РазноеСхема китайского инвертора 12 220 150вт: Преобразователь с 12 на 220 своими руками

Схема китайского инвертора 12 220 150вт: Преобразователь с 12 на 220 своими руками

Содержание

принципиальная схема преобразователя напряжения и его ремонт

Совсем недавно каждый производитель электронной аппаратуры прикладывал к своему изделию принципиальную электрическую схему и другую документацию, помогающую профессионалам и радиолюбителям быстро найти неисправность в отказавшем аппарате и отремонтировать его. Сегодня ситуация иная.

Схемы и подробную ремонтную документацию производители предоставляют лишь сертифицированным сервисным центрам. И то не всегда. Часто устранение простейшей неисправности сводится к замене неисправного блока. А отказавший блок в лучшем случае отправляют производителю, а в худшем — на свалку.

Те же, кому услуги сервисных центров недоступны из-за дороговизны или территориальной отдалённости, остаются «у разбитого корыта «.

Автор предлагаемой статьи делится своим опытом восстановления недоступной принципиальной схемы аппарата по его печатной плате. Это помогло ему отремонтировать аппарат. Надеемся, описанные им приёмы будут полезны многим читателям.

Взяться за перо меня заставили объективные причины. Во второй половине 2015 г. Крым и г. Севастополь испытали энергетический голод.

И когда в вечернее время город на несколько часов погружался в непроглядную темноту, единственной палочкой-выручалочкой был автомобильный преобразователь постоянного напряжения 12 В в переменное 220 В мощностью 150 Вт. который и осветительную лампу зажжёт, и радио с Wi-Fi предложит.

Но однажды после подключения к нему «умной» светодиодной лампы всё погасло, а сам преобразователь стал издавать жалобный прерывистый писк.

Первым делом в Интернет полетели вопросы относительно схемы устройства. Оказалось, что запищал преобразователь не только у меня, но и у многих товарищей по несчастью. Интернет практически сотрясался от возгласов «Дайте схему!» самых различных устройств.

Поскольку ни я, ни другие (как следует из материалов форумов) не нашли ответа, были изучены все доступные материалы по работе и типовым схемам подобных преобразователей.

Но очень скоро выяснилось, что схема моего преобразователя существенно отличается от типовой. Например, во многих подобных устройствах применена лишь одна микросхема TL494, а у меня их две, да ещё и микросхема LM358L, отсутствующая в найденных схемах. Стало ясно, что для успешного решения моей задачи недостаточно «метода тыка».

Нужна полноценная и правильная принципиальная схема устройства. И похоже, поможет её самостоятельное составление. Вот так и родилось то, что предлагается вниманию читателей На мой взгляд, материал будет полезен и начинающему радиолюбителю, знакомому с азами компьютерных технологий, и опытному, но не имеющему достаточного опыта работы с компьютером.

Инвертор напряжения внутри

Всё будет рассказано на примере преобразователя напряжения, внешний вид которого показан на рис. 1. Чтобы добраться до внутренностей прибора, я внимательно изучил все его крепёжные элементы (винты, защёлки) и первым делом вывинтил винты крепления передней (с розеткой) и задней панелей. Поскольку эти панели электрически соединены с печатной платой, я аккуратно развёл их в стороны и заглянул внутрь корпуса.

Стало понятным назначение ещё одного винта, расположенного на боковой стороне корпуса (на рис. 1 слева). Этот винт удерживает планку-кронштейн, прижимающую к корпусу, служащему теплоотводом, какие-то детали (позже выяснилось, что это термореле и два мощных транзистора).

Отвинтив и этот винт, я осторожно извлёк из корпуса печатную плату, внешний вид которой сверху приведён на рис. 2, а снизу — на рис. 3. Первое впечатление — связи между элементами устройства весьма сложны, «беглый» анализ схемы и поиск неисправностей затруднены.

Но самая большая проблема — соединения между элементами не видны со стороны их установки на плате. Я занялся решением этой проблемы.

Сфотографировал плату сверху, стараясь получить наиболее резкое изображение с минимальными геометрическими искажениями (см. рис. 2). Поскольку многие детали имеют существенно различную высоту (например, трансформатор и лежащий рядом резистор), при съёмке с малого расстояния система автофокусировки фотоаппарата может выбрать в качестве опорной точки торец трансформатора.

Поверхность платы окажется заметно не в фокусе, но именно там расположены печатные отверстия и мелкие детали. Поэтому, если фотоаппарат имеет функцию ручной фокусировки, необходимо ею воспользоваться. Если фотоаппарат цифровой, то можно применить такую методику: полунажатием на кнопку спуска сфокусироваться на участок поверхности платы, а затем, не отпуская кнопку и не изменяя расстояния до объекта, переместить изображение в центр экрана и дожать кнопку для завершения съёмки.

Рис. 1. Внешний вид преобразователя.

Рис. 2. Плата преобразователя.

Есть ещё один «подводный камень”. В стремлении быстро получить результат подручными средствами, многие решают воспользоваться, например, фотокамерой мобильного телефона, надеясь на её «многомегапиксельность».

Вероятный результат такого решения представлен на рис. 4, где, например, у микросхем справа не видно целого ряда выводов, а высокие элементы (например, оксидные конденсаторы) кажутся «смотрящими» в разные стороны.

Рис. 3. Печатная плата.

Рис. 4. Детали на печатной плате.

Это следствие различия углов, под которыми при съёмке с близкого расстояния видны элементы центральной и периферийных частей платы.

Съёмку платы нужно вести с расстояния не менее метра, что значительно уменьшит различие углов визирования элементов в пределах кадра.

Но при этом придётся использовать объектив с большим фокусным расстоянием или с трансфокатором высокой кратности, и потребуется стабильность взаимного положения аппарата и объекта съёмки. Эта проблема просто решается использованием штатива и режимом автоспуска.

Установив, например, двухсекундный режим автоспуска, изображение объекта съёмки увеличивают трансфокатором до максимального заполнения дисплея. Затем полунажатием на спусковую кнопку фокусируют его, после чего дожимают кнопку до конца. Таким способом удается получить достаточно хорошие кадры вида на монтаж, лишённые описанных выше дефектов.

Аналогичным образом я сделал снимки платы со стороны печатного монтажа. В принципе, эту сторону платы можно и отсканировать, но здесь тоже есть важный нюанс.

Наибольшее распространение в быту получили планшетные сканеры на приборах с зарядовой связью (ПЗС, англ. CCD — Charge Coupled Device) и с контактными датчиками изображения (англ. CIS — Contact Image Sensor) [1]. Первые снабжены специальной оптической системой и способны сканировать неровную поверхность с глубиной резкости до 30 мм, что вполне достаточно даже с установленными на его стороне мелкими элементами.

Сканеры второго типа, как правило, дешевле и по этой причине весьма распространены, однако имеют малую глубину резкости, близкую к нулю.

Они предназначены для работы лишь с плоскими листами документов, плотно прижатыми к стеклу. Полученный на таком сканере вид печатного монтажа (рис. 5) не блещет качеством (размыты мелкие детали, не читаются номиналы резисторов), что подтверждает преимущества фотоспособа.

Рис. 5. Вид печатного монтажа.

Восстановление схемы

Полученные фотографии я сохранил в компьютерных файлах под названиями соответственно «Вид сверху» и «Вид снизу». Не бойтесь использовать в названиях файлов русские буквы.

Современные операционные системы в большинстве случаев это позволяют. Фотоснимки я предварительно обработал в программе Picture Manager — штатном средстве пакета MS Office. Файл изображения можно открыть, щёлкнув правой клавишей мыши по его названию и выбрав нужный пункт из выпадающего списка «Открыть с помощью».

Поскольку вид сверху зеркален относительно вида снизу, последний необходимо перевернуть по вертикали. Для этого я открыл файл «Вид снизу», в главном меню программы выбрал пункт «Рисунок» и далее последовательно перешёл к пунктам «Повернуть и отразить…» и «Отразить сверху вниз».

Теперь изображение печатного монтажа видится как бы сквозь прозрачную плату сверху (рис. 6). Результат сохранил в файле «Вид снизу-повёрнуто».

Теперь вид сверху и перевёрнутый вид снизу нужно максимально совместить по горизонтали, используя как ориентир длинную сторону платы.

Для этого я, пройдя по пунктам «Рисунок» -> «Повернуть и отразить…», задал в окне «Градусов:» угол поворота изображения с шагом 0,01 град, и добился горизонтальности нижней кромки платы на обоих рисунках. Затем выбрал пункт «Рисунок» -» «Обрезка…» и ограничил рисунки размерами собственно платы.

Сохранив полученные результаты, я перешёл к творческому этапу работы, для выполнения которой использовал популярную у радиолюбителей, очень простую в освоении и с множеством полезных функций, русифицированную программу SPlan 7.0. Её легко найти в Интернете. Внешний вид окна программы, с загруженной в него для примера схемой МДМ-усилителя, приведён на рис. 7.

Рис. 6. Изображение печатного монтажа.

Чтобы сделать печатные проводники платы видимыми на стороне установки компонентов, необходимо совместить оба рассматриваемых изображения на одном рисунке, наложив вид снизу (предварительно сделав его прозрачным) на вид сверху.

Но здесь есть «подводные камни». Реальный рисунок печатной платы изобилует технологическими «излишествами» — расширениями проводников и сложной их конфигурацией, буквально закрывающими собой вид сверху на плату при наложении.

Выход из положения — создать скелетную схему печатного монтажа. Предварительно пришлось выполнить некоторые простейшие настройки программы SPlan. В нижней части под рабочим полем слева я задал шаг сетки 0,1 мм, а чуть правее в окнах «Угол изгиба» и «Угол вращения» установил «Нет».

Далее я скопировал на рабочее поле программы изображение перевёрнутого вида снизу (см. рис. 6) Для этого в меню «Файл» выбрал пункт «Открыть файлы графики», нашёл нужный файл и открыл его на рабочем столе двойным щелчком мыши по имени.

На левой вертикальной панели программы SPIan выбрал инструмент «Точка соединения» и расставил точки в местах пайки выводов элементов на плате.

Затем в меню «Опции» выбрал пункт «Стиль и цвет линий», в открывшемся окне задал ширину линий, например «5» (цвет по умолчанию чёрный), и нажал «ОК». Теперь все построенные линии будут иметь эти ширину и цвет.

Рис. 7. Программа SPLan 7.

На боковой панели выбрал инструмент «Линия» и продублировал все соединения, проводя линии между нанесёнными точками наиболее наглядно и рационально, не повторяя все особенности трассировки печатных проводников. Здесь показал в виде небольших прямоугольников элементы (резисторы и конденсаторы), расположенные со стороны печати.

Для большей наглядности выделил их синим цветом. Элементы полученного рисунка я обьединил в группу, однако прежде потребовалось удалить лежащий под ними фоновый вид снизу. Выделив фоновый рисунок, щёлкнув мышью по его границе, я навёл на неё курсор и, удерживая нажатой левую клавишу мыши, выдвинул фоновый рисунок на свободное место рабочего поля.

Рис. 8. Схема печатного монтажа превратилась в единый рисунок с прозрачным фоном.

Далее, удерживая нажатой левую клавишу, выделил (охватил пунктирным прямоугольником) только что созданную схему (при этом она окрасилась в фиолетовый цвет) и щёлкнул мышью по замкнутому замочку в верхней строке меню (можно выбрать пункт «Группировать» в контекстном меню правой клавиши мыши). В результате созданная схема печатного монтажа превратилась в единый рисунок с прозрачным фоном (рис. 8).

Сохранив на всякий случай полученный результат в файле с расширением имени .spl7, я перешёл к следующему этапу работы. Удалил с рабочего поля программы SPIan фотоснимок вида снизу, который только что использовал для создания скелетной схемы, и скопировал сюда вид на плату сверху.

Увеличил высоту изображения приблизительно до половины высоты рабочего поля, потянув за любой из четырёх окружающих его угловых чёрных квадратов.

Выделив щелчком скелетную схему и выбрав в меню правой клавиши мыши пункт «На передний план», я, удерживая нажатой левую клавишу мыши, надвинул эту схему на вид сверху.

Согласовывал масштабы рисунков описанным выше способом до полного их совпадения в узловых точках и приступил к заключительному этапу. Первым делом расставил на скелетной схеме все элементы, находящиеся на верхней стороне платы, используя для этой цели богатые возможности встроенной библиотеки программы SPIan.

Опыт показывает, что целесообразно предварительно выбрать из библиотеки необходимые элементы (резисторы, конденсаторы, диоды, транзисторы, обмотки трансформатора и пр.) и разместить их на рабочем поле рядом с рисунком. На схеме желательно показать и номиналы элементов, что существенно упростит окончательное построение принципиальной схемы. Итог проделанной работы представлен на рис. 9.

Рис. 9. Итог проделанной работы.

В принципе, полученный рисунок уже позволяет приступить к созданию фрагментов принципиальной схемы устройства. Однако я настоятельно рекомендую не отказываться от ещё одной процедуры, которая, в итоге, неизбежно повысит наглядность и читаемость картины, что, в свою очередь, уменьшит вероятность ошибочной интерпретации схемы.

Здесь возможны два варианта. Первый и наиболее простой — распечатать показанную на рис. 9 схему и, вооружившись разноцветными фломастерами, выделить линии связи и соответствующие точки различными цветами, о которых будет сказано ниже. Более интересен вариант создания цветной схемы печатного монтажа средствами программы SPlan.

Он позволяет пофантазировать и поэкспериментировать прежде, чем остановиться на окончательном варианте. Кроме того, всегда удобно иметь перед тобой на мониторе компьютера легко масштабируемую и наглядную печатную схему.

Я выбрал второй вариант и, выделив весь изображённый на рис. 9 рисунок, разгруппировал его элементы щелчком мыши по разомкнутому замочку в главном меню (вместо этого можно выбрать пункт выпадающего меню «Разгруппировать”).

Но нужно помнить, если ранее группировка производилась не однократно, а по частям, то и разгруппирование нужно повторить соответствующее число раз. Если предварительно был создан раскрашенный от руки рисунок схемы, его можно использовать как образец.

Для окраски или изменения других свойств любого графического элемента необходимо выделить его щелчком мыши (чтобы придать одинаковые свойства нескольким обьектам, например линиям, необходимо выделять их, удерживая нажатой клавишу Shift). Затем в меню правой клавиши нужно выбрать пункт «Свойства (атрибуты) элемента», в подменю которого можно задать нужный цвет, ширину и тип линии, цвет заливки.

Результат моей обработки скелетной схемы показан на рис. 10. Здесь красным цветом выделены линии, имеющие отношение к положительной полярности входного и полученного внутри устройства напряжений. Зелёным цветом обозначена отрицательная полярность (общий провод). Фиолетовый цвет показывает остальные линии связи.

Перемычки на плате (порой скрытые от глаз, например, установленные под микросхемами) показаны насыщенным синим цветом. Все элементы поверхностного монтажа, размещённые на стороне печатных проводников, обозначены прямоугольниками синего цвета. Элементы, размещённые на противоположной стороне платы, изображены тонкими чёрными линиями.

Рис. 10. Результат моей обработки скелетной схемы.

Сравнивая рис. 9 и рис. 10, можно убедиться в высокой наглядности последнего. Для успешного восстановления принципиальной схемы и в дальнейшем для анализа работы устройства потребовалось все обнаруженные активные элементы (диоды, транзисторы, микросхемы) найти в справочниках или Интернете и узнать их назначение, расположение выводов, основные параметры.

При этом я узнал для себя много нового. Например, что микросхемы TL494 [2, 3] представляют собой приборы, реализующие широтно-импульсную модуля цию выходных импульсов с богатым набором функциональных возможностей.

Рис. 11. Принципиальная схема инвертора напряжения.

Поскольку была выполнена предварительная работа по изучению (например, в [4]) типовых схем импульсных преобразователей напряжения, я уже имел общее представление о структуре подобных устройств.

Далее начался интересный творческий процесс, от качества выполнения которого во многом зависел успех решения поставленной задачи. Было заведомо ясно, что получить окончательную принципиальную схему с первого раза наскоком не удастся.

Рассуждения я начал от входных контактов, куда подаётся постоянное напряжение 12 В от аккумуляторной батареи. Глядя на свой рисунок (рис. 10) и двигаясь от входного контакта +12 В по красной линии, я увидел, что это напряжение приходит на выводы трансформатора Т1. На печатной плате в этой области имеются пять равноудалённых контактных площадок.

Три средних из них соединены между собой и с цепью + 12 В. Есть основания предположить, что на них выведена средняя точка первичной обмотки трансформатора. Не рисуя пока ничего, я продолжил беглое знакомство с окружением трансформатора.

Крайние выводы первичной обмотки трансформатора связаны со стоками полевых транзисторов Q1 и Q2, затворы которых, в свою очередь, получают сигналы управления от расположенных справа элементов, в частности, от микросхемы U1.

Рис. 12. Фрагмент схемы.

Эти наблюдения позволили увидеть логику расположения рассмотренных узлов, учитывая, что итог их работы — изменение состояния транзисторов Q1 и 02, стоки которых подключены к крайним выводам первичной обмотки.

Следовательно, трансформатор должен быть расположен на листе бумаги где-то справа и вертикально, поскольку построение схемы в дальнейшем будет, очевидно, продолжаться по горизонтали.

В процессе рисования я заметил, что элементы управления каждой половиной обмотки расположены симметрично относительно её средней точки. Когда «бумажный» вариант фрагмента схемы откорректирован, его можно повторить на компьютере, например, в программе SPlan. Итог этой работы приведён на рис. 11.

На этой и всех последующих схемах сохранены позиционные обозначения элементов, нанесённые на плату преобразователя, хотя они существенно отличаются от принятых в России Например, диоды и транзистор (VD и VТ по нашим стандартам) обозначены соответственно D и Q.

Позиционные номера элементов также сохранены, хотя на составленных схемах они следуют хаотически, что значительно затрудняет поиск нужного элемента по его номеру.

Далее я приступил к части схемы, связанной с вторичной обмоткой трансформатора. В большинстве предварительно изученных схем напряжение вторичной обмотки поступало непосредственно на выходную розетку.

Но в моём случае оба её вывода подключены к мосту из диодов D4-D7, хотя они размещены на печатной плате так, что обнаружить мост удалось лишь после некоторых усилий.

Следовательно, здесь формируется ещё одно (кроме 12 В) постоянное напряжение. Судя по параметрам оксидного конденсатора С2 (10 мкФ, 400 В), расположенного в верхней части платы и соединённого с диодным мостом, это напряжение довольно высокое.

От плюсового выхода моста видно ответвление вправо в область платы, которая, судя по насыщенности её разнообразными элементами, весьма сложна по схеме, играет какую-то самостоятельную роль и достойна отдельного внимания. Я решил рассмотреть её чуть позже, а пока продолжил движение по плюсовому проводнику.

Все соединённые с ним элементы расположены в верхней части платы, число их невелико. Это позволило без труда завершить создание схемы этого фрагмента, представленной на рис. 12.

Её анализ показывает, что перед нами выпрямитель высокого переменного напряжения, из выходного постоянного напряжения которого каким-то неизвестным пока образом будет сформировано переменное выходное напряжение 220 В частотой 50 Гц.

Продолжив двигаться вправо от верхнего по схеме вывода резистора R16, я попал на вывод 4 микросхемы U2 (TL494L). Зная из [3], что её выводы 8 и 11 — коллекторы выходных транзисторов, я проследил, куда идут от них печатные проводники, и увидел, что к базам и затворам транзисторов пока не рассмотренного узла. Схема узла на элементе U2 имеет вид, изображённый на рис. 13.

Рис. 13. Схема узла на элементе U2.

Рис. 14. Схема формирователя выходного переменного напряжения.

Теперь можно было взяться за выходной узел — формирователь переменного напряжения 220 В 50 Гц. Я возвратился к печатному проводнику, идущему от катодов диодов к стокам транзисторов 05 и Q6.

Предстояло составить схему самого сложного, на первый взгляд, узла, насыщенного плотно размещёнными элементами со сложно организованными связями. Это потребовало большего внимания и усидчивости.

Поскольку формирователем выходного переменного напряжения, как я предположил, управляет микросхема U2, подавая на него прямоугольные симметричные импульсы, соединённые стоки упомянутых выше двух транзисторов могут свидетельствовать о наличии двух независимых каналов преобразования. Не исключая такую возможность, я начал движение по одному из них.

Обнаружил соединение между истоком транзистора Q5 и стоком транзистора Q8. Кстати, здесь же берёт начало один из проводов, идущих к выходной розетке преобразователя напряжения.

Исток транзистора Q8 соединён с общим проводом через низкоомный резистор R1, что подтверждает его соединение с минусом высоковольтного выпрямителя. Аккуратно дорисовал цепи управления этими транзисторами и стрелками показал связи с другими узлами.

Сделав аналогичные построения для второго канала, начиная с транзистора Q6, я обнаружил их полную идентичность. Это позволило при создании схемы в программе SPlan нарисовать схему лишь одного канала, затем в меню правой клавиши мыши выбрать пункт «Дублировать» и, переместив копию на нужное место, зафиксировать её здесь.

Откорректировав позиционные номера элементов второго канала и отредактировав схему в целом, я выделил (обведя мышью) весь рисунок, сгруппировал все его элементы и сохранил схему в файле. Полученная схема формирователя выходного переменного напряжения изображена на рис. 14.

И наконец, последний активный элемент прибора — микросхема U3 LM358L [5]. Это сдвоенный маломощный ОУ. Восстановление схемы содержащего её узла не вызвало никаких затруднений. Она изображена на рис. 15. Этот узел связан только с микросхемой U1, поэтому на полной принципиальной схеме прибора они, очевидно, будут расположены рядом.

Созданные фрагменты схемы я перенёс на единый лист и расположил их в логической последовательности. Поскольку вся предыдущая работа была выполнена тщательно и аккуратно, после объединения фрагментов и окончательного редактирования получена принципиальная электрическая схема преобразователя постоянного напряжения 12 В в переменное 220 В, 50 Гц, показанная на рис. 16.

Рис. 15. Схема узла с микросхемой LM358L.

В принципе, созданной схемы, даже без номиналов некоторых элементов (они плохо читаемы), достаточно для анализа работы устройства и поиска причины его отказа.

Первый активный элемент преобразователя, получающий напряжение + 12 В от аккумуляторной батареи, — TL494L (U1). Задающим узлом в ней служит генератор пилообразного напряжения, параметры колебаний которого заданы резистором R13 и конденсатором С4. Как следует из описания микросхемы, частоту генерации F можно определить по формуле:

При указанных на схеме номиналах этих элементов расчётное значение — 73,33 кГц. Подключив осциллограф к выводу 5 микросхемы U1, я убедился в работоспособности генератора (рис. 17, масштаб по оси времени — 5 мкс/дел., по оси напряжения — 500 мВ/дел.).

Наличие пилообразного напряжения амплитудой 2,7 В и частотой около 81 кГц свидетельствует об исправности генератора, а отклонение измеренной частоты от расчётного значения может быть следствием разброса параметров резистора и конденсатора.

Рис. 16. Принципиальная электрическая схема преобразователя постоянного напряжения 12 В в переменное 220 В, 50 Гц.

Рис. 16. Продолжение принципиальной схемы.

Проверку работы микросхемы U1 я завершил наблюдением её выходных сигналов на выводах 9 и 10 (рис. 18, масштаб по оси времени — 5 мкс/дел., по оси напряжения — 5 В/дел.).

Полная идентичность выходных импульсов и их взаимный сдвиг на полпериода свидетельствовали о правильном функционировании микросхемы. Дальнейшие исследования переместились к трансформатору Т1. Подключившись к его вторичной обмотке, я проверил исправность транзисторов Q1-Q4 и самого трансформатора.

Рис. 17. Сигнал с генератора.

Здесь нужно иметь в виду, что выходное напряжение трансформатора может быть более 300 В, что опасно для осциллографа. Например, у осциллографа ISDS205B, которым я пользовался, максимальное допустимое входное напряжение — всего 60 В.

Поэтому измерение проводилось с простейшим делителем напряжения 1:10, схема которого показана на рис. 19. Я увидел симметричные двухполярные импульсы, следующие с частотой около 40 кГц.

Рис. 18. Сигнал на выводах 9 и 10.

Рис. 19. Схема делителя напряжения 1 до 10.

Значит, все узлы, расположенные на схеме левее трансформатора, исправны. Этот же результат можно было получить, сразу подключившись к трансформатору, но любые предварительные ознакомительные измерения полезны. Работу диодного моста D4-D7 можно приближённо оценить, приняв во внимание следующие соображения.

В режиме холостого хода, когда нагрузка к выходу преобразователя не подключена, при частоте пульсаций выпрямленного напряжения около 80 кГц на пряжение на сглаживающем конденсаторе С2 не успевает заметно изменяться в паузах между импульсами и практически равно пиковому значению напряжения на вторичной обмотке (за вычетом падения напряжения на двух диодах моста).

Если измеренное постоянное напряжение на конденсаторе С2 равно амплитуде импульсов на вторичной обмотке трансформатора, то диодный мост и конденсатор С2 исправны.

Заманчиво было сразу перейти к выходному узлу преобразователя, расположенному на схеме правее выпрямителя. Но здравое рассуждение и внутренний голос подсказали, что этим узлом управляет микросхема U2 и, пожалуй, лучше начать с неё. Поскольку микросхемы U1 и U2 идентичны и с первой из них я уже знаком, следовало посмотреть, что происходит со второй.

Я начал с задающего генератора и, подключившись к выводу 5, увидел здесь пилообразные импульсы амплитудой 2,5 В, повторяющиеся с частотой около 98 Гц.

Подстроечным резистором VR2 можно установить частоту 100 Гц. Очевидно, что из них будут сформированы выходные импульсы частотой 50 Гц. На выводах 8 и 11 должны присутствовать однополярные идентичные прямоугольные импульсы, длительность которых зависит от постоянного напряжения на выводе 4.

В моём случае управляющее напряжение поступает с резисторов R3 и VR1 и представляет собой часть постоянного напряжения на выходе выпрямителя.

Следовательно, уменьшение напряжения аккумуляторной батареи в процессе её разрядки и соответствующее ему снижение выходного напряжения выпрямителя приводят к расширению выходных импульсов и стабилизации за счёт этого выходного переменного напряжения.

Согласно надписи на корпусе преобразователя, его эффективное значение должно быть установлено (с помощью подстроечного резистора VR1) равным 220 В. Хотя сегодняшние стандарты требуют, чтобы номинальное сетевое напряжение было равным 230 В, практика показывает, что электроприборы, рассчитанные на 230 В, прекрасно работают и от напряжения 220 В. Поэтому регулировку можно оставить прежней.

Напряжение на том же выводе 4 при опасном начальном напряжении свежезаряженной аккумуляторной батареи, близком к 15 В, блокирует работу микросхемы U2 и прекращает формирование выходного напряжения.

Проверив осциллографом выходные импульсы на выводах 8 и 11, я обнаружил их заметное различие по амплитуде (соответственно 8,75 и 9,94 В). Это меня насторожило, поскольку на выходах аналогичной микросхемы U1 импульсы практически одинаковы по амплитуде.

Возможны две причины: неисправность микросхемы U2 или её внешних цепей. Поскольку проверить микросхему, не выпаивая её из печатной платы, не удалось, я занялся внешними цепями.

Отключил от преобразователя напряжение питания 12 В и цифровым омметром «прозвонил» относительно общего провода выводы 8 и 11 микросхемы U2. Сопротивление участка цепи, связанного с выводом 8, оказалось меньше, чем связанного с выводом 11. Эта информация не внесла ясности в ситуацию.

Я начал рассуждать. Оба канала — потребители сигналов управления и абсолютно идентичны. Значит, и участки этих каналов должны обладать одинаковым сопротивлением.

И таких участков в каждом канале два: делители напряжения на базах транзисторов Q9 и Q10 и цепи затворов транзисторов Q8 и Q7. Внимательно посмотрев на схему, я убедился, что эти участки соединены параллельно. Следовательно, их общее сопротивление должно быть меньше меньшего из них.

Однако резисторы R32 и R7 отделены от общего провода огромным сопротивлением изоляции затворов транзисторов Q8 и Q7, следовательно, остаются только делители напряжения с сопротивлением около 13 кОм и незнакомые мне внутренние цепи микросхемы. Подключив омметр между выводом 11 микросхемы U2 и общим проводом, я увидел, что он показал 6,35 кОм.

Перенос щупа омметра к выводу 8 принесло сюрприз — здесь сопротивление почему-то 3,9 кОм. Оно подозрительно близко к сопротивлению соединённых последовательно резисторов R33 и R34, если параллельно им подключить резистор R7. Но такого не может быть, ведь резистор R7 отделён от общего провода изоляцией затвора транзистора Q7.

Чтобы проверить подозрение, я подключил щуп омметра к затвору транзистора Q7, и прибор показал сопротивление, близкое к нулю. Значит, изоляция затвора от канала транзистора пробита, поэтому резистор R7 действительно соединён правым (по схеме) выводом с общим проводом.

Проведённая немедленно «прозвонка» канала сток-исток транзистора Q7 показала и его пробой. Теперь стала понятна и причина неожиданно странного поведения преобразователя — тревожные акустические сигналы и провалы напряжения на нагрузке на фоне появившихся пульсаций. В своих рассуждениях я исходил из того факта, что при нормальной работе пары транзисторов Q5 с Q7 и Q6 с Q8 открываются и закрываются поочерёдно, чем обеспечивается смена полярности напряжения, поступающего на нагрузку.

На схеме видна связь датчика тока — резистора R1 с выводом 1 микросхемы U2. Этот вывод представляет собой неинвертирующий вход одного из внутренних компараторов микросхемы U2, на его инвертирующий вход 2 с делителя напряжения R25R23 поступает образцовое напряжение около 75 мВ.

При исправной работе преобразователя и максимальной мощности нагрузки 150 Вт на резисторе R1 падает напряжение приблизительно 60 мВ, что не вызывает срабатывания компаратора и тем самым не изменяет режима работы микросхемы U2.

При перегрузке преобразователя падение напряжения на резисторе R1 возрастает, и по превышении им значения 75 мВ компаратор изменяет своё состояние, чем блокирует работу микросхемы U2 и закрывает выходные транзисторы преобразователя. Это происходит в каждом полупериоде выходного напряжения.

В рассматриваемом случае цепь нагрузки исправна, а пробой транзистора Q7 вызывает перегрузку выпрямителя только в полупериоды, когда открыт транзистор Q6 и происходит рассмотренная выше блокировка микросхемы U2. В результате на нагрузку поступает однополупериодное пульсирующее напряжение, что ей (и преобразователю) очень не нравится.

После замены транзистора Q7 работоспособность преобразователя восстановилась, о чём свидетельствует осциллограмма выходного напряжения, приведённая на рис. 20 (масштаб по оси времени — 5 мс/дел., по оси напряжения с учётом его делителя -100 В/дел.). Значит, вся работа была не напрасна.

Рис. 20. Осциллограмма выходного напряжения.

Единственное, что осталось без внимания — узел на микросхеме U3. Взглянув на него, можно догадаться, что он предназначен для звуковой сигнализации о возникновении какой-то проблемы, о чём свидетельствует наличие звукоизлучателя BZ. На неинвертирующие входы обоих ОУ поступает стабилизированное образцовое напряжение 5 В от микросхемы U1.

На инвертирующий вход верхнего по схеме ОУ поступает напряжение с резистивного делителя R14R27R35. После подключения к преобразователю аккумуляторной батареи начинает заряжаться конденсатор С1.

Пока напряжение на нём не достигнет 9,7 В, напряжение на выводе 2 будет меньше образцовых 5 В, поэтому на выводе 1 верхнего ОУ действует высокий уровень напряжения, которое через диод D8 поступает на вывод 16 микросхемы U1, запрещая работу её и в результате всего преобразователя.

Пока напряжение на инвертирующем входе нижнего ОУ меньше 5 В, работают генератор сигнала звуковой частоты на нижнем по схеме ОУ микросхемы U3 и звукоизлучатель BZ, извещая о низком напряжении питания.

Этот звук всегда сопровождает процесс подключения аккумуляторной батареи к преобразователю. При напряжении на конденсаторе С1 более 10,3 В звук исчезает, а преобразователь входит в нормальный режим работы. Естественно, при снижении напряжения батареи в результате разрядки до 10,3 В и ниже звуковой сигнал обратит внимание пользователя на этот факт.

На этом завершим краткое путешествие по функциональным узлам преобразователя напряжения, основной целью которого было ознакомление с ходом рассуждений и локальных исследований при поиске неисправности.

Возможность такого экскурса появилась только после кропотливой, но плодотворной работы по восстановлению принципиальной схемы устройства. Хочется надеяться, что предложенный материал окажется полезным всем творческим, любознательным и целеустремлённым людям, которые ремонту «на стороне» предпочитают восторг собственной победы.

Ю. Быковский, г. Севастополь, Украина. Р-11-17, 12-17.

Литература:

  1. Какой выбрать сканер CCD или CIS? — skanworld.ru
  2. Широков С. TL494CN: схема включения, описание на русском, схема — fb.ru
  3. TL494 ШИМ — datasheet
  4. Преобразователи напряжения на ИМС TL494. — yandex.ru/search
  5. Описание и применение операционного усилителя LM358. — joyta.ru.

Схема китайского преобразователя 150 ватт на двух TL494

Схема преобразователя напряжения
  Очередная схема от наших друзей китайцев, преобразователь напряжения из DC 12 в AC 220, маломощный, 150 ватт написано, но думаю, 100 ватт от силы будет. Удобная вещь в дороге, для подзарядки ноутбука, телефона и т п. Лампу дневного света тоже можно включать, светодиодные тоже. Схема преобразователя построена по классическому двухтактному варианту, а высокое напряжение конвертируется в переменное напряжение 50 герц по мостовой схеме, где генератор так же выполнен на микросхеме TL494.

Внешний вид
  Задающий генератор и генератор 50 Гц выполнены на TL494, выходной силовой каскад на двух IRFZ44, чем и обусловлена такая низкая мощность. TL494 представляет собой ШИМ генератор, в которой присутствует генератор импульсов, схема управления выходом, которая может формировать выходные импульсы как в двухтактном режиме, так и в однотактном, а так же два входа имеется для управлением стабилизации выходных импульсов. Но в данной схеме реализованы не все возможности этой микросхемы, она включена в упрощённом варианте.
    Можно, конечно, скопировать этот преобразователь напряжения, не особо сложно это сделать, но купить всё таки проще, да и надёжнее :). Потом можно уже переделать под свои нужды, поднять мощность или ещё что прибавить, любители рыбалки сами уже под себя могут переделать такой прибор.
   Из защиты только плавкий предохранитель по входу 12 вольт, защиты от перегрузки по выходу нет, стабилизация выходного напряжения есть, защиты от севшего аккумулятора нету.  Как показывает практика, большинство дешёвых инверторов сгорает из за севшего аккумулятора. Это обусловлено тем, что при понижении питающего напряжения, так же снижается питание затворов полевых транзисторов, что приводит к их неполному открыванию, и как правило к тепловому выходу из строя.
  TL494, если кто не знает, ШИМ контроллер, очень удобная микросхема для построения различных блоков питаний и преобразователей. А также:
  • Готовый ШИМ — контроллер
  • Незадействованные выводы для 200 мА приемника или источника тока
  • Выбор однотактного или двухтактного режима работы
  • Внутренняя схема запрещает двойной импульс на выходе
  • Изменяемое время задержки обеспечивает контроль всего спектра
  • Внутренний регулятор обеспечивает 5 В стабильного напряжения с допуском 5%
  • Схема архитектуры позволяет легко синхронизироваться
 TL494 включает в себя все функции необходимые для построения схемы управления широтно-импульсной модуляцией (ШИМ) на одном кристалле. Предназначен в основном для управления питанием, это устройство дает гибкость для конкретного применения в адаптации в схемах управления блоков питания. TL494 содержит два усилителя ошибки, внутренний регулируемый генератор, (DTC) управляемый компаратор временной задержки, импульсно управляемый переключатель, источник опорного напряжения 5В ± 5%, контроль выходной цепи.

Лучшая цена Xp инвертор 150 вт чистый синусоида инвертор 12 в 220 в 50 гц частота dc 12 в ac 220 в преобразователь питания автомобиля с анионом

XP инвертор 150 Вт чистая синусоида инвертор 12 в 220 в 50 Гц частота DC 12 В AC 220 В преобразователь автомобильный источник питания с анионом

1. Технические характеристики

150 Вт постоянного тока в переменный инвертор

• Обязательное наличие для ваших дорожных поездок, отдыха, на открытом воздухе, аварийных комплектов и многого другого в автомобиле.

• 150 Вт чистый синусоидальный инвертор с 500 миллионами анионных очистителей воздуха.

Технические Характеристики Продукта :

• Мощность : инвертор мощностью 150 Вт

• Форма волны: чистый синусоидальный инвертор

• Очистка воздуха: 500 миллионов анионов

• Входное напряжение: 12 В постоянного тока, выходное напряжение: 220 В-230В.

• Выход USB-порта: DC 5V, 2.4 A.

• Индикатор: зеленый-работа, Красный-выключение

• Выключение перенапряжения: DC 15V-16V, выключение низкого напряжения: DC 10V-11V

• Размеры: Ø6.5x13CM

Оптимальное использование и меры предосторожности :

• Пожалуйста, используйте зажимы батареи при использовании инвертора на устройстве.

• Только для DC12V и автомобиля, не применяется для использования в DC 24V и самолете.

• Пожалуйста, не оставляйте инвертор питания в включенном положении, пока ваш автомобиль выключен.

• Охлаждающий вентилятор остается включенным непрерывно.Это означает, что вы сможете использовать его только в тех ситуациях, когда автомобиль работает.

• Избегайте помещения инвертора непосредственно на солнечный свет или рядом с термочувствительными материалами, чтобы защитить инвертор от слишком сильного нагревания.

• Пожалуйста, поймите предупреждение об использовании мощности устройства!Не используйте мощные электрические устройства, такие как фены, электронагреватели, щипцы для завивки волос и т. д.

Список Пакетов :

• 1 x 150 Вт Инвертор мощности

• 1 x руководство пользователя

2. показ продукции

3. пути пересылки

1).товары будут отправлены в течение 3 рабочих дней после того, как вы сделаете оплату, а время доставки составляет около 20-25 дней.

Время доставки будет больше во время курортного сезона ( например, Рождество, Китайский Новый год, национальный праздник и т. д.).Спасибо за ваше понимание и внимание.

2).товары будут отправлены воздушной почтой столба кита для бесплатной доставки.Вы также можете выбрать другой международный экспресс ( DHL, UPS, TNT и EMS), но мы не offord полную стоимость доставки, вы должны оплатить дополнительную плату.

PS: Если вы хотите использовать DHL, UPS, TNT или EMS способ доставки, пожалуйста, свяжитесь с нами или оставьте массаж, а затем мы

4. Способы оплаты

1).мы принимаем все кредитные карты через безопасную оплату Escrow, а также имеем Paypal, Western Union и TT платежи.

2).мы аранжируем пересылку как только вы сделаете оплату, пожалуйста убеждаемся что ваша оплата в преуспевает прежде чем вы закроете страницу покупки.

Теги: повышающий преобразователь постоянного тока, Источник питания 3, 7 в, частота переключения преобразователя, автомобильный инвертор, Система, инвертор Чанги, инвертор 12 в 220 6, инвертировать чистый синус, 220v ac to 12v dc eu автомобильный адаптер питания конвертер, инвертировать чистую синусоидальную волну

Hybrid Мощная инверторная схема мощностью 150 Вт, 12 В, 220 В для разнообразного использования

Получите доступ к нескольким разновидностям мощных, надежных и эффективных схем 150 Вт 12 В 220 В на Alibaba.com для всех типов жилых и коммерческих помещений. Эти схемы инвертора мощности 150 Вт 12 В 220 В оснащены новейшими технологиями и имеют отличную мощность, чтобы с легкостью служить вашим целям. Вы можете выбрать одну из существующих моделей мощностью 150 Вт с инвертором 12 В 220 В на сайте или выбрать полностью индивидуализированные версии этих продуктов.Они долговечны и устойчивы, чтобы постоянно предлагать стабильное обслуживание без каких-либо поломок.

Схема инвертора мощности 150 Вт 12 В 220 В Коллекции , найденные на сайте, оснащены всеми интересными функциями, такими как интеллектуальная технология охлаждения для более быстрого и интеллектуального охлаждения, защита от короткого замыкания, интеллектуальная сигнализация для обнаружения и дисплеи для отображения любых ошибок , защита от перенапряжения и т. д. Эти схемы инвертора мощности 150 Вт 12 В 220 В доступны с различными значениями напряжения, такими как 230 В переменного тока, 220 В / 230 В / 240 В для преобразователей и 100 В / 110 В / 120 В / 220 В / 230 В / 240 В для линейки инверторов.Эти схемы инвертора мощности 150 Вт 12 В 220 В также оснащены функциями защиты входной обратной полярности.

Alibaba.com может помочь вам выбрать из различных схем инвертора мощности 150 Вт 12 В 220 В с различными моделями, размерами, емкостью, потребляемой мощностью и многим другим. Эти умные схемы инвертора мощности 150 Вт 12 В 220 В эффективны в экономии счетов за электроэнергию даже в самых экстремальных климатических условиях. У них также есть возможность быстрой зарядки.Вы можете использовать эту схему инвертора мощности 150 Вт 12 В 220 В в своих домах, гостиницах, офисах или любой другой коммерческой недвижимости, где энергопотребление является дорогостоящим и критически важным.

Просмотрите различные диапазоны силовых инверторов 150 Вт 12 В 220 В на Alibaba.com и купите лучшие из этих продуктов. Все эти продукты имеют сертификаты CE, ISO, RoHS и имеют гарантийный срок. OEM-заказы доступны для оптовых закупок с индивидуальными вариантами упаковки.

Гибридная схема мощного инвертора мощностью 150 Вт для разнообразного использования

Получите доступ к нескольким разновидностям мощной, надежной и эффективной схемы мощностью 150 Вт на Alibaba.com для всех типов жилого и коммерческого использования. Эти схемы инвертора мощности мощностью 150 Вт оснащены новейшими технологиями и обладают различной мощностью, чтобы с легкостью служить вашим целям. Вы можете выбрать одну из существующих моделей цепи инвертора мощностью 150 Вт на сайте или выбрать полностью индивидуализированные версии этих продуктов. Они долговечны и устойчивы, чтобы постоянно предлагать стабильное обслуживание без каких-либо поломок.

Цепи инвертора мощности 150 Вт Коллекции , найденные на сайте, оснащены всеми интересными функциями, такими как интеллектуальная технология охлаждения для более быстрого и интеллектуального охлаждения, защита от короткого замыкания, интеллектуальная сигнализация для обнаружения и отображения для отображения любых ошибок, более -защита от напряжения и тд.Эти схемы инвертора мощности мощностью 150 Вт доступны с различными значениями напряжения, такими как 230 В переменного тока, 220 В / 230 В / 240 В для преобразователей и 100 В / 110 В / 120 В / 220 В / 230 В / 240 В для линейки инверторов. Эти схемы силового инвертора мощностью 150 Вт также оснащены функциями защиты входа от обратной полярности.

Alibaba.com может помочь вам выбрать одну из различных схем инвертора мощности 150 Вт с различными моделями, размерами, емкостями, потребляемой мощностью и многим другим.Эти интеллектуальные схемы инвертора мощности мощностью 150 Вт эффективны в экономии счетов за электроэнергию даже в самых экстремальных климатических условиях. У них также есть возможность быстрой зарядки. Вы можете использовать эту схему инвертора мощности 150 Вт в своих домах, гостиницах, офисах или в любой другой коммерческой недвижимости, где энергопотребление является дорогостоящим и критическим.

Просмотрите разнообразный ассортимент цепей инверторов мощности 150 Вт на Alibaba.com и купите лучшее из этих продуктов. Все эти продукты имеют сертификаты CE, ISO, RoHS и имеют гарантийный срок.OEM-заказы доступны для оптовых закупок с индивидуальными вариантами упаковки.

China PACO Portable Car Power Inverter 12V 150W Модифицированная синусоида с фабрикой USB и поставщиками

China PACO Portable Car Power Inverter 12V 150W Modified Sine Wave с USB

Характеристика:

l- Ультракомпактный металлический корпус

l- Сигнализация разряда батареи / выключение

l- Встроенная защита предохранителями

l- Переключатель включения / выключения с подсветкой

l- Диапазон входного напряжения: 12 В постоянного тока или 24 В постоянного тока

l- Диапазон выходного напряжения 115 В переменного тока или 230 В переменного тока

л — Подходит для автомобилей, передвижных домов, кемпинга и затемнения

Другие модели:

Упаковка и доставка:

Упаковка: подарочная коробка и экспортная коробка, детали упаковки в зависимости от потребностей клиента.

Пересылка: 35-45 дней после сдачи на хранение.

Информация о компании:

l — Основанная в 1986 году, профессиональный производитель, специализирующийся на электроприборах.

l — Завод-производитель Professionla в Чжуншане, Китай, с более чем 20-летним опытом работы на мировом рынке

l- Ассортимент продукции: инвертор мощности, автоматический регулятор напряжения, зарядное устройство, преобразователь и контроллер изменения солнечной энергии.

l- Сертификат: ISO 9001-2015, сертификация GS, сертификация CB и т. Д.

l- 6-летний поставщик Alibaba Golden.

LIGAO (ZHONGSHAN) ELECTRICAL APPLIANCE CO., LTD — один из самых специализированных производителей электроприборов с более чем 30-летним опытом.

Имея около 200 сотрудников и производственную площадь 35 000 м², наша компания предлагает продукцию высокого качества по конкурентоспособным ценам.

Благодаря тому, что проектирование, эксплуатация и производство взаимосвязаны в нашем рабочем процессе, мы завоевываем доверие наших клиентов.

В соответствии со стандартом ISO9001: 2015 и получением сертификатов UL, GS, CB, CE и E-mark, мы вкладываем значительные средства и энергию в импорт и разработку передовых производственных линий и технологий тестирования качественной продукции, что обеспечивает высокую репутацию у всех наших клиентов. .

Мы никогда не прекращаем разработку новых продуктов.

OME и ODM приветствуются.

Ассортимент продукции:

Как работает инвертор, как ремонтировать инверторы — общие советы

В этом посте мы попытаемся узнать, как диагностировать и ремонтировать инвертор, всесторонне изучив различные этапы инвертора и как работает базовый инвертор.

Прежде чем мы обсудим, как отремонтировать инвертор, было бы важно, чтобы вы сначала получили полную информацию об основных функциях инвертора и его этапах. Следующее содержание объясняет важные аспекты инвертора.

Этапы инвертора

Как следует из названия, преобразователь постоянного тока в переменный — это электронное устройство, которое способно «инвертировать» постоянный потенциал, обычно получаемый от свинцово-кислотной батареи, в повышенный потенциал переменного тока. Выходной сигнал инвертора обычно вполне сопоставим с напряжением, которое имеется в наших домашних розетках сети переменного тока.

Ремонт сложных преобразователей частоты — непростая задача из-за большого количества сложных этапов, требующих наличия специальных знаний в данной области. Инверторы, которые обеспечивают выходы синусоидальной волны или инверторы, использующие технологию ШИМ для генерации модифицированной синусоидальной волны, могут быть трудными для диагностики и устранения неисправностей для людей, которые относительно плохо знакомы с электроникой.

Тем не менее, более простые конструкции инверторов, основанные на основных принципах работы, могут быть отремонтированы даже человеком, который не является специалистом в области электроники.

Прежде чем мы перейдем к деталям поиска неисправностей, было бы важно обсудить, как работает инвертор, и различные ступени, которые обычно может включать инвертор:

Инвертор в его самой основной форме можно разделить на три основных этапа, а именно. генератор, драйвер и выходной каскад трансформатора.

Осциллятор:

Этот каскад в основном отвечает за генерацию колебательных импульсов через микросхему или транзисторную схему.

Эти колебания в основном являются производством чередующихся положительных и отрицательных (заземляющих) пиков напряжения аккумуляторной батареи с определенной заданной частотой (числом положительных пиков в секунду). Такие колебания обычно имеют форму квадратных столбов и называются прямоугольными волнами. и инверторы, работающие с такими генераторами, называются инверторами прямоугольной формы.

Вышеупомянутые генерируемые прямоугольные импульсы слишком слабы и никогда не могут использоваться для управления сильноточными выходными трансформаторами.Поэтому эти импульсы подаются на следующий каскад усилителя для выполнения требуемой задачи.

Для получения информации об генераторах инвертора вы также можете обратиться к полному руководству, в котором объясняется, как спроектировать инвертор с нуля.

Бустер или усилитель (драйвер):

Здесь принятая частота колебаний соответствующим образом усиливается до высоких уровней тока, используя либо силовые транзисторы или МОП-транзисторы.

Хотя усиленный отклик является переменным током, он все еще находится на уровне напряжения питания батареи и поэтому не может использоваться для управления электрическими приборами, которые работают с более высоким потенциалом переменного тока.

Таким образом, усиленное напряжение подается на вторичную обмотку выходного трансформатора.

Выходной силовой трансформатор:

Все мы знаем, как работает трансформатор; в источниках питания переменного / постоянного тока он обычно используется для понижения подаваемого входного переменного тока сети до более низких заданных уровней переменного тока за счет магнитной индукции двух его обмоток.

В инверторах трансформатор используется для аналогичной цели, но с противоположной ориентацией, то есть здесь переменный ток низкого уровня от вышеупомянутых электронных каскадов подается на вторичные обмотки, что приводит к индуцированному повышенному напряжению на первичной обмотке трансформатора.

Это напряжение, наконец, используется для питания различных бытовых электрических устройств, таких как фонари, вентиляторы, миксеры, паяльники и т. Д.

Основной принцип работы инвертора

На приведенной выше диаграмме показана наиболее фундаментальная конструкция инвертора, работающая Принцип становится основой всех традиционных конструкций инверторов, от самых простых до самых сложных.

Функционирование показанной конструкции можно понять из следующих пунктов:

1) Плюс батареи питает микросхему генератора (вывод Vcc), а также центральный отвод трансформатора.

2) Микросхема генератора при включении начинает производить попеременно переключающиеся импульсы Hi / Lo на своих выходных контактах PinA и PinB с некоторой заданной частотой, в основном 50 Гц или 60 Гц в зависимости от спецификаций страны.

3) Видно, что эти распиновки связаны с соответствующими силовыми устройствами №1 и №2, которые могут быть МОП-транзисторами или силовыми BJT.

3) В любой момент, когда PinA высокий, а PinB низкий, Power Device # 1 находится в проводящем режиме, а Power Device # 2 остается выключенным.

4) В этой ситуации верхний отвод трансформатора соединяется с землей через силовое устройство №1, которое, в свою очередь, заставляет положительный полюс батареи проходить через верхнюю половину трансформатора, запитывая эту секцию трансформатора.

5) Аналогично, в следующий момент, когда на контакте B высокий уровень, а на контакте A низкий, активируется нижняя первичная обмотка трансформатора.

6) Этот цикл непрерывно повторяется, вызывая двухтактную проводимость высокого тока через две половины обмотки трансформатора.

7) Вышеупомянутое действие во вторичной обмотке трансформатора вызывает переключение эквивалентной величины напряжения и тока через вторичную обмотку посредством магнитной индукции, что приводит к выработке необходимых 220 В или 120 В переменного тока на вторичной обмотке трансформатора, как показано на схеме.

Преобразователь постоянного тока в переменный, советы по ремонту

В приведенном выше объяснении несколько моментов становятся очень важными для получения правильных результатов от преобразователя.

1) Во-первых, генерация колебаний, из-за которых силовые полевые МОП-транзисторы включаются / выключаются, инициируя процесс индукции электромагнитного напряжения на первичной / вторичной обмотке трансформатора.Поскольку полевые МОП-транзисторы переключают первичную обмотку трансформатора двухтактным образом, это вызывает переменное напряжение 220 В или 120 В переменного тока во вторичной обмотке трансформатора.

2) Вторым важным фактором является частота колебаний, которая фиксируется в соответствии со спецификациями страны, например, страны, которые поставляют 230 В, обычно имеют рабочую частоту 50 Гц, в других странах, где обычно указывается 120 В. работают на частоте 60 Гц.

3) Сложные электронные устройства, такие как телевизоры, DVD-плееры, компьютеры и т. Д.никогда не рекомендуется использовать с преобразователями прямоугольной формы. Резкий подъем и спад прямоугольных волн просто не подходят для таких приложений.

4) Однако есть способы с помощью более сложных электронных схем для изменения прямоугольных волн так, чтобы они стали более подходящими с вышеупомянутым электронным оборудованием.

Инверторы

, использующие другие сложные схемы, могут генерировать сигналы, почти идентичные сигналам, имеющимся в наших домашних розетках переменного тока.

Как отремонтировать инвертор

Если вы хорошо разбираетесь в различных ступенях, обычно встроенных в инверторный блок, как описано выше, устранение неисправностей становится относительно простым. Следующие советы проиллюстрируют, как отремонтировать преобразователь постоянного тока в переменный:

Инвертор «не работает»:

Если ваш инвертор вышел из строя, выполните предварительные исследования, такие как проверка напряжения аккумулятора и соединений, проверка на перегоревший предохранитель , потеря связи и т. д.Если все в порядке, откройте внешнюю крышку инвертора и выполните следующие действия:

1) Найдите секцию генератора; отключите его выход от каскада MOSFET и с помощью частотомера проверьте, генерирует ли он требуемую частоту. Обычно для инвертора 220 В эта частота составляет 50 Гц, а для инвертора 120 В — 60 Гц. Если ваш измеритель не показывает частоту или стабильный постоянный ток, это может указывать на возможную неисправность этого каскада генератора. Проверьте его интегральную схему и связанные с ней компоненты на предмет исправления.

2) Если вы обнаружите, что каскад генератора работает нормально, перейдите к следующему каскаду, то есть каскаду усилителя тока (силовой полевой МОП-транзистор). Изолируйте полевые МОП-транзисторы от трансформатора и проверьте каждое устройство с помощью цифрового мультиметра. Помните, что вам, возможно, придется полностью удалить MOSFET или BJT с платы во время их тестирования с помощью цифрового мультиметра. Если вы обнаружите, что какое-то устройство неисправно, замените его новым и проверьте реакцию, включив инвертор. Желательно подключать лампу постоянного тока высокой мощности последовательно с батареей во время тестирования реакции, чтобы быть в большей безопасности и предотвратить любое чрезмерное повреждение батареи

3) Иногда трансформаторы также могут стать основной причиной неисправности.Вы можете проверить наличие обрыва обмотки или ненадежного внутреннего соединения в соответствующем трансформаторе. Если вы сочтете это подозрительным, немедленно замените его новым.

Хотя не так-то просто узнать все о том, как отремонтировать преобразователь постоянного тока в переменный, из самой этой главы, но определенно все начнет «готовиться», когда вы будете углубляться в процедуру через неустанную практику и некоторые методы проб и ошибок.

Все еще есть сомнения … не стесняйтесь задавать здесь свои конкретные вопросы.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Создайте свой собственный синусоидальный инвертор

Инвертор обеспечивает резервное питание для сетевых устройств в случае сбоя питания.Большинство инверторов, доступных на рынке, имеют сложную схему и не очень экономичны. Некоторые из них выдают прямоугольный сигнал на выходе, что нежелательно для индуктивных нагрузок. Проект представляет собой простую схему синусоидального инвертора, которая выдает квазисинусоидальный сигнал частотой 50 Гц с использованием одной микросхемы CD4047 и некоторых дискретных компонентов, что делает его очень экономичным решением.

На рис. 1 показана схема синусоидального инвертора на базе полевого МОП-транзистора с частотой 50 Гц. Он состоит из мультивибратора CD4047 (IC1), полевых МОП-транзисторов IRF250 (с T1 по T8), транзисторов и нескольких дискретных компонентов.

IC CD4047 имеет встроенные средства для нестабильных и бистабильных мультивибраторов. Для применения инвертора требуются два выхода, сдвинутые по фазе на 180 градусов. Таким образом, IC1 подключен для создания двух прямоугольных выходных сигналов на контактах 10 и 11 с частотой 50 Гц, коэффициентом заполнения 50% и фазовым сдвигом на 180 градусов. Частота колебаний определяется внешней предварительной настройкой VR1 и конденсатором C1.

Рис. 1: Схема синусоидального инвертора

Эти два сигнала поочередно управляют двумя банками полевых МОП-транзисторов (банк-1 и банк-2).Когда на контакте 10 IC1 высокий уровень, а на контакте 11 низкий, полевые МОП-транзисторы банка 1 (с T1 по T4) проводят, в то время как полевые МОП-транзисторы банка 2 (с T5 по T8) остаются в непроводящем состоянии. Поэтому через первую половину первичной обмотки инверторного трансформатора X1 протекает большой скачок тока, а во вторичной обмотке возникает переменный ток 230 В.

В течение следующего полупериода напряжение на выводе 10 IC1 понижается, а напряжение на выводе 11 высокое. Таким образом, полевые МОП-транзисторы банка-2 работают, в то время как полевые МОП-транзисторы банка-1 остаются непроводящими.Следовательно, ток течет через другую половину первичной обмотки, и 230 В переменного тока возникает во вторичной обмотке.

Таким образом, на вторичной обмотке получается переменное выходное напряжение.

Выходной синусоидальный сигнал получается путем формирования баковой цепи с вторичной обмоткой инверторного трансформатора, включенной параллельно конденсаторам C5 — C7. Два конденсатора по 2,2 мкФ подключены к затворам полевых МОП-транзисторов в обеих батареях по отношению к земле, если не создается надлежащая синусоида.Собственная частота контура резервуара доведена до 50 Гц. Потребление тока без нагрузки составляет всего 500 мА из-за 50-процентной продолжительности включения прямоугольного сигнала. По мере увеличения нагрузки увеличивается потребление тока.

Напряжение питания IC1 ограничено до 5,1 В за счет использования стабилитрона ZD1 и резистора R4 с внешней батареей, как показано на рис. 1.

Индикатор разряда батареи

Схема индикации разряда батареи состоит из транзистора T9, предустановки VR2, стабилитрона ZD2, резисторов R5, R6 и R7, LED2 и конденсатора C2.Напряжение питания 12 В от BATT.1 подается на цепь индикатора разряда батареи с полной нагрузкой (не более 1000 Вт), подключенной к выходу инвертора. Напряжение на нагрузке составляет 230 В переменного тока. В этот момент отрегулируйте предварительную настройку VR2 так, чтобы стабилитрон ZD2 и транзистор T9 проводили, чтобы снизить напряжение коллектора до 0,7 В, сохраняя LED2 «выключенным».

Если напряжение питания падает ниже 10,5 В, напряжение на нагрузке снижается с 230 В переменного тока до 210 В переменного тока. В этот момент стабилитрон ZD2 и транзистор T9 не проводят ток, и, следовательно, напряжение на коллекторе увеличивается примерно до 10.5 вольт и светодиод 2 светится, указывая на низкое напряжение батареи. В то же время пьезобуззер PZ1 издает звуковой сигнал, указывающий на низкий заряд батареи.

Отключение при разряде батареи

Если аккумулятор многократно разряжается до нуля вольт, срок его службы сокращается. Схема отсечки разряда батареи состоит из транзистора T10, предустановки VR3, стабилитрона ZD4, резисторов R8 и R9, конденсатора C3 и диода D1.

Отрегулируйте предварительную настройку VR3 так, чтобы, когда напряжение на нагрузке превышало 200 вольт, стабилитрон ZD4 и транзистор T10 проводили.Напряжение коллектора T10 в этом случае составляет около 0,7 В, и, следовательно, SCR (SCR1) не будет проводить.

Рис. 2: Односторонняя печатная плата фактического размера для схемы синусоидального инвертора 3: Компоновка компонентов печатной платы
Загрузите файлы печатной платы и компоновки компонентов в формате PDF:
щелкните здесь

Но если напряжение на нагрузке упадет ниже 200 вольт, стабилитрон ZD4 и транзистор T10 не будут проводить, и напряжение коллектора T10 увеличится, в результате чего тиристор будет проводить.

Когда SCR проведет, напряжение питания на IC1 (CD4047) будет равно 0.7 вольт, из-за чего IC1 не сможет генерировать импульсы напряжения на выходных контактах 10 и 11, и инвертор автоматически выключится. В этом состоянии SCR продолжает работать.

Отсечка по нижнему пределу инвертора может быть установлена ​​при напряжении нагрузки 170 вольт для лампового освещения, вентилятора и т. Д. Таким образом, ламповый свет и вентилятор не будут выключаться, пока напряжение не упадет ниже 170 вольт.

Отключение холостого хода

Если на выходе инвертора нет нагрузки, выходное напряжение составляет от 270 до 290 вольт.Это напряжение измеряется отводом 0-12 В на вторичной обмотке инверторного трансформатора X1, который подключен к цепи отключения холостого хода, содержащей стабилитрон ZD5, транзистор T11, предварительно установленный VR4, резисторы R12 и R11 и конденсатор C4. .

Когда нагрузка не подключена, напряжение на отводе 12 В также увеличивается. Это напряжение выпрямляется двухполупериодным мостовым выпрямителем, состоящим из диодов с D3 по D6, фильтруется конденсатором C4 и подается на транзистор T11.

Отрегулируйте предустановку VR4 так, чтобы, если напряжение инвертора превышает 250 вольт, стабилитрон ZD5 и транзистор T11 проводят ток.Это увеличивает напряжение эмиттера, следовательно, SCR срабатывает, чтобы выключить инвертор. При подключении надлежащей нагрузки инвертор автоматически включается.

Строительство

Односторонняя печатная плата фактического размера для схемы синусоидального инвертора показана на рис. 2, а схема ее компонентов — на рис. 3. На печатной плате имеется подходящий разъем CON1 для внешнего подключения блоков полевых МОП-транзисторов и трансформатора. Контакты разъема CON1 с A по F также отмечены на схеме. Соберите схему на печатной плате, так как это экономит время и сводит к минимуму ошибки сборки.Тщательно соберите компоненты и дважды проверьте, нет ли пропущенных ошибок. МОП-транзисторы следует монтировать над радиаторами, используя слюдяные прокладки в качестве изоляторов между ними.

Подключите клемму питания 24 В непосредственно к центральному отводу первичной обмотки инверторного трансформатора, который пропускает максимальный ток более 50 ампер при 1000 Вт. Сила тока зависит от приложенной нагрузки. Нет необходимости добавлять переключатель в цепь высокого тока, чтобы инвертор включался и выключался. Инвертор можно включать и выключать слаботочным выключателем S1.


Д-р Р.В. Декале: Он доцент и глава отдела физики, Кисан Вир Махавидьялая, Вай, округ Сатара, Махараштра.
Заинтересованы? Другие проекты доступны
здесь .
Статья была впервые опубликована 27 марта 2016 г. и недавно обновлена ​​13 декабря 2018 г.

LONGJANN-AC / DC, AC / AC, DC / AC производитель блоков питания в Китае »Power Inverter

Инвертор мощности 500 Вт

Преобразует питание 12 В постоянного тока в питание переменного тока 110 или 220 В

Номинальная выходная мощность: 500 Вт

Выход USB: 5Vdc 1A

Защита от перегрузки и короткого замыкания

Защита по напряжению: низкое напряжение 10-11 В, перенапряжение 15-16 В

Модифицированный синусоидальный преобразователь мощности

Чтение подробностей Введение »

Инвертор мощностью 300 Вт

Преобразует питание 12 В постоянного тока в питание переменного тока 110 или 220 В

Номинальная выходная мощность: 300 Вт

Выход USB: 5Vdc 1A

Защита от перегрузки и короткого замыкания

Защита по напряжению: низкое напряжение 10-11 В, перенапряжение 15-16 В

Модифицированный синусоидальный преобразователь мощности

Чтение подробностей Введение »

Инвертор мощностью 200 Вт

Преобразует питание 12 В постоянного тока в питание переменного тока 110 или 220 В

Входное напряжение: 12 В постоянного тока

Номинальная выходная мощность: 200 Вт

Выход USB: 5Vdc 1A

Защита от перегрузки и короткого замыкания

Защита по напряжению: низкое напряжение 10-11 В, перенапряжение 15-16 В

Чтение подробностей Введение »

Инвертор мощности 150 Вт

Преобразует питание 12 В постоянного тока в питание переменного тока 110 или 220 В

Входное напряжение: 12 В постоянного тока

Номинальная выходная мощность: 150 Вт

Выход USB: 5Vdc 1A

Защита от перегрузки и короткого замыкания

Защита по напряжению: низкое напряжение 10-11 В, перенапряжение 15-16 В

Чтение подробностей Введение »

Автомобильный инвертор

Преобразует питание 12 В постоянного тока в питание переменного тока 110 или 220 В

Входное напряжение: 12 В постоянного тока

Номинальная выходная мощность: 150 Вт

Выход USB: 5 В / 2.1А

Защита от перегрузки и короткого замыкания

Защита по напряжению: низкое напряжение 10-11 В, перенапряжение 15-16 В

Чтение подробностей Введение »

Модифицированный синусоидальный преобразователь постоянного тока в переменный ток 150 Вт Китайский производитель автомобильных инверторов

Описание

Автомобильный преобразователь постоянного тока мощностью 150 Вт с модифицированной синусоидальной волной имеет такие преимущества, как компактность и легкий вес. Инверторный разъем прикуривателя или кабель аккумулятора можно легко подключить к аккумулятору автомобиля.Этот инвертор может подавать 220 или 110 В переменного тока непосредственно из выходной розетки автомобильного инвертора. Кроме того, автомобильный инвертор мощностью 75 Вт оснащен универсальной розеткой и USB-портом. Вы можете использовать его практически во всех странах мира.

Более того, у него есть внутренний вентилятор, который способствует лучшему отводу тепла.

4 защиты модифицированного синусоидального автомобильного инвертора Meind 75 Вт / 150 Вт:

1. Защита от перегрузки: Когда подключенная нагрузка превышает номинальную мощность инвертора мощности в ваттах (Вт), инвертор автоматически отключается, чтобы остановить выход.

2. Защита от высокого напряжения: Когда входное напряжение постоянного тока превышает нормальный диапазон, инвертор автоматически отключается, чтобы остановить выходное напряжение, слишком высокое, обратите внимание, когда может быть повреждение машины.

3. Защита от низкого напряжения: Когда напряжение аккумулятора или источника питания слишком низкое, инвертор мощности прекращает выходную защиту от автоматического отключения, чтобы защитить аккумулятор или источник питания.

4.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *