольтного выключателя, чтобы искра была внутри, а не снаружи. Закрепляем все детали внутри корпуса, закрываем крышку корпуса.

Требования безопасности

Будьте особо осторожны – очень высокое напряжение! Все манипуляции со схемой производите только после отключения источника питания.
Не используйте этот электромагнитный уничтожитель рядом с медицинским оборудование, или другим оборудованием, от которого может зависеть человеческая жизнь.

Результат работы магнитной пушки


Пушка лихо вышибает почти все чипы, конечно есть и исключения. Если у вас имеются ненужные электронные устройства можете проверить работу на них. Уничтожитель электроники имеет очень маленький размер и спокойно умещается в кармане.
Проверка на осциллографе. Держа щупы на расстоянии и не подключая, осциллограф просто зашкаливает.
Уничтожитель электроники - электромагнитная пушка

Испытания


Выводим из строя мигающий светодиод со встроенным контроллером.
Уничтожитель электроники - электромагнитная пушка

Ломаем микроволновую печь.

Видео инструкция сборки.

Безопасный разрядник конденсаторов своими руками

Перевёл alexlevchenko для mozgochiny.ru

Доброго времени суток. При поиске неисправностей и ремонте электронного оборудования всегда первым делом нужно разряжать имеющиеся в схема конденсаторы. В противном случае нерадивый ремонтник рискует получить заряд бодрости…

В прошлом ламповые приёмники и усилители можно было найти в каждом доме. В своей конструкции они использовали конденсаторы большой ёмкости, что продолжали удерживать опасный уровень заряда длительное время даже после того, как они отключались от сети. После этого наступила эра телевизоров с электронно-лучевыми трубками. Благодаря техническому прогрессу сейчас телевизоры оснащаются плоскими LED экранами и может сложиться впечатление, что все современные приборы переходят на низковольтные цифровые схемы, но в чем же тогда проблема?

На самом деле ответ лежит на поверхности. Низковольтные приборы питаются от относительно безопасных линейных источников питания (далее – ЛИП). Они эффективные, легкие, но именно в них кроется главная опасность. Иными словами «волк в овечьей шкуре».

ЛИП выпрямляет сетевое напряжение, обеспечивая постоянное напряжение около 330 В (для сетевого напряжения 230 В и 170 В для сетевого напряжения 120 В), после чего его можно использовать для питание того либо иного участка/компонента схемы. Получается картина маслом. Маленькие, аккуратненькие черные ящички, через которые подключаются ноутбуки, мониторы и другие приборы, в действительности имеют нехилые величины напряжений, что могут оказаться смертельно опасными.

Фильтрующие конденсаторы в источнике питания заряжаются высоким постоянным напряжением и сохраняют заряд в течение длительного периода времени после того, как штекер извлекается из розетки. Именно по этой причине на корпусах клеят наклейки с предупреждениями о мерах безопасности: «Не открывать коробку».

Приведенная в статье схема работает с потенциально опасным напряжением. Не пытайтесь собрать её в железе если до конца не понимаете принцип её работы и/или у вас нет опыта работы с высоким напряжением. В любом случае, все действия вы выполняете на свой страх и риск.

На просторах интернета можно встретить довольно много статей/видеороликов, в которых люди разряжают конденсаторы, просто на просто закорачивая их клеммы, используя для этой цели отвертку. В простонародье есть поговорка «Важен ни метод, ни способ, важен результат», так в нашем случае важен не только результат, но и то, каким образом он получен. Я это собственно к чему, – этот способ работает. Он полностью разряжает конденсатор. А вот правильно это или нет…? Конечно же НЕТ. Такой способ разрядки может повредить конденсатор, повредить отвертку и нанести непоправимый вред вашему здоровью.

Для того, чтобы разрядка выполнялась в правильном русле, необходимо отводить накопленный заряд постепенно. В принципе нам не нужно ждать, пока разрядка будет полной, достаточно подождать определенный отрезок времени, чтобы величина напряжения стала достаточно низкой. А как долго ждать, мы сейчас разберемся.

Относительно безопасным остаточным уровнем заряда считается 5% от исходного. Для того, чтобы уровень заряда опустился до желаемой отметки, необходимо, чтобы прошло время равное 3RC (С – ёмкость кондера; R – величина сопротивления резистора). Обратите внимание на «относительно безопасный» остаточный заряд в 5%, он может быть разным. Например для 10 кВ, 5% — 500 В. Для напряжения 500В, 5% — 25В.

К большому сожалению, мы не можем просто подключить резистор (именно через резистор будет происходить разрядка) к конденсатору и подождать. Почему? Сидеть с секундомером и контролировать время не очень удобно, не так ли?

Было бы намного удобнее иметь визуальную подсказку, которая известит нас о том, что процесс разряда «окончен» и напряжение упало до безопасного уровня.

В интернете можно найти небольшую, простую схему для разряда конденсаторов с внешней индикацией. Постараемся разобраться с принципом её работы, внесём изменения, увеличив количество диодов и соберём готовую поделку.

Воспользоваться цепочкой из трех стандартных диодов 1N4007 включенных последовательно (D1, D2, D3) для установки корректной точки фиксации, где мы сможем подключить светодиод с его токоограничивающим резистором. 3 последовательно включенных диода обеспечат напряжение около 1,6В, что хватить для включения светодиода. Светодиод будет светится, пока напряжение на аноде D3 не упадет ниже комбинированного прямого напряжения цепочки.

Будем использовать красный светодиод с низким током (Kingbright WP710A10LID), который имеет обычное 1,7В прямое напряжение и включается уже при прямом токе 0,5 мА, что позволяет нам использовать всего 3 диода. В соответствии с малым током, протекающим через светодиод, значение токоограничивающего резистора будет относительно высоким 2700 Ом 1/4 Вт.

Конденсаторный разрядный резистор представляет собой резистор мощностью 3 Вт и сопротивлением 2200 Ом, который рассчитан на максимальное входное напряжение 400 В. Этого достаточно для работы со стандартными блоками питания. Обратите внимание, что если вы посмотрите на даташит для диода 1N4007, вы увидите номинальное прямое напряжение 1 В, поэтому можно подумать, что двух диодов будет достаточно, чтобы включить светодиод. Не совсем так, поскольку прямое напряжение 1 В для 1N4007 рассчитано на прямой ток 1 A, значение, которого мы никогда не достигнем (надеюсь), поскольку это означало бы, что мы подали напряжение 2200 V на вход схемы. Прямой ток в нашем рабочем диапазоне составляет порядка 500-600 мВ, поэтому нам нужны три диода.

Всегда учитывайте условия, для которых указаны параметры в даташите. Используются ли они в вашей схеме? Может быть не стоит останавливаться на первой странице и следует продолжить просмотр характерных кривых!

Приведенная выше схема полезна для иллюстрации принципа работы, но её не следует повторять и использовать на практике, потому что она довольна опасна. Опасность кроется в способе подключения конденсатора (вернее в правильной полярности) (клемма Vcc должна быть положительной относительно клеммы GND), иначе ток не будет протекать через диодную цепочку D1-D2-D3! Поэтому, если вы случайно подключите конденсатор неправильно, ток не будет протекать и полное входное напряжение поступит на выводы LED1, как обратное напряжение. Если приложенное обратное напряжение выше нескольких вольт, LED1 сгорит и останется выключенным. Это может заставить вас поверить, что конденсатор не заряжен, хотя он по-прежнему …

Чтобы сделать схему безопасной, нужно обеспечить симметричный путь для тока при разряде конденсатора, когда Vcc-GND отрицательное. Это можно легко сделать, добавив D4-D5-D6 и LED2, как показано на схеме. Когда Vcc — GND положительное, ток будет протекать только через D1-D2-D3 и LED1. Когда Vcc-GND отрицательное, ток будет протекать только через D4-D5-D6 и LED2. Таким образом, независимо от применяемой полярности, мы всегда будем знать, заряжен ли конденсатор и когда напряжение упадёт до безопасного уровня.

Теперь, когда мы разобрались, как работает схема, пришло время подумать об корпусе. Все это можно было бы скомпоновать либо в виде пробника, либо в виде небольшой коробки, которую удобно держать на рабочем месте и подключаться к конденсатору с помощью щупов.

Изготовим маленькую круглую коробку из двух половинок с пластикой болванки. Посадка получилась очень плотная, поэтому винты не понадобились.

Отверстие в верхней части корпуса должно соответствовать размеру алюминиевой «кнопке», которая будет помогать в охлаждении разрядного резистора. «Кнопка» была выточена из алюминиевого стержня, а затем с одного торца профрезерована, чтобы удерживать резистор на месте и обеспечить хорошую передачу тепла. Также есть небольшое отверстие, которое можно использовать для крепления дополнительного внешнего радиатора.

Важно выполнить хорошую подгонку между «кнопкой» и корпусом. Как вы увидите в следующем шаге, кнопка также помогает удерживать все компоненты на месте. Размеры корпуса 19 мм на 50 мм.

Осталось произвести сборку, особое внимание следует обратить на изоляцию. С таким напряжением не шутят! Несколько моментов:

  • Обратите внимание на алюминиевую «кнопку», которая является проводником к внешней стороне коробки. «Кнопка» должна быть изолирована от цепи. Рекомендуется использовать герметик на основе кремния или эпоксидную смолу, чтобы закрепить компоненты в корпусе после того, как вы протестировали сборку.
  • Медная сетка вокруг резистора помогает надежно удерживать его на месте в пазу и увеличить теплопередачу на «кнопку».
  • Используйте специальные провода, что рассчитаны на напряжение в 600В. Не вздумайте схватить первый попавшийся провод, который рассчитан на неизвестное напряжение.

На этом всё. Успешной и главное безопасной разрядки!

(A-z Source)


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

About alexlevchenko
Ценю в людях честность и открытость. Люблю мастерить разные самоделки. Нравится переводить статьи, ведь кроме того, что узнаешь что-то новое — ещё и даришь другим возможность окунуться в мир самоделок.

Генератор высокого напряжения своими руками


Привет всем любителям самоделок. В этой статье я расскажу, как сделать генератор высокого напряжения своими руками, применение которого достаточно широкое, его можно будет использовать в качестве питания газоразрядных ламп, озонатора для травления крыс. Также он идеально подойдет для создания шокера или же электроподжига газа. Думаю многим стало интересно как это собрать, поэтому не затягиваем и переходим к сборке, самое же устройство основано на блокинг-генераторе.

Но перед прочтением подробной сборки предлагаю посмотреть видео, где можно наглядно увидеть принцип действия самоделки и понять, а надо ли оно мне.

Для того, чтобы сделать своими руками генератор высокого напряжения, понадобится:
* Транзистор IRF3205 с радиатором
* Аккумулятор типа 18650
* Умножитель
* Резистор на 100 Ом
* Паяльник, припой, флюс
* Строчный трансформатор ТВС-110ПЦ15
* Обмоточный провод, диаметр 1 мм и длиной 1 м
* Канцелярский нож или скальпель
* Провода

Вот и все, что нужно для изготовления данной самоделки, думаю не так и сложно все это найти, учитывая, что почти все детали были взяты из старого телевизора.

Шаг первый.
Данный трансформатор работает по принципиальной схеме, которая достаточна легка в повторении любому начинающему в этом деле.


Первым делом берем транзистор IRF3205 и прикручиваем к нему радиатор через термопасту, так как в процессе работы он будет греться.

К левой ножке транзистора или же затвору припаиваем резистор на 100 Ом, который в моем случае собран из двух резисторов, соединенных параллельно.

После того, как припаяли резистор, переходим к строчному трансформатору, его можно найти практически в каждом старом телевизоре, поэтому не спешите выбрасывать его. Сопротивление вторичной обмотки данного трансформатора равняется 150 Ом.


Шаг второй.
На данном этапе необходимо намотать 10 витков с отводом от середины на трансформаторе, делается это обмоточным проводом, диаметр которого 1 мм.

После намотки 10-ти витков необходимо оголить провода в начале и конце, а также убрать часть изоляции с среднего провода. Из опыта скажу, что удобнее всего это делать при помощи скальпеля, купленного в Китае.

Оголенные провода теперь можно залудить, преждевременно нанеся флюс на них. К началу обмотки припаиваем второй вывод резистора, который до этого припаивали к транзистору.


Второй конец обмотки припаиваем к стоку или же среднему выводу транзистора.

К крайнему правому выводу транзистора или же истока припаиваем еще один провод.

Припаиваем провод к отводу от середины обмотки и еще один провод паяем к выводу вторичной обмотки трансформатора.

Теперь можно попробовать трансформатор на работоспособность, подключив аккумуляторную батарею на 3.7 вольт типа 18650 к истоку транзистора и к отводу от середины обмотки, на трансформаторе получаем выходное напряжение в 5 киловольт, дуга видна, но при этом она слишком маленькая.

Шаг третий.
Увеличить выходное напряжение можно при помощи умножителя, данный вариант увеличит напряжение с 5 киловольт до 20-ти.


Такой умножитель также не составит труда найти, так как часто встречается в старых телевизорах времен СССР. С выхода трансформатора припаиваем провода к умножителю, в итоге на контактах умножителя получаем достаточно хорошую большую дугу, которую в дальнейшем можно применить в различных проектах.

В ходе проверки генератор работал исправно, также получилось запитать от него газоразрядную лампу, что также может кому-то пригодиться.
На этом у меня все, спасибо за внимание и всем творческих успехов. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно


Всем здравствуйте! В сети множество схем высоковольтных генераторов отличающихся по мощности, по сложности сборки, по цене и доступности компонентов. Данная самоделка собрана из практически бросовых деталей, собрать ее сможет любой желающий. Собирался этот генератор, скажем так, для ознакомительных целей и всевозможных опытов с электричеством высокого напряжения. Примерный максимум этого генератора 20 киловольт. Так как в качестве источника питания для этого генератора не используется сетевое напряжение это дополнительный плюс с точки зрения безопасности.

На фото все необходимые детали, для сборки высоковольтного генератора.

Для сборки потребуется:

Катушка зажигания от ВАЗа
Кулер с датчиком холла
«N» канальный мосфет
Резисторы на 100 Ом и 10 кОм
Соединительные изолированные провода
Паяльник
Клеммная колодка (необязательно)
Радиатор для мосфета
Несколько саморезов
Фанерное основание для крепления деталей

Это схема данного генератора.

Кому интересно попробую рассказать подробнее. В качестве генератора импульсов используется кулер охлаждения от компьютера или аналогичный на 12 вольт, но с одним условием – в нем должен быть встроенный датчик холла. Именно датчик холла и будет генерировать импульсы для высоковольтного трансформатора, в качестве которого, в данном случае, используется катушка зажигания от автомобиля. Выбрать подходящий вентилятор очень просто, как правило, он имеет три ввода.

На фото видно наличие трех выводов. Стандартная расцветка это красный вывод плюс питания, черный – общий (земля) и желтый – выход с датчика холла. При подаче питания на вентилятор на выходе (желтый провод) получаем импульсы, частота которых зависит от оборотов электромотора данного кулера и чем выше напряжение, тем выше частота импульсов. Повышать напряжение следует в разумных пределах — примерно 12-15 вольт, чтоб не спалить кулер и всю схему. Получаемый импульсный сигнал предстоит подать на катушку зажигания, но его необходимо усилить.

В качестве силового ключа использовал «N» канальный полевой транзистор (мосфет) IRFS640A подойдут и другие с аналогичными параметрами, или примерные на ток 5-10 ампер и напряжение вольт 50 для надежности. Мосфеты присутствуют практически во всех современных электронных схемах, будь то материнская плата компьютера или пусковая схема энергосберегающей лампы, а значит, найти подходящий не возникнет проблем.

Катушка зажигания от автомобилей ВАЗ «классика» Б117-А имеет три вывода. Центральный это высоковольтный выход, «Б+» это плюсовой 12 вольт, и общий «К» — возможно не маркируется.

Изначально схем состояла из трех компонентов: кулер, мосфет и катушка, но через непродолжительное время работы ломалась, так как выходили из строя либо мосфет, либо датчик холла. Выход – установка резисторов на 100 Ом для ограничения пускового тока с датчика холла на затвор, и подтягивающий резистор 10кОм для запирания мосфета при отсутствии импульса.

При сборке схемы транзистор следует устанавливать на радиатор желательно с применением термопасты, так как нагрев при работе существенный.

Разъем от кулера использовал в качестве клеммной колодки для подключения мосфета. В результате необходимость в пайке транзистора отпала, для подключения или замены достаточно соединить колодку с выводами транзистора.

Вентилятор закрепил сверху радиатора при помощи двух саморезов. В результате получилось, что кулер играет двойную роль – как генератор импульсов и как дополнительное охлаждение.

Подключаем питание 12-14 вольт от аккумулятора и пробуем в работе.

Для молний по дереву данный агрегат конечно слабоват, но что такое высокое напряжение с данной самоделкой — оценить можно.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *