Рулевой механизм: описание,виды,назначение,принцип работы ,устройство.
Каждый узел и механизм автомобиля по-своему важен. Пожалуй, нет такой системы, без которой автомобиль мог бы нормально функционировать. Одна из таких систем – рулевой механизм. Наверное, это одна из самых важных частей машины. Давайте рассмотрим, как устроен этот узел, назначение его, элементы конструкции. А также научимся регулировать и ремонтировать эту систему.
Принцип работы реечной рулевой тяги
Реечный рулевой механизм
Реечный рулевой механизм — является самым распространенным типом механизма, устанавливаемым на легковые автомобили. Основными элементами рулевого механизма являются шестерня и рулевая рейка. Шестерня устанавливается на валу рулевого колеса и находится в постоянном зацеплении с рулевой (зубчатой) рейкой.
Схема реечного рулевого механизма
1 – подшипник скольжения; 2 – манжеты высокого давления; 3 – корпус золотников; 4 – насос; 5 – компенсационный бачок; 6 – рулевая тяга; 7 – рулевой вал; 8 – рейка; 9 – компрессионный уплотнитель; 10 – защитный чехол.
Реечный рулевой механизм отличается простотой конструкции и как следствие, высоким КПД, а также имеет высокую жесткость. Но такой тип рулевого механизма чувствителен к ударным нагрузкам от неровностей дороги, склонен к вибрациям. По причине своих конструктивных особенностей реечный рулевой механизм применяется на переднеприводных автомобилях
Червячный рулевой механизм
Схема червячного редуктораЭтот рулевой механизм является одним из «устаревших» устройств. Им оснащены практически все модели отечественной «классики». Механизм применяется на автомобилях с повышенной проходимостью с зависимой подвеской управляемых колес, а также в легких грузовых автомобилях и автобусах.
Конструктивно устройство состоит из следующих элементов:
- рулевой вал
- передача «червяк-ролик»
- картер
- рулевая сошка
Пара «червяк-ролик» находится в постоянном зацеплении. Глобоидальный червяк представляет собой нижнюю часть рулевого вала, а ролик закреплен на валу сошки. При вращении руля ролик перемещается по зубьям червяка, благодаря чему вал рулевой сошки также поворачивается. Результатом такого взаимодействия является передача поступательных движений на привод и колеса.
Рулевой механизм червячного типа имеет следующие преимущества:
- возможность поворота колес на больший угол
- гашение ударов от дорожных неровностей
- передача больших усилий
- обеспечение лучшей маневренности машины
Изготовление конструкции достаточно сложное и дорогое – в этом главный ее минус. Рулевое управление с таким механизмом состоит из множества соединений, периодическая регулировка которых просто необходима. В противном случае придется заменять поврежденные элементы.
Рулевая колонка
Выполняет передачу вращательного усилия, которое создает водитель для изменения направления. Состоит она из рулевого колеса, располагаемого в салоне (на него и воздействует водитель, вращая его). Оно жестко посажено на вал колонки. В устройстве этой части рулевого управления очень часто используется вал, разделенный на несколько частей, соединенных между собой карданными шарнирами.
Такая конструкция сделана не просто так. Во-первых, это позволяет менять угол положения рулевого колеса относительно механизма, смещать его в определенную сторону, что нередко необходимо при компоновке составных частей авто. В дополнение такая конструкция позволяет повысить комфортабельность салона – водитель может менять положение рулевого колеса по вылету и наклону, обеспечивая максимально удобное его положение.
Во-вторых, составная рулевая колонка имеет свойство «ломаться» в случае ДТП, снижая вероятность травмирования водителя. Суть такова – при фронтальном ударе двигатель может сместиться назад и толкнуть рулевой механизм. Если бы вал колонки был цельным, изменение положения механизма привело бы к выходу вала с рулевым колесом в салон. В случае же со составной колонкой, перемещение механизма будет сопровождаться всего лишь изменением угла одной составляющей вала относительно второй, а сама колонка остается неподвижной.
Винтовой рулевой механизм
Винтовой рулевой механизм объединяет следующие конструктивные элементы: винт на валу рулевого колеса; гайку, перемещаемую по винту; зубчатую рейку, нарезанную на гайке; зубчатый сектор, соединенный с рейкой; рулевую сошку, расположенную на валу сектора.
Особенностью винтового рулевого механизма является соединение винта и гайки с помощью шариков, чем достигается меньшее трение и износ пары.
Принципиально работа винтового рулевого механизма схожа с работой червячного механизма. Поворот рулевого колеса сопровождается вращением винта, который перемещает надетую на него гайку. При этом происходит циркуляция шариков. Гайка посредством зубчатой рейки перемещает зубчатый сектор и с ним рулевую сошку.
Винтовой рулевой механизм в сравнении с червячным механизмом имеет больший КПД и реализует большие усилия. Данный тип рулевого механизма устанавливается на отдельных легковых автомобилях представительского класса, тяжелых грузовых автомобилях и автобусах.
Заключение
В целом механизм является достаточно надежным узлом, не требующим никакого обслуживания. Но при этом эксплуатация рулевого управления автомобиля подразумевает проведение своевременной диагностики для выявления неисправностей.
Конструкция этого узла состоит из множества элементов с подвижными соединениями. А где такие соединения есть, со временем из-за износа контактирующих элементов, в них появляются люфты, которые в значительной мере могут повлиять на управляемость авто.
Сложность диагностики рулевого управления зависит от его конструктивного исполнения. Так в узлах с механизмом «шестерня-рейка» соединений, которые необходимо проверять не так уж и много: наконечники, зацепление шестерни с рейкой, карданы рулевой колонки.
А вот с червячным механизмом из-за сложной конструкции привода точек диагностики значительно больше.
Что касается ремонтных работ при нарушении работоспособности узла, то наконечники при сильном износе просто заменяются. В рулевом механизме на начальном этапе люфт удается убрать регулировкой зацепления, а если это не помогло – переборкой узла с использованием ремкомплектов. Карданы колонки, как и наконечники – просто заменяются.
ПОХОЖИЕ СТАТЬИ:
- Инструменты, аксессуары и запасные части для автомобиля
Надежная и стабильная работа системы охлаждения двигателя- Рама и тягово-сцепное устройство: описание,устройство,фото.
- Гидравлические толкатели: устройство,фото,описание.
- Mercedes-Benz S 63 AMG седан, 2013
- Причины которые увеличивают расход топлива.
- Опель вектра B: технические характеристики,фото,видео,обзор,описание.
- Бмв х4:технические характеристики,описание,обзор,фото,видео,интерьер
- 2018 Volkswagen Polo уже в продаже в Великобритании От £ 13,855
- Бмв е30 технические характеристики обзор описание фото видео комплектация.
- Бмв е39: обзор,описание,фото,видео,комплектация,характеристики
- Диагностика газобаллонного оборудования автомобиля.
- Opel Agila: описание,характеристики,фото,видео,комплектация.
- bmw f13: обзор,комплектация,цена,технические характеристики,отзывы,фото,видео.
- бмв е3: описание,фото,обзор,история.
seite1.ru
Устройство автомобиля. Принцип работы рулевого механизма
Существует несколько типов рулевого механизма Вам известно, что при повороте руля поворачиваются колеса автомобиля. Но между поворотом руля и поворотом колес происходят определенные действия.В этой статье мы рассмотрим особенности двух наиболее распространенных типов рулевого механизма: реечный рулевой механизм и рулевой механизм с шариковой гайкой. Также мы расскажем о рулевом управлении с гидроусилителем и узнаем об интересных технологиях развития систем рулевого управления, позволяющих сократить расход топлива. Но, прежде всего, мы рассмотрим, как происходит поворот. Не все так просто, как может показаться.
Поворот автомобиля
Возможно, Вы удивитесь, узнав, что при повороте колеса на передней оси проходят по различной траектории.Для обеспечения плавного поворота, каждое колесо должно описать разную окружность. В связи с тем, что внутреннее колесо описывает колесо меньшего радиуса, оно совершает более крутой поворот, чем внешнее. Если провести перпендикуляр к каждому колесу, линии будут пересекаться в центральной точке поворота. Геометрия поворота заставляет внутреннее колесо поворачиваться сильнее, чем внешнее.
Существует несколько типов рулевого механизма. Наиболее распространенными являются реечный рулевой механизм и рулевой механизм с шариковой гайкой.
Реечный рулевой механизм
Реечный рулевой механизм широко используется в легковых автомобилях, грузовиках малой грузоподъемности и внедорожниках. Фактически, этот механизм довольно прост. Реечные шестерни расположены в металлической трубке, с каждой стороны которой выступает рейка. Рулевой наконечник соединяется с каждой стороной рейки.Ведущая шестерня сопряжена с валом рулевого механизма. Когда Вы поворачиваете руль, шестерня начинает вращаться и приводит рейку в движение. Рулевой наконечник на конце рейки соединяется с рулевой сошкой на шпинделе (см. рисунок).
Функции зубчатой рейки с шестерней заключаются в следующем:
- Она преобразует вращательное движение рулевого колеса в прямолинейное движение, необходимое для поворота колес.
- Она обеспечивает передаточное отношение для облегчения поворота колес.
Большинство автомобилей устроены так, что потребуется от трех до четырех полных оборотов руля, чтобы развернуть колеса от упора до упора.
Передаточное отношение рулевого механизма — это отношение градуса поворота руля к градусу поворота колес. Например, если один полный оборот руля (360 градусов) поворачивает колесо на 20 градусов, тогда передаточное отношение рулевого механизма составляет 18:1 (360 разделить на 20). Чем выше отношение, тем больше градус поворота руля. При этом, чем выше отношение, тем меньше усилий требуется приложить.
Как правило, у легких спортивных автомобилей передаточное отношение рулевого механизма ниже, чем у крупных автомобилей и грузовиков. При низком передаточном отношении у рулевого механизма более быстрый отклик, поэтому Вам не нужно с усилием крутить руль чтобы выполнить поворот. Чем меньше автомобиль, тем меньше его масса, и, даже при низком передаточном отношении, не требует прилагать дополнительное усилие для поворота.
Также существуют автомобили с переменным передаточным отношением рулевого механизма. В этом случае у зубчатой рейки с шестерней разный шаг зубьев (число зубьев на дюйм) в центре и по бокам. В результате, автомобиль реагирует на поворот руля быстрее (рейка расположена ближе к центру), а также снижается усилие при повороте руля до упора.
Реечный рулевой механизм с усилителем
При наличии реечного рулевого механизма с усилителем, рейка имеет немного другую конструкцию. Часть рейки включает цилиндр с поршнем посередине. Поршень соединен с рейкой. С обеих сторон поршня имеются два отверстия. Подача жидкости под высоким давлением на одну из сторон поршня приводит поршень в движение, он поворачивает рейку, обеспечивая усиление рулевого механизма.Далее в статье мы рассмотрим компоненты усилителя. Но прежде мы расскажем о другом типе рулевого механизма.
Рулевой механизм с шариковой гайкой
Рулевой механизм с шариковой гайкой можно встретить на многих грузовиках и внедорожниках. Данная система немного отличается от реечного механизма.Рулевой механизм с шариковой гайкой включает червячную передачу. Условно червячную передачу можно разделить на две части. Первая часть представляет собой металлически блок с резьбовым отверстием. Данный блок имеет зубья с наружной стороны, которые сопрягаются с шестерней, которая приводит в движение рулевую сошку (см. рисунок). Рулевое колесо соединено с резьбовым стержнем, похожим на болт, установленным в резьбовое отверстие блока. Когда рулевое колесо вращается, болт поворачивается вместе с ним. Вместо того, чтобы вкручиваться в блок, как обычные болты, этот болт закреплен так, что, когда он вращается, он приводит в движение блок, который, в свою очередь, приводит в движение червячную передачу.
Болт не соприкасается резьбой с блоком, поскольку она заполнена шарикоподшипниками, циркулирующими по механизму. Шариковые подшипники используются для двух целей: Они снижают трение и износ передачи, а также снижают загрязнение механизма. Если в рулевом механизме не будет шариков, на какое-то время зубья не будут соприкасаться друг с другом и Вы почувствуете что руль потерял жесткость.
Гидроусилитель в рулевом механизме с шариковой гайкой функционирует точно так же, как и в реечном рулевом механизме. Усиление обеспечивается подачей жидкости под высоким давлением на одну из сторон блока.
Далее мы рассмотрим компоненты гидроусилителя.
Гидроусилитель руля
Помимо самого рулевого механизма, гидроусилитель включает несколько основных компонентов.
Насос
Пластинчатый насос снабжает рулевой механизм гидравлической энергией (см. рисунок). Двигатель приводит насос в действие при помощи ремня и шкива. Насос включает утапливаемые лопатки, вращающиеся в камере овальной формы.При вращении лопатки выталкивают гидравлическую жидкость низкого давления из обратной магистрали в выпускное отверстие под высоким давлением. Сила потока зависит от количества оборотов двигателя автомобиля. Конструкция насоса обеспечивает необходимый напор даже на холостых оборотах. В результате, насос перемещает большее количество жидкости при работе двигателя на более высоких оборотах.
Насос имеет предохранительный клапан, обеспечивающий надлежащее давление, что особенно важно при высоких оборотах двигателя, когда подается большой объем жидкости.
Поворотный клапан
Гидроусилитель должен помогать водителю только при приложении силы к рулевому колесу (при повороте). При отсутствии усилия (например, при движении по прямой), система не должна обеспечивать помощь. Устройство, определяющее приложение силы к рулевому колесу, называется поворотный клапан.Основным компонентом поворотного клапана является торсион. Торсион представляет собой тонкий металлический стержень, который поворачивается под действием крутящего момента. Верхний конец торсиона соединен с рулевым колесом, а нижний с шестерней или червячной передачей (которая поворачивает колеса), при этом крутящий момент торсиона равен крутящему моменту, прилагаемого водителем для поворота колес. Чем выше прилагаемый крутящий момент, тем больше поворот торсиона. Входная часть вала рулевого механизма формирует внутреннюю часть поворотного клапана. Также он соединен с верхней частью торсиона. Нижняя часть торсиона соединена с внешней частью поворотного клапана. Торсион также вращает шестерню рулевого механизма, соединяясь с ведущей шестерней или червячной передачей, в зависимости от типа рулевого механизма.
При повороте торсион вращает внутреннюю часть поворотного клапана, внешняя часть при этом остается неподвижной. В связи с тем, что внутренняя часть клапана также соединена с рулевым валом (и, следовательно, с рулевым колесом), количество оборотов внутренней части клапана зависит от крутящего момента, прилагаемого водителем.
Когда руль неподвижен, обе гидравлические трубки обеспечивают равное значение давления на шестерню. Но при повороте клапана каналы открываются для подачи жидкости под высоким давлением к соответствующей трубке.
Практика показала не самую высокую эффективность такого типа усилителя рулевого управления.
Инновационные усилители руля
В связи с тем, что насос рулевого механизма с гидроусилителем на большинстве автомобилей непрерывно перекачивает жидкость, он расходует мощность и топливо. Логично рассчитывать на ряд нововведений, которые позволят повысить экономию топлива. Одной из самых удачных идей является система с компьютерным управлением. Эта система полностью исключает механическую связь между рулевым колесом и рулевым механизмом, заменяя ее электронной системой управления.Фактически руль работает так же, как руль для компьютерных игр. Руль будет оснащен датчиками для подачи автомобилю сигналов о направлении движения колес и моторами, обеспечивающими отклик на действия автомобиля. Выходные данные таких датчиков будут использоваться для управления рулевым механизмом с электроприводом. В этом случае устраняется необходимость наличия рулевого вала, что увеличивает свободное пространство в моторном отсеке.
General Motors представила концепт-кар Hy-wire, на котором уже установлена такая система. Отличительной особенностью такой системы с электронным управлением от GM является то, что Вы можете сами настроить управляемость автомобиля с помощью нового компьютерного программного обеспечения без замены механических компонентов. В автомобилях с электронным управлением будущего Вы сможете подстроить систему контроля под себя нажатием лишь нескольких кнопок. Все очень просто! За последние пятьдесят лет система рулевого управления не сильно изменились. Но в следующем десятилетии наступит эпоха более экономичных автомобилей
www.exist.ru
Рулевое управление автомобиля
Механизмы управления автомобиля — это механизмы, которые предназначены обеспечивать движение автомобиля в нужном направлении, и его замедление или остановку в случае необходимости. К механизмам управления относятся рулевое управление и тормозная система автомобиля.
Рулевое управление автомобиля — это совокупность механизмов, служащих, для поворота управляемых колес, обеспечивает движение автомобиля в заданном направлении. Передачу усилия поворота рулевого колеса к управляемым колесам обеспечивает рулевой привод. Для облегчения управления автомобилем применяют усилители руля, которые делают поворот руля легким и комфортным.
Устройство рулевого управления:
1 — поперечная тяга; 2 — нижний рычаг; 3 — поворотная цапфа; 4 — верхний рычаг; 5 — продольная тяга; 6 — сошка рулевого привода; 7 — рулевая передача; 8 — рулевой вал; 9 — рулевое колесо.
Принцип работы рулевого управления
Каждое управляемое колесо установлено на поворотном кулаке, соединенном с передней осью посредством шкворня, который неподвижно крепится в передней оси. При вращении водителем рулевого колеса усилие передается посредством тяг и рычагов на поворотные кулаки, которые поворачиваются на определенный угол (задает водитель), изменяя направление движения автомобиля.
Механизмы управления, устройство
Рулевое управление состоит из следующих механизмов :
1. Рулевой механизм — замедляющая передача, преобразовывающая вращение вала рулевого колеса во вращение вала сошки. Этот механизм увеличивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.
2. Рулевой привод — система тяг и рычагов, осуществляющая в совокупности с рулевым механизмом поворот автомобиля.
3. Усилитель рулевого привода (не на всех автомобилях) — применяется для уменьшения усилий, необходимых для поворота рулевого колеса.
Устройство рулевого управления
1 – Рулевое колесо; 2 – корпус подшипников вала; 3 — подшипник; 4 – вал колеса рулевого управления; 5 – карданный вал рулевого управления; 6 – тяга рулевой трапеции; 7 — наконечник; 8 — шайба; 9 – палец шарнирный; 10 – крестовина карданного вала; 11 – вилка скользящая; 12 – наконечник цилиндра; 13 – кольцо уплотнительное; 14 – гайка наконечника; 15 — цилиндр; 16 –поршень со штоком; 17 – кольцо уплотнительное; 18 – кольцо опорное; 19 — манжета; 20 – кольцо нажимное; 21 — гайка; 22 – муфта защитная; 23 – тяга рулевой трапеции; 24 — масленка; 25 – наконечник штока; 26 – кольцо стопорное; 27 — заглушка; 28 – пружина; 29 – обойма пружины; 30 – кольцо уплотнительное; 31 – вкладыш верхний; 32 – палец шаровый; 33 – вкладыш нижний; 34 — накладка; 35 – муфта защитная; 36 – рычаг поворотного кулака; 37 – корпус поворотного кулака.
Устройство рулевого привода:
1 – корпус золотника; 2 – кольцо уплотнительное; 3 – кольцо плунжеров подвижное; 4 — манжета; 5 – картер рулевого механизма; 6 — сектор; 7 – пробка заливного отверстия; 8 — червяк; 9 – боковая крышка картера; 10 — крышка; 11 – пробка сливного отверстия; 12 – втулка распорная; 13 – игольчатый подшипник; 14 – сошка рулевого управления; 15 – тяга сошки рулевого управления; 16 – вал рулевого механизма; 17 — золотник; 18 — пружина; 19 — плунжер; 20 – крышка корпуса золотника.
Бак масляный. 1 – Корпус бачка; 2 — фильтр; 3 – корпус фильтра; 4 – клапан перепускной; 5 — крышка; 6 — сапун; 7 – пробка заливной горловины; 8 — кольцо; 9 – шланг всасывающий.
Насос усилительного механизма. 1 – крышка насоса; 2 — статор; 3 — ротор; 4 — корпус; 5 – игольчатый подшипник; 6 — проставка; 7 — шкив; 8 — валик; 9 — коллектор; 10 – диск распределительный.
Принципиальная схема. 1 – трубопроводы високого давления; 2 – механизм рулевой; 3 – насос усилительного механизма; 4 – шланг сливной; 5 – бак масляный; 6 – шланг всасывающий; 7 – шланг нагнетательный; 8 – механизм усилительный; 9 – шланги.
Рулевое управление автомобиля КамАЗ
1 — корпус клапана управления гидроусилителем; 2 — радиатор; 3 — карданный вал; 4 — рулевая колонка; 5 — трубопровод низкого давления; 6 — трубопровод высокого давления; 7— бачок гидросистемы; 8— насос гидроусилителя; 9 — сошка; 10 — продольная тяга; 11 — рулевой механизм с гидроусилителем; 12 — корпус углового редуктора.
Механизм рулевого управления автомобиля КамАЗ :
1 — реактивный плунжер; 2— корпус клапана управления; 3 — ведущее зубчатое колесо; 4 — ведомое зубчатое колесо; 5, 22 и 29— стопорные кольца; 6 — втулка; 7 и 31 — упорные колы к», 8 — уплотнительное кольцо; 9 и 15 — бинты; 10 — перепускной клапан; 11 и 28 — крышки; 12 — картер; 13 — поршень-рейка; 14 — пробка; 16 и 20— гайки; 17 — желоб; 18 — шарик; 19 — сектор; 21 — стопорная шайба; 23 — корпус; 24 — упорный подшипник; 25 — плунжер; 26 — золотник; 27— регулировочный винт; 30— регулировочная шайба; 32— зубчатый сектор вала сошки.
Рулевое управление автомобиля ЗИЛ;
1 — насос гидроусилителя; 2 — бачок насоса; 3 — шланг низкого давления; 4 — шланг высокого давления; 5 колонка; 6 — контактное устройство сигнала; 7 — переключатель указателей поворота; 8 карданный шарнир; 9 — карданный вал; 10 — рулевой механизм; 11 — сошка.
Рулевое управление автомобиля МАЗ-5335:
1 — продольная рулевая тяга; 2— гидроусилитель рулевого привода; 3 — сошка; 4 — рулевой механизм; 5— карданный шарнир привода рулевого управления; 6 — рулевой вал; 7— рулевое колесо; 8 — поперечная рулевая тяга; 9— левый рычаг поперечной рулевой тяги; 10 — поворотный рычаг.
www.autoezda.com
Механизмы рулевого устройства, рулевые приводы, рулевые машины
Назначение и требования к рулевым устройствам
Рулевое устройство предназначено для изменения поворота судна и удержания его на курсе путем поворота руля на определенный угол или удержания его в диаметральной плоскости судна.
В состав рулевого устройства входят четыре основных узла:
- руль — для восприятия давления воды и поворота судна;
- рулевой привод — для связи с рулевой машиной и передачи вращающего момента на баллер;
- рулевая машина (двигатель)—для обеспечения работы рулевого привода;
- телединамическая передача (телемотор) —для связи рулевой машины с постами управления судном.
Все суда морского флота оборудуются основной механической и запасной ручной или механической рулевой машиной. По требованию Регистра мощность основной рулевой машины и привода должна быть достаточной для перекладки руля с, борта на борт (2X35°) за время не более 30 сек на полном переднем ходу судна. Ручной привод должен перекладывать руль за время не более 100 сек при этих же условиях. Мощность запасного механического привода должна быть достаточной для перекладки руля с 20° одного до 20° другого борта за время не более 60 сек при скорости переднего хода, равной половине полной, но не менее 6 узлов. Переход с основного привода на запасной не должен занимать более двух минут.
Рулевое устройство должно быть экономичным, надежным и безопасным в работе независимо от навигационных условий, в которые может попасть судно. На судне должно быть предусмотрено не менее двух разных постов управления рулевых устройств.
Рули
По конструктивному исполнению рули подразделяются на простые, полубалансирные, балансирные, обтекаемые и т. д., а по принципу действия — на пассивные и активные.
Пассивным называется руль, который воспринимает и передает только силу давления воды на перо. Активный руль, помимо этой силы, передает еще и силу упора собственного движителя, размещаемого в грушевидной насадке пера руля. Привод движителя монтируется совместно с ним или выносится в судовое помещение.
Активный руль повышает маневренность судна, позволяя перекладывать руль до 70—90° на борт, и может давать приращение скорости судна на 1,5 узла, имея мощность привода движителя от 8 до 11% от мощности главных двигателей.
Схема активного руля приведена на рис. 67. Гребной винт руля соединен с валом электродвигателя эластично. Питание к электродвигателю подводится по кабелю, проходящему через гельмпортовую трубу вдоль баллера. Двигатель охлаждается водой и внутренние поверхности его покрыты антикоррозионным лаком, являющимся одновременно и электроизоляцией. Управляется активный руль непосредственно с мостика.
Рулевые приводы
По конструктивному исполнению и принципу действия рулевые приводы подразделяются на:
- румпельные и секторные со штуртросной передачей;
- винтовые механические;
- ледокольного типа;
- секторные с зубчатой передачей;
- гидравлические;
Первый тип привода применяется при значительном удалении рулевой машины от руля и в настоящее время встречается лишь на малых судах.
Винтовые механические приводы применяются исключительно редко, да и то в качестве запасных.
Ледокольный привод представляет собой мощный румпель с расположенной на нем паровой рулевой машиной.
Этот привод применялся на паровых ледоколах старой постройки.
Некоторое распространение имеет секторный зубчатый привод на судах.
Одна из конструкций привода показана на рис. 68. Сектор насажен на баллер свобод¬но и находится в зацеплении с зубчатой шестерней, приводимой во вращение от вала рулевой машины. Посредством амортизационных пружин сектор соединяется с румпелем, плотно насаженным на баллер на шпонке.
Амортизационные пружины предназначены для передачи движения на румпель и для гашения динамических нагрузок руля, могущих привести к поломкам зубьев сектора и шестерни.
Современные недавно построенные и вновь строящиеся суда оборудуются в подавляющем большинстве гидравлическими рулевыми приводами, которые подразделяются на плунжерные (скальчатые), винтовые, плунжерные секторно-кольцевые и лопастные.
Плунжерные (скальчатые) приводы изготовляются двух- и четырех-скальчатыми. Двух- скальчатый рулевой гидропривод приведен на рис. 69. Цилиндровые скалки соединены между собой скользящей муфтой или подшипником румпеля.
Румпель скользит в подшипнике и одновременно, испытывая давление со стороны скалок, поворачивается. Направление движения скалок зависит от направления подачи рабочего масла в цилиндры привода. Цилиндры соединяются между собой трубопроводами с перепускными клапанами, которые срабатывают при резком возрастании нагрузки в одном из цилиндров.
Винтовой гидравлический привод приведен на рис. 70, а. Корпус и цилиндр привода жестко закреплены на фундаменте. К корпусу крепится верхняя крышка, изготовленная заодно с резьбовой втулкой, внутри которой проходит свободно баллер.
На баллере в нижней части сидит неподвижно на шпонке стакан с внешними шлицами. Шлицами соединяется со стаканом кольцевой поршень, имеющий также резьбовое зацепление с верхней крышкой привода. Соответствующие места уплотнены внутри привода кольцами из маслостойкой резины.
При подаче рабочего масла в верхнюю полость 8 поршень будет опускаться вниз и одновременно поворачиваться в резьбе крышки. Вращение передается баллеру и руль поворачивается. Из нижней полости масло отводится к насосу. Для обратного поворота руля рабочее масло подается в нижнюю полость и отводится из верхней полости привода. Поршень будет двигаться вверх, а руль — поворачиваться в противоположном направлении.
На квадратную головку баллера может надеваться румпель запасного привода. Конструкция винтового гидравлического привода компактна, но сложна, и сам привод имеет сравнительно низкий механический к.п.д.
Плунжерный секторно-кольцевой гидравлический рулевой привод показан на рис. 70, б. Этот привод получил некоторое распространение на современных морских судах иностранного флота.
Кольцевой цилиндр привода разделен перемычкой на две рабочие полости, в которых помещены пустотелые плунжеры, перемещающиеся по кольцевым рабочим полостям цилиндра. Разделительная перемычка имеет два отверстия, через которые производится подвод и отвод рабочего масла из полостей цилиндра. Рабочее масло давит на торец плунжера и заставляет его перемещаться. Торец плунжера оборудован уплотнением из маслостойкой резины для предотвращения протечек масла из полости цилиндра наружу.
Румпель насажен на баллере на штоке и входит своим приводным концом в специальную втулочную перемычку плунжеров. Секторно-кольцевой привод прост по устройству, но имеет серьезный эксплуатационный недостаток — трудность обеспечения внутреннего уплотнения.
Очень большое распространение в настоящее время получил лопастной гидравлический рулевой привод. Основными узлами его являются цилиндр с крышкой и ротор. Ротор представляет собой ступицу с закрепленными на ней или изготовленными совместно рабочими лопастями и насаживается на конический конец баллера или промежуточный вал на шпонке. Встречаются цельнолитые конструкции ротора, присоединяемого к баллеру фланцевым соединением. Изготовляются лопастные рулевые приводы и в нашей стране и за рубежом.
Рулевые машины
В некоторых литературных источниках и в производственной практике понятие о рулевой машине, часто отождествляют с понятием всего рулевого устройства или рулевого привода. Это неправильно, так как рулевая машина — лишь составная часть рулевого устройства.
На судах морского флота применяются паровые, электрические, гидравлические и ручные рулевые машины. Ручная машина и ручной привод играют только вспомогательную роль. Мощность рулевых машин составляет от 0,60 до 0,65% от мощности главного двигателя в 3000 л. с. и 0,18—0,19% при мощности главного двигателя 60 000 л. с.
Замена парусного флота паровым привела к быстрому росту скорости и водоизмещения судов. Условия ручного штурвального управления рулем затруднились и возникла необходимость применения механических рулевых машин. Основной энергией на паровых судах была энергия пара и поэтому прежде всего стали применяться паровые рулевые машины.
Рулевое устройство судна оборудуется одной паровой маши¬ной. Машина двухцилиндровая в вертикальном или горизонтальном исполнении. Через цилиндрическую зубчатую или червячную передачу рулевая машина передает мощность зубчатому сектору или грузовому барабану при штуртросном рулевом приводе.
Рулевая машина должна сразу же пускаться из любого положения, и реверс должен осуществляться без задержки. Поэтому машина работает без расширения пара и мотыли расположены под углом 90° друг к другу. Паровые золотники машины не имеют перекрышей, каждый цилиндр снабжен своим золотником и устанавливается третий пусковой золотник. Схема парораспределения рулевой паровой машины приведена на рис. 71. На двух частях рисунка пусковой золотник показан в своих крайних положениях. Движение пара и поршней машины показано стрелками. При среднем положении пускового золотника доступ пара к цилиндрам прекращается и машина останавливается. Скорость вращения вала рулевой машины и перекладки руля при работе рулевого устройства зависит от величины открытия паровых окон пусковым золотником, т. е. от количества подаваемого в цилиндры пара.
Цилиндровые золотники приводятся в движение от вала рулевой машины, а пусковой золотник — с мостика. Пусковой золотник связан с валом рулевой машины сервомотором, т. е. устройством для согласования действий штурвала и рулевой машины, которое служит для возврата пускового золотника в среднее положение после прекращения воздействий с мостика или другого поста управления.
Паровые рулевые машины оборудуются клапанами экономии, устанавливаемыми между пусковым золотником и стопорным паровым клапаном. Назначение клапана экономии — прекратить доступ пара к пусковому золотнику несколько раньше, чем он придет в среднее положение. В среднее положение золотник возвращается сервомотором, но не сразу, а в течение некоторого времени. Доступ пара в цилиндры машины постепенно прекращается и вращение ее замедляется. Наконец, наступает такой момент, когда паровая машина не может преодолеть силы сопротивления в рулевом устройстве из-за малого количества поступающего в нее пара и останавливается раньше, чем пусковой золотник станет в среднее положение. Паровые окна не будут закрыты полностью и через них свежий пар будет постоянно перетекать в магистраль отработавшего пара. Для предотвращения этих бесполезных утечек свежего пара устанавливается клапан экономии. Клапан может приводиться в действие автоматически от давления пара или механически от общего привода с пусковым золотником.
Электрическая рулевая машина представляет собой обычный электродвигатель постоянного или переменного тока, на валу которого закрепляется червяк, работающий в паре с червячным колесом. На одном валу с червячным колесом укрепляется прямозубая шестерня, входящая в зацепление с зубчатым сектором рулевого привода.
Во многих случаях рулевое устройство оборудуется двумя электродвигателями: рабочим и резервным. Установка их выполняется с учетом возможности осевого перемещения и вывода из зацепления с червячным колесом при переходе с одного электродвигателя на другой или на запасной привод. Для предотвращения чрезмерного поворота зубчатого сектора устанавливаются конечные выключатели, прерывающие питание электродвигателя током.
Электрогидравлическая рулевая машина представляет собой электроприводной насос, перемещающий рабочее масло в системе гидропривода. Применяются ротационные насосы (поршневые, винтовые, пластинчатые) и шестеренные с переменной и постоянной производительностью. Устанавливаются также две рулевые машины—рабочая и резервная.
Ротационный радиально-поршневой насос рулевой машины приведен на рис. 72.
Насос состоит из корпуса, регулировочного кольца и ротора. Основу ротора составляет звезда цилиндров, вращающаяся вместе с поршнями. Поршни имеют башмаки, а в некоторых конструкциях ролики, которые скользят по внутренней поверхности регулировочного кольца. Регулировочное кольцо выполняет роль пускового золотника, связано своими цапфами с телемотором и сервомотором и имеет возможность поперечного перемещения. Центральная полость звезды цилиндров разделена на две части неподвижной горизонтальной перегородкой. Каждая часть полости сообщается через отверстия с трубопроводами рулевого привода.
Средний рисунок насоса показывает нахождение регулировочного кольца в нейтральном или среднем положении. При вращении ротора поршни не имеют возвратно-поступательного движения и насос не производит перемещение рабочего масла. Этот момент соответствует удержанию руля в заданном положении.
Крайние рисунки показывают расположение регулировочного кольца в своих крайних положениях, что соответствует максимальной производительности насоса и максимальной скорости перекладки руля. При вращении ротора в направлении, указанном стрелкой, отвод регулировочного кольца вправо обеспечивает всасывание масла в центральную полость насоса через верхнее отверстие, а нагнетание — через нижнее. С отводом кольца влево всасывание будет производиться через нижнее отверстие, а нагнетание — через верхнее. Таким образом изменяется направление движения масла в трубопроводах и направление поворота привода и перекладки руля.
Ротор насоса вращается с постоянным числом оборотов. Напор насоса постоянный, а производительность переменная и зависит от степени отвода регулировочного кольца от среднего положения. Такой насос называется насосом с регулируемой производительностью.
Отечественное рулевое устройство РЭГ-ОВИМУ-7 с лопастным рулевым приводом, разработанное под руководством В. В. Завиша, приведено на рис. 73.
Рулевой привод двухлопастной и состоит из цилиндра и ротора. Ротор цельнолитой и имеет фланец, при помощи которого присоединяется к баллеру. Рулевая машина электрогидравлическая, насос ротационный пластинчатый марки Г-12-14 (ЛЗФ-70) постоянной производительности 73 л/мин при 1000 об/мин и мощности 5,6 квт. Рабочая жидкость — турбинное масло 22. Допускается применение и другого, более вязкого, масла. Давление масла в системе 35 кГ/см2.
На рисунке руль стоит в заданном положении, насос разгружен и работает вхолостую, перемещая масло в направлении, указанном сплошными стрелками через отверстия г, е и б.
Для перекладки руля на правый борт каретка приемника телемотора отводится вправо воздействием на нее давления жидкости, перемещаемой в системе телемотора вращением рулевого штурвала. Золотники распределительного устройства переместятся вправо и отверстия д и в откроются, а отверстие е закроется. Масло будет перемещаться в системе в направлении, указанном пунктирными стрелками, и поступать в цилиндр привода через отверстия г и в. Ротор привода и руль будут поворачиваться против часовой стрелки.
Чтобы удержать руль в нужном положении, рулевой перестает вращать штурвальное колесо и сервомотор возвращает золотники распределительного устройства в среднее положение. Насос начинает работать опять вхолостую.
Для перекладки руля на левый борт рулевой вращает штурвальное колесо в обратном направлении. Каретка телемотора отводится влево и в этом же направлении переместится распределительный золотник (нижний), а разгрузочный золотник опять передвинется вправо. Масло теперь будет идти к приводу через отверстия г и д, а от привода — через в и б. Ротор привода и руль будут поворачиваться по часовой стрелке.
Распределительный и разгрузочный золотники связаны с ротором привода системой рычагов, представляющих собой сервомотор. Ротор всегда оказывает на золотники действие, обратное действию телемотора. Поэтому с прекращением вращения штурвального колеса действие телемотора прекращается и ротор рулевого привода своим движением приведет золотники в среднее положение через систему сервомотора.
Чтобы показания аксиометра совпадали с действительным положением руля, предусмотрен возврат разгрузочного золотника в среднее положение лишь после того, как распределительный золотник станет в среднее положение. Для этого к разгрузочному золотнику придан фиксатор в верхней части. При отводе золотника из среднего положения поршень фиксатора опускается вниз под действием давления пружины и застопоривает разгрузочный золотник. Когда распределительный золотник станет в среднее положение и закроет окна див, перераспределением гидравлического давления на поршень фиксатора последний поднимется вверх и даст возможность пружине разгрузочного золотника вернуть его в среднее положение.
В системе рулевого устройства предусмотрены предохранительный клапан для перепуска масла в случае заклинивания разгрузочного золотника в правом положении и перепускные клапаны для сброса масла из одной полости привода в другую при сильных ударах волн о перо руля.
Сервомоторы и телемоторы
Сервомотор — обязательный элемент каждой рулевой машины. Принцип действия всех сервомоторов одинаков, а конструктивное исполнение разное и зависит от типа рулевой машины и рулевого привода.
Одна из конструкций сервомотора паровой рулевой машины приведена на рис. 74.
Рабочий вал лежит в подшипниках и имеет опорные диски, препятствующие осевому перемещению вала. Рулевой штурвал выполнен совместно со ступицей, имеющей резьбовую нарезку. Ступица навинчена на вал и имеет кольцевой паз, куда входят выступы углового вильчатого рычага. Рычаг связан со штоком пускового золотника.
Для перекладки руля рулевой вращает штурвал, который навинчивается или вывинчивается с вала и перемещается по оси. Перемещение ступицы штурвала приводит к повороту углового рычага, который выводит пусковой золотник из среднего положения, и рулевая машина начинает работать. Через шестеренную передачу вращение вала рулевой машины передается рабочему валу, который оказывает на ступицу штурвального колеса действие, обратное действию рулевого, и будет стремиться вернуть штурвальное колесо и пусковой золотник в среднее положение.
Если скорость вращения штурвального колеса будет равна скорости вращения рабочего вала, пусковой золотник будет находиться в заданном положении и рулевая машина будет работать с постоянной скоростью. Для увеличения скорости вращения рулевой машины и перекладки руля рулевой должен вращать штурвальное колесо с возрастающей скоростью.
После перекладки руля на за¬данный угол рулевой отпускает штурвальное колесо. Рулевая машина еще будет работать некоторый малый промежуток времени, рабочий вал вернет штурвальное колесо и пусковой золотник в среднее положение, и машина остановится.
У гидравлических рулевых машин роль сервомотора выполняют рычажные передачи.
Почти на всех морских судах рулевая машина удалена от поста управления ею и, поэтому применяются специальные телединамические передачи или телемоторы для связи поста управления с пусковым устройством рулевой машины.
Существуют валиковый, стержневой, тросовый, электрический и гидравлический телемоторы. Последние два имеют преимущественное применение.
Гидравлический телемотор приведен на рис. 75. Основу телемотора составляют датчик (рулевая тумба) и приемник. Датчик устанавливается на мостике, а приемник — в румпельном отделении и соединяются между собой трубопроводами. Предварительное заполнение системы телемотора маслом производится при помощи ручного насоса. Воздух при заполнении системы отводится через воздушную пробку крышки цилиндра датчика, а заполнение контролируется по переливу масла в бачок через сливной трубопровод.
Внутри датчика находится зубчатая рейка с закрепленным на ней поршнем. Рейка приводится в движение от рулевого штурвала через зубчатую цилиндрическую передачу. К цилиндру датчика прикреплен резервуар, связанный с рабочей полостью датчика при посредстве двух клапанов. Один клапан служит для перепуска масла из цилиндра датчика в резервуар в случае чрезмерного повышения давления в системе, другой — для перепуска масла из резервуара в цилиндр датчика при значительном понижении давления в системе.
Приемник состоит из двух неподвижных пустотелых скалок и подвижного цилиндра, разделенного перегородкой на две части. К цапфам цилиндра присоединены две тяги, связанные со штоком пускового золотника рулевой машины.
При вращении штурвала против часовой стрелки зубчатая рейка и поршень датчика будут двигаться вверх. Масло будет выдавливаться из верхней полости цилиндра датчика и поступать в нижнюю полость цилиндра приемника. Цилиндр будет двигаться вверх, сжимая пружину и выталкивая масло из верхней полости в нижнюю полость цилиндра датчика. Тяги выведут золотник из среднего положения, и рулевая машина начнет работать.
Если рулевой перестанет вращать штурвал и отпустит его, пружина начнет расширяться и заставит цилиндр приемника опускаться вниз. Ход масла в системе будет обратный, и цилиндр приемника и зубчатая рейка с поршнем датчика будут возвращены в среднее положение. Сервомотор остановит рулевую машину.
Вращением штурвала по часовой стрелке обеспечится перекладка руля на другой борт.
Для управления рулевой машиной широко применяются авторулевые, заменяющие рулевого и повышающие экономичность рулевого устройства за счет более точного управления рулевой машиной и уменьшения расхода энергии. Вдобавок, судно идет более устойчиво, меньше рыскает, что снижает расход топлива главным двигателем и сокращает время перехода судна.
Обслуживание рулевых устройств
При обслуживании рулевых устройств необходимо руководствоваться общими указаниями по обслуживанию палубных механизмов, а также указаниями ССХ и заводов-изготовителей.
Рулевое устройство должно быть в полной готовности к моменту выхода судна в рейс. Приготовление рулевой машины к действию производится по указанию вахтенного помощника капитана.
В процессе приготовления к действию паровой рулевой ма¬шины производится ее внешний осмотр, прогревается паропровод и машина, проверяется действие пускового золотника, серво¬мотора и клапана экономии. Все необходимые части смазы¬ваются. Телемотор заполняется рабочей жидкостью, если необхо¬димо, и проверяется плотность гидравлической системы по удер¬жанию давления масла.
У секторного или механического винтового привода обращается особое внимание на состояние шестерен, червяков и червячных колес. При сломанных или треснутых зубьях работа рулевого привода запрещается.
В электрогидравлической рулевой машине проверяется уровень масла в расширительном бачке, действие и переход с одного насоса на другой и с основного привода на запасной и обратно, плотность соединений и отсутствие пропусков рабочего масла из системы.
Действие рулевого устройства проверяется пробными пусками с контролированием согласованности действия всех узлов. Замеченные ненормальности в работе устраняются.
Вахтенный моторист или машинист обязан не менее двух раз за вахту проверять работу рулевой машины и смазывать трущиеся части на ходу судна. При этом также проверяется нагрев трущихся деталей на ощупь или по показаниям термометров и наличие шумов и стуков в рабочих частях рулевого устройства.
В гидравлических системах проверяется уровень масла в бачках, не допускается снижение уровня ниже метки на указательной шкале или колонке. При длительной работе рулевого устройства необходимо работать поочередно рулевыми машинами, если их две.
О всех замеченных ненормальностях в работе рулевого устройства необходимо немедленно докладывать вахтенному механику. В случае нагрева трущихся частей машины выше нормы выделяется самостоятельный вахтенный для наблюдения за рулевым устройством.
При кратковременной остановке рулевой машины закрывается стопорный клапан свежего пара и открываются краны продувания паровых цилиндров. При остановке машины на длительное время все паровые клапаны, за исключением кранов продувания, закрываются. Руль должен быть установленным в среднее положение.
Вывод электрической и электрогидравлической рулевой машины из действия производится отключением питания электродвигателя. Гидравлическая система должна быть проверена на плотность и на отсутствие течи рабочей жидкости из системы.
mirmarine.net
3.Основные типы рулевых механизмов и приводов
3.1.Рулевой механизм.
Он обеспечивает поворот управляемых колес с небольшим усилием на рулевом колесе. Это может быть достигнуто за счет увеличения передаточного числа рулевого механизма. Однако передаточное число ограничено количеством оборотов рулевого колеса. Если выбрать передаточное число с количеством оборотов рулевого колеса больше 2-3, то существенно увеличивается время, требуемое на поворот автомобиля, а это недопустимо по условиям движения. Поэтому передаточное число в рулевых механизмах ограничивают в пределах 20-30, а для уменьшения усилия на рулевом колесе в рулевой механизм или привод встраивают усилитель.
Ограничение передаточного числа рулевого механизма также связано со свойством обратимости, т. е. способностью передавать обратное вращение через механизм на рулевое колесо. При больших передаточных числах увеличивается трение в зацеплениях механизма, свойство обратимости пропадает и самовозврат управляемых колес после поворота в прямолинейное положение оказывается невозможным.
Рулевые механизмы в зависимости от типа рулевой передачи разделяют на:
Рулевой механизм с передачей типа червяк — ролик имеет в качестве ведущего звена червяк, закрепленный на рулевом валу, а ролик установлен на роликовом подшипнике на одном валу с сошкой. Чтобы сделать полное зацепление при большом угле поворота червяка, нарезку червяка выполняют по дуге окружности — глобоиде. Такой червяк называют глобоидным.
В винтовом механизме вращение винта, связанного с рулевым валом, передается гайке, которая заканчивается рейкой, зацепленной с зубчатым сектором, а сектор установлен на одном валу с сошкой. Такой рулевой механизм образован рулевой передачей типа винт-гайка-сектор.
В шестеренчатых рулевых механизмах рулевая передача образуется цилиндрическими или коническими шестернями, к ним же относят передачу типа шестерня-рейка. В последних цилиндрическая шестерня связана с рулевым валом, а рейка, зацепленная с зубьями шестерни, выполняет роль поперечной тяги. Реечные передачи и передачи типа червяк-ролик преимущественно применяют на легковых автомобилях, так как обеспечивают сравнительно небольшое передаточное число. Для грузовых автомобилей используют рулевые передачи типа червяк-сектор и винт-гайка-сектор, снабженные либо встроенными в механизм усилителями, либо усилителями, вынесенными в рулевой привод.
3.2.Рулевой привод.
Конструкции рулевого привода различаются расположением рычагов и тяг, составляющих рулевую трапецию, по отношению к передней оси. Если рулевая трапеция находится впереди передней оси, то такая конструкция рулевого привода называется передней рулевой трапецией, при заднем расположении — задней трапецией. Большое влияние на конструктивное исполнение и схему рулевой трапеции оказывает конструкция подвески передних колес.
При зависимой подвеске (рис. 2.(а)) рулевой привод имеет более простую конструкцию, так как состоит из минимума деталей. Поперечная рулевая тяга в этом случае сделана цельной, а сошка качается в плоскости, параллельной продольной оси автомобиля. Можно сделать привод и с сошкой, качающейся в плоскости, параллельной переднему мосту. Тогда продольная тяга будет отсутствовать, а усилие от сошки передается прямо на две поперечные тяги, связанные с цапфами колес.
При независимой подвеске передних колес (рис. 2.(б)) схема рулевого привода конструктивно сложнее. В этом случае появляются дополнительные детали привода, которых нет в схеме с зависимой подвеской колес. Изменяется конструкция поперечной рулевой тяги. Она сделана расчлененной, состоящей из трех частей: основной поперечной тяги и двух боковых тяг — левой и правой. Для опоры основной тяги служит маятниковый рычаг , который по форме и размерам соответствует сошке. Соединение боковых поперечных тяг с поворотными рычагами цапф и с основной поперечной тягой выполнено с помощью шарниров, которые допускают независимые перемещения колес в вертикальной плоскости. Рассмотренная схема рулевого привода применяется главным образом на легковых автомобилях.
Рулевой привод, являясь частью рулевого управления автомобиля, обеспечивает не только возможность поворота управляемых колес, но и допускает колебания колес при наезде ими на неровности дороги. При этом детали привода получают относительные перемещения в вертикальной и горизонтальной плоскостях и на повороте передают усилия, поворачивающие колеса. Соединение деталей при любой схеме привода производят с помощью шарниров шаровых либо цилиндрических.
studfile.net
устройство, регулировка, ремонт, замена :: SYL.ru
Каждый узел и механизм автомобиля по-своему важен. Пожалуй, нет такой системы, без которой автомобиль мог бы нормально функционировать. Одна из таких систем – рулевой механизм. Наверное, это одна из самых важных частей машины. Давайте рассмотрим, как устроен этот узел, назначение его, элементы конструкции. А также научимся регулировать и ремонтировать эту систему.
Типичные технические решения
Управление реечного типа – это одно из самых популярных видов систем управления. Таким механизмом сегодня оснащается большинство современных легковых авто. Рулевой механизм состоит из шестерни и рулевой рейки. Колесо руля закреплено на валу. На этом же валу закреплена и шестерня. Она всегда в постоянном зацеплении с рулевой рейкой. Для этого на рейке изготовлены зубья.
Принцип работы реечной рулевой тяги
Водитель вращает рулевое колесо в необходимую сторону. При этом вращается и шестеренка, а вместе с ней движется и рейка. К рейке прикреплены рулевые тяги, которые двигают колеса.
Среди достоинств такой системы можно выделить простоту конструкции, высокий коэффициент полезного действия. Но реечный рулевой механизм очень любит аккуратное вождение.
Червячный привод
Здесь в конструкции выделяется глобоидальный червяк. Он соединяется с рулевым валом. Также конструкция включает в себя специальный ролик. На этом ролике установлена сошка, находящаяся не в корпусе системы. Сошка двигает рулевые тяги.
Когда водитель вращает рулевое колесо, работает и червяк, а по нему работает ролик. Последним изменяются положения сошки и тяг на колеса.
Этот привод часто встречается в классических моделях советского автопрома. Но, такая конструкция иногда встречается и на внедорожниках, и на грузовиках. В грузовых авто он работает просто идеально. Так устроен рулевой механизм УАЗа, автомобилей типа «Классика» и на многих других моделях и марках отечественного автопрома.
Винтовой редуктор
Этот механизм смонтирован в герметичном корпусе. В конструкцию входит винт на рулевом валу, гайка, а также зубчатая рейка. Гайка может двигаться по валу, и на ней нарезана эта самая рейка. Такие конструкции применялись на некоторых моделях ВАЗа, а также рулевой механизм КамАЗа работает по такому же принципу, но с гидроусилителем.
Как работает винтовой редуктор?
Здесь работа похожа на червяк. При повороте рулевого колеса перемещается гайка и смещает зубчатые сектора и сошку. Сошка тянет или толкает тяги.
Рулевой механизм ВАЗа
На классических моделях этих авто применяется рулевая с редуктором. На более современных моделях используется реечный механизм. На примере ВАЗ-2105 посмотрим конструкцию механизма, а также рассмотрим реализацию реечного управления от инженеров АвтоВАЗа.
Устройство рулевой системы простое и отлично продуманное. Среди самых интересных узлов – трапеция. Она, в свою очередь, сама состоит из большого количества различных рычагов и тяговых механизмов.
Большинство автолюбителей считают рулевую колонку не слишком мощной, однако это не так. Эта рулевая надежно выдерживает все испытания. Ей по плечу даже самые экстремальные дорожные условия.
Устройство рулевого механизма ВАЗ-2105 не такое архаичное, как может показаться на первый взгляд. Колонка оснащена специальной пластиной, которая при аварии буквально складывает рулевой вал, а колесо не нанесет водителю травм. Червячная передача, редуктор и рычаги отлично увеличивают усилие водителя. Не требуется прикладывать серьезных усилий для поворота. Но для вождения «классики» сила все-таки нужна.
В деталях
Внутри корпуса рулевой в ВАЗ-2105 спрятана карданная передача, которая идет к редуктору. Для того чтобы соединить вал кардан, применяется крестовина. Вся конструкция довольна надежная и ее хватает очень надолго. Все узлы и детали производятся из качественных стальных сплавов. Вот почему так мало ДТП с неполадками рулевого.
Одна из самых сложных деталей в рулевой – это редуктор. Он работает по принципу червячной передачи. Червяк известен своими зазорами и быстрым износом. Поэтому инженеры предусмотрительно оснастили корпус редуктора регулировочным болтом. Он регулирует зазоры между сошкой и червяком. Так, нет зазоров – не будет биений в колесах.
Неприхотлив и надежен
Детали редуктора помещаются в масляную ванну. Это значительно снижает износ. В качестве смазки – обыкновенное масло для трансмиссии. Тяги ВАЗ-2105 закрепляются на специальных шарнирах, а защищаются пыльниками.
Нет нужды в постоянной смазке и шприцевании механизмов и узлов. Нужно лишь время от времени проверять состояние пыльников. Для того чтобы разобрать тяги, могут понадобиться специальные инструменты, но их при случае можно легко изготовить в гаражных условиях.
Типичные неисправности
В “классиках” неисправности рулевой характеризуются не только потерей управления, но и люфтами, а также различными стуками и посторонними звуками. Зачастую стучит колонка, а если точнее, то одна из изношенных крестовин. Ранее умельцы выпрессовывали деталь и заменяли ее. Сегодня таким больше не занимаются. Услышали звук – полная замена вместе с карданом.
Если рулевой механизм стучит в нескольких местах, то здесь также необходима замена всего управления, в том числе и редуктора. Если выявлены повреждения пыльников, тогда их просто нужно заменить на новые. Некоторые владельцы этих автомобилей не обслуживают эти механизмы долгие годы, а только контролируют время от времени состояние пальцев.
Среди более серьезных поломок – деформация тяг или рычагов. Это случается при неаккуратном вождении на высоких скоростях. Порой трудно выяснить, менять рулевую или не менять. Поврежденную тягу порой заменить довольно трудно. Ремонт рулевого механизма сводится к замене поврежденных деталей.
Если слышен хруст при повороте, значит, необходимо искать поврежденный подшипник. Он может находиться где угодно. Замена считается сложной процедурой, разобрать рулевую колонку довольно трудно. И если редуктор можно заменить своими руками, то ремонтировать рулевую лучше у специалистов.
Настройка червячной рулевой
Даже тщательная регулировка не победит проблему «рыскания» по дороге. Во-первых, нужно отрегулировать редуктор. Эта операция может быть довольно сложной для начинающих.
Чтобы выполнить настройку, понадобится ровная площадка. Затем при помощи съемника следует снять пальцы и сошку. Дальше все намного проще – требуется качать сошку, держать руль и поймать зазор в передаче редуктора. Если наблюдается люфт, тогда следует выкрутить гайку, завинтить винт регулировки и затянуть гайку.
Важно все делать предельно аккуратно, потому что есть риск сорвать резьбу на винте. Да и так управление будет сильно тугим. Усилие можно контролировать, когда сошка находится в рабочем положении, а пальцы на своих местах. Проверить усилие можно при помощи динамометрического ключа. Оно должно составлять 25 кгс.
В некоторых случаях регулировки ничего не дают. Если наблюдается износ, то в этом случае поможет только замена редуктора.
Реечное управление ВАЗ
Рейка крепится в отсеке двигателя. Система выполнена в литом алюминиевом картере. В картере имеется шестерня привода. Чтобы ограничить осевое движение вала, применен специальный подшипник. Внутреннее кольцо подшипника удерживается при помощи стопорного кольца. Все узлы закрыты пыльниками.
Рейка прижимается к зубьям шестерни при помощи специальной пружины, но не напрямую, а через упор из металлокерамики. На рейке нанесены метки для регулировок. Пружина также прижимается гайкой для регулировок со стопорным кольцом.
Регулировка рулевого механизма реечного типа на ВАЗе
Зазор между рейкой и шестеренкой можно регулировать, лишь полностью разобрав механизм. Также регулируют рейку, если наблюдаются посторонние звуки.
Чтобы отрегулировать зазор, нужно вначале установить упор рейки с уплотнением до момента касания рейки, а дальше требуется вложить стопорное кольцо, затем пружину, а потом все это собрать. Гайку затягивают с моментом не больше 1,37 кгс. Зазор при этом нужно выставлять в районе 0,12 мм, а допустимый размер – 0,2 мм.
После сборки проверьте легкость работы рулевой, отсутствие различных посторонних звуков.
Как устроена рулевая на ГАЗе?
Рулевой механизм ГАЗа собран в корпусе из алюминия. В качестве рабочих элементов выступают винт и шариковая гайка. Также конструкция включает в себя вал-сектор. Винт установлен на двух радиально-упорных подшипниках. Гайка шарикового типа с канавкой внутри смонтирована на винте. Между винтом и гайкой — шарики. Шлицы вала-сектора конической формы, а на них установлена сошка. Также в конструкции есть рулевые тяги, рычаги кулаков, шарнирные тяги.
Регулируют рулевую в том случае, если у рулевого колеса обнаруживается свободный ход. Чтобы отрегулировать зазоры, желательно полностью снять механизм. Дальше требуется снять пластиковую защитную крышку и уплотнитель. Далее ключом на 13 откручиваем болты крышки. Крышка легко снимается. Также снимается и регулировочная прокладка.
Затем снова установим крышку и закрутим ее. После проверки люфта можно перейти к регулировке зазора между гайкой и валом. Для этого на вал устанавливают сошку и, вращая винт регулировки, устанавливают сошку в среднем положении. Дальше остается покачать вал, удерживая его за сошку. Хода быть не должно. Если ход все-таки есть, то снова снимают пластиковую крышку, вынимают пробку, снимают стопорные кольца, тонким инструментом с тупым концом выпрямляют лунки на кромке кольца подшипников вала. Теперь при помощи специального ключа требуется повернуть эксцентриковые кольца подшипников по часовой стрелке.
Обслуживание рулевых механизмов
Каждый день, садясь за руль, желательно проверять свободный ход руля. После 2-3 тысяч км пробега и дальше, для отечественных автомобилей — через 10 тысяч, следует провести полную проверку состояния механизма. В ходе проверки выполняется очистка механизмов и приводов от грязи.
При наличии стуков, скрипов, биений колес или руля желательна замена рулевого механизма. К примеру, ремонт редуктора — достаточно сложный процесс, а установка нового решает все проблемы. Так же происходит и с реечным механизмом.
Итак, мы выяснили, как устроен рулевой механизм автомобиля, как производить его регулировку и замену своими руками.
www.syl.ru
Рулевое управление автомобиля — назначение и устройство
Назначение рулевого управления
Рулевое управление предназначено для изменения направления движения автомобиля. Обычно управляемыми являются колеса передней оси, но это преимущественно на легковых автомобилях. Иногда для улучшения управляемости автомобиля и сохранения над ним полного контроля его делают полноуправляемым, то есть управляемыми являются не только основные передние колеса – задние также имеют возможность отклоняться на определенный угол.
Рулевое управление может быть с усилителем или без него, может устанавливаться на поперечине кузова в моторном отсеке или на подрамнике (практически на всех современных автомобилях).
Устройство рулевого управления
Рисунок 8.1 Пример рулевого механизма.
1 – рулевое колесо; 2 – гайка крепления рулевого колеса; 3 – верхний кожух рулевой колонки; 4 – шестерня рулевого редуктора; 5 – фланец рулевого вала; 6 – рулевой вал; 7 – труба рулевого вала; 8 – нижний кожух рулевой колонки; 9 – шаровой шарнир; 10 – наконечник рулевой тяги; 11 – пыльник; 12 – рейка рулевого редуктора; 13 – болт крепления рулевой тяги; 14 – стопорная пластина; 15 – рулевая тяга; 16 – поворотный рычаг передней стойки.
Рулевое колесо и рулевая колонка
Садясь в автомобиль на место водителя, первое, что вы видите, — это рулевое колесо. Вращая его в ту или иную сторону, вы направляете автомобиль. Ничего в рулевом колесе (или руле) сложного нет… если это, конечно, руль автомобиля самой простой комплектации. В современных автомобилях руль — это и место для установки подушки безопасности, и пульт управления аудиосистемой вместе с телефоном, также это контроллер для управления бортовым компьютером. Рулевое колесо современного автомобиля иногда бывает попросту перегружено всяческими переключателями и кнопками, которые имеют различное назначение.
Рулевая колонка, это, по сути, два вала (реже один), соединенных между собой универсальными шарнирами (похожими на карданные). Она призвана передавать вращение от рулевого колеса к рулевому механизму. На многих нынешних автомобилях предусмотрена регулировка угла наклона рулевого колеса и расстояния его вылета. Другими словами, вы можете, перемещая рулевое колесо вверх/вниз и на себя/от себя, установить то положение, которое наиболее близко к идеальному, согласно вашим пожеланиям.
Примечание
Для обеспечения высоких показателей пассивной безопасности, к проектированию рулевой колонки относятся так же серьезно, как и, например, к проектированию сиденья. Это связано с тем, что при фронтальном столкновении рулевое колесо не должно смещаться более, чем это допустимо. Поэтому при столкновении рулевая колонка должна складываться или ломаться в определенных местах.
Рулевой механизм
На современных легковых автомобилях применяются два самых распространенных типа рулевых механизмов: червячный и реечный.
Интересно
Огромное значение имеет место расположения на подрамнике рулевого механизма относительно воображаемой оси управляемых колес. Так, установка рулевого механизма за передней осью или перед ней в итоге может кардинально изменить поведение автомобиля на дороге, поэтому конструкторы при проектировании автомобиля подходят к этому вопросу очень серьезно.
Червячный рулевой механизм
Если рулевой механизм червячный, то он состоит из глобоидного червяка и углового сектора, на который установлен ролик. К угловому сектору подсоединен вал, а на валу закреплена сошка. Перемещение сошки передается на рулевую трапецию, которая состоит из рулевых тяг. Тяги, перемещаясь, поворачивают колеса в ту или иную сторону. Устройство рулевого механизма показано на рисунке 8.2. Сейчас автомобили с червячным рулевым механизмом встречаются все реже.
Рисунок 8.2 Червячный рулевой механизм.
Червячная передача – это такой тип передачи, в которой имеется червяк, представляющий собой резьбовую часть болта, но только с увеличенными во много раз витками, и шестерня, входящая в зацепление с этим червяком.
Глобоидным червяк называется из-за своей формы: его профиль вогнутый, как показано на рисунке 8.3.
Рисунок 8.3 Внешний вид глобоидного червяка.
Реечный рулевой механизм
Теперь опишем реечный рулевой механизм (рисунок 8.4). Он состоит из шестерни и зубчатой рейки. Шестерня соединена с валом рулевой колонки, а рейка через тяги – с поворотными кулаками колес.
Рисунок 8.4 Реечный рулевой механизм.
Интересно
Иногда зубья на рейке наносят с переменным шагом (рисунок 8.5). Делают это для того, чтобы получить подобие активного рулевого управления для получения сочетания таких противоречивых показателей, как управляемость и комфорт. Так, для того чтобы при парковке водитель не вращал рулевое колесо на 5—10 оборотов в угоду легкости, желательно, чтобы число оборотов от упора до упора составляло как можно меньше – один, а то и пол-оборота. Но если от правого крайнего положения руля до левого будет всего один оборот, то рулевое управление будет довольно чувствительным к каждому движению, что опасно при движении на высоких скоростях, так как плавно выполнить все маневры не удастся, а это чревато последствиями. Вот и пришли к такому довольно простому компромиссному решению: шаг центральных зубьев рулевой рейки небольшой, а передаточное отношение чуть выше, а, следовательно, и чувствительность к отклонению рулевого колеса небольшая. Но от центра шаг зубьев увеличивается, чтобы уменьшить передаточное отношение и общее число оборотов рулевого колеса.
Рисунок 8.5 Пример зубчатой рейки рулевого механизма с переменным шагом зубьев.
Примечание
Шаг зубьев – это расстояние между центрами вершин зубьев.
Интересно
Кстати, может быть и обратная ситуация, когда шаг зубьев рейки уменьшается ближе к концам рейки.
Реечный рулевой механизм занял место червячного и основательно закрепился как наиболее актуальная конструкция, так как его преимущества говорят сами за себя: управление автомобилем, даже не оборудованным усилителем рулевого управления, несложное, небольшое количество звеньев всего рулевого механизма, простота монтажа на автомобиль и сведение к минимуму операций по обслуживанию.
Рулевой привод
Рулевой привод — это набор тяг и шарниров, связывающих и передающих перемещения от рулевого механизма к поворотным кулакам управляемых колес.
Если вернуться к червячному рулевому механизму, то в классической схеме имеются три тяги — одна центральная и две боковые, они соединяются через шарниры. Тяги рулевого привода в данном случае называют рулевой трапецией. Конструкция рулевой трапеции в геометрическом плане такова, что она обеспечивает поворот управляемых колес на разные углы (смотрите главу «Ходовая часть»).
При условии установки реечного рулевого механизма все немного проще. К рулевой рейке крепятся рулевые тяги с обеих сторон, которые передают перемещение на поворотные кулаки колес. Преимущества очевидны, ведь чем меньше различных промежуточных звеньев, тем надежнее и точнее весь механизм.
Примечание
Чтобы исключить попадание грязи и пыли в корпус реечного рулевого механизма, с обеих его сторон установлены так называемые пыльники (гофрированные резиновые чехлы).
Углы поворота управляемых колес
При повороте управляемые колеса автомобиля проходят различные расстояния. И если оба колеса будут поворачиваться на одинаковый угол, автомобиль будет смещаться с заданной траектории, при этом шины колес будут значительно быстрее изнашиваться.
Рисунок 8.6 Поворот управляемых колес на разные углы.
Для того чтобы избежать этого, рулевое управление проектируют таким образом, чтобы обеспечить поворот внутреннего колеса на больший угол относительно наружного.
Рисунок 8.7 Поворот управляемых колес на различные углы.
monolith.in.ua