РазноеСхема бесперебойник 12в своими руками – Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Схема бесперебойник 12в своими руками – Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Содержание

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Вообще изначально данная статья писалась очень давно, более двух лет назад. Но в данном случае я решил, что информация из нее может быть полезна и использована на благо мастеров 3D печати.

Суть данной статьи в том, чтобы превратить обычный блок питания в маленький бесперебойник с выходом примерно 11-13.5 Вольт.

В качестве примера будет БП с мощностью 36 Ватт, но практически без доработок схема применима к более мощным БП с топологией Флайбек и с доработками к двухтактным БП.

Но сначала просто миниобзор самого БП, сорри за качество фото, снималось на паяльник.

На торце указаны технические характеристики.

Характеристики меня немного запутали, обычно или указывают полный диапазон, или если есть выбор 110/220, то соответственно есть переключатель и внутри схема сетевого выпрямителя с переключением на удвоение. Здесь никакого переключателя не было. Позже посмотрим внимательнее что внутри.

Размеры относительно небольшие.

С торца расположены клеммы подключения 220 Вольт, клемма заземления и клеммы выхода 12 Вольт. Так же здесь расположен светодиод, который показывает наличие выходного напряжения и подстроечный резистор для корректировки выходного напряжения. После вскрытия моему взору предстала печатная плата данного блока питания.

На плате распаян полноценный входной фильтр, конденсатор 33мкФ 400 В (вполне нормально для заявленной мощности), высоковольтная часть, сделанная по схемотехнике автогенератора (когда заказывал, то надеялся что будет стандартная UC3842), выходной фильтр из двух конденсаторов 470мкФ 25 Вольт и дросселя. Емкость выходного фильтра маловата, я бы поставил раза в 2 больше.

Силовой транзистор 5N60D — только в корпусе ТО-220.

Выходной диод — stps20h200ct — аналогично в корпусе ТО-220.

Схема стабилизации и обратной связи сделана на TL431.

Обратная сторона платы.

Ничего необычного, пайка среднего качества, флюс смыт, довольно аккуратно.

Но удивила маркировка на плате (она есть и с верхней стороны).

SM-24W, может изначально БП был 24 Ватта, потом решили что маловато будет и написали 36?

Эксперименты покажут.

Первое включение, ничего не бахнуло, уже неплохо.

Нагрузил блок питания классическими неубиваемыми советскими резисторами, 10 Ом 2 штуки параллельно.

Ток около 2.5 Ампера.

Напряжение измерял после проводов к резисторам, потому немного просело.

Оставил так, пошел попить чайку и покурить, ждал что рванет.

Не рвануло, даже почти не нагрелось, градусов 40, ну может 45, специально не измерял, по ощущениям немного теплый.

Догрузил еще на 0.22 А (не нашел ничего рядом подходящего), ничего не изменилось.

Решил на этом не останавливаться и повесил на выход еще один резистор 10 Ом.

Напряжение просело до 10.05 Вольта, но блок питания продолжал упорно работать.

Дальше мне стало жалко разработчиков данного блока питания, сумевших настолько его упростить, и при этом добиться его работоспособности и я на этом этапе решил закончить стандартные эксперименты над ним.

К слову я был настроен скептически по отношению к данному блоку питания, в основном из-за его схемотехники, как то вот привык работать с более дорогими блоками питания, где есть ШИМ контроллер, контроль тока и т.п. Практика показала, что такой вариант тоже вполне жизнеспособен.

Дальше я решил перейти к нестандартной части испытаний и попробовать добиться от него того, для чего я хотел его взять. Собственно постоянные читатели моих обзоров привыкли, что я люблю не только показать товар в обзоре, а и применить его, не буду вас расстраивать и в этот раз.

Допилинг

Началось все с того, что позвонил товарищ и спросил, можно ли сделать небольшой бесперебойничек для питания электромагнитного замка и контроллера. Живет он в частном секторе, свет иногда ненадолго, да пропадет. Аккумулятор у него уже был, остался от компьютерного бесперебойника, большой ток уже не тянет, а с замком вполне нормально справляется.

В общем накидал небольшую добавочную платку к этому блоку питания.

Платка, схема и небольшое описание процесса.

Схема.

И страссированная по ней плата. Схема обеспечивает ограничение тока заряда (в моем случае настроено на 400мА), защиту от переразряда аккумулятора (настроено на 10 Вольт), простенькую защиту от переполюсовки аккумулятора (кроме случая если переполюсовать прямо на ходу), ну и собственно функцию подачи напряжения от аккумулятора на выход блока питания.

Перенес платку на текстолит, покрыл припоем.

Подобрал детали. Спаял плату, реле стоит другое, так как сначала не заметил что оно на 5 Вольт, пришлось поискать на 12. Пояснения по схеме.

С2 в принципе можно не ставить, тогда R5 и R6 заменяются одним на 9.1-10 кОм.

Он нужен для уменьшения ложных срабатываний при резком изменении нагрузки.

В идеале конечно лучше было бы домотать пару витков в дополнение ко вторичной обмотке, так как блок питания работает с перегрузом по напряжению в 20%. Испытания показали что работает все отлично, но лучше либо домотать немного вторичную обмотку, либо еще лучше — дорабатывать БП на

15 Вольт, а не на 12. В моем случае пришлось еще изменить номинал резистора в делителе обратной связи у блока питания, на схеме это R7, там стоят 4.7 кОм, я поставил 4.3 кОм, в случае применения БП на 15 Вольт, этого скорее всего делать не придется.

После сборки платы встроил ее в блок питания.

На плате обозначены точки подключения и видно место, где перерезана минусовая дорожка (над цифрой 3).

Плату обмотал скотчем, и уложил на более-менее свободное место. После (на самом деле лучше до того как изолируем скотчем) выставил выходное напряжение блока питания 13.8 Вольта (это напряжение которое будет поддерживаться на аккумуляторе, обычно выставляется в диапазоне 13.8-13.85.
Вот вид собранного и настроенного устройства. Подключил небольшую нагрузку и аккумулятор. Ток заряда 0.39А (может немного падать по мере прогрева). Отключил блок питания от сети, нагрузка продолжает работать, на мультиметре ток нагрузки +ток потребления реле + ток потребления цепей измерения. Товарищу надо было бесперебойник на ток 0.8-1 Ампер, я нагрузил немного больше.
После этого подключил питание 220 Вольт, на одном мультиметре напряжение на нагрузке (будет еще подниматься, аккумулятор не заряжен), на втором ток заряда (немного просел из-за прогрева). В общем на мой взгляд переделка удалась, от такого БП можно питать небольшие нагрузки, до 1-1.5 Ампера. Больше не стал бы, так как БП в нештатном режиме. Если использовать БП на 15 Вольт, то ток можно поднять, но надо всегда учитывать ток заряда аккумулятора (он определяется резистором R1. 1.6 Ома дает тока заряда около 0.4 А, чем меньше сопротивление, тем больше ток и наоборот.

Если кто то несогласен с настроенным током заряда, напряжением окончания заряда и авто отключения, то это все легко меняется, если надо, объясню как это сделать.

Вы конечно спросите, при чем здесь 3D принтеры и этот мелкий блок питания.

Все просто, как я писал в самом начале, можно взять мощный блок питания, применить более мощные компоненты в плате которую я делал и получить бесперебойник, который не имеет такого понятия как ‘время переключения’, т.е. фактически ‘онлайн’. А так как печать идет очень долго, то это может быть весьма полезно в плане бесперебойности работы. Кроме того КПД такой системы заметно выше чем у традиционных УПСов.

Для применения с большими токами надо заменить на моей плате диод VD1 на любой Шоттки с током более 30 Ампер (например выпаянный из компьютерного БП) и установить его на радиатор, Реле на любое с током контактов более 20 Ампер и обмоткой с током не более 100мА (а лучше до 80). Кроме того возможно понадобится увеличение тока заряда, это делается путем уменьшения номинала резистора R1 до 0.6-1 Ом.

Есть и промышленные БП с такой функцией, по крайней мере я знаю пару таких производства Meanwell, но:

1. Они очень дорогие

2. Выпускаются мощностью 55 и 150 Ватт, что не так много.

Вроде все, если есть вопросы, буду рад обсудить.

3dtoday.ru

Как сделать мини бесперебойник для роутера

Как сделать мини бесперебойник 12 В для роутера
Если у вас дома отключили электричество, то это не значит, что во входящем сетевом электрическом или оптоволоконном кабеле пропал интернет. У большинства семей дома стоит центральный роутер, который раздает интернет на все мобильные устройства домашних. Когда отключают свет, то становится особо тоскливо и скучно. Чтобы интернет был всегда в работе, предлагаю собрать для него несложный источник бесперебойного питания, который обеспечит работу роутера в автономном режиме порядка трех часов.

Понадобится



Как сделать мини бесперебойник 12 В для роутера

Изготовление мини источника бесперебойного питания для роутера


Батареи 18650 было решено взять из вышедшего из строя аккумулятора ноутбука.
Разбираем корпус.
Как сделать мини бесперебойник 12 В для роутера
Проверяем чтобы напряжение каждой батареи не было ниже 2,7 В, иначе она не будет работать. Нужно всего два элемента.
Как сделать мини бесперебойник 12 В для роутера

Заряжаем аккумуляторы, чтобы быть уверенным в их полной работоспособности.
Как сделать мини бесперебойник 12 В для роутера
Берем пластиковый корпус. Вырезаем сбоку отверстия под гнездо подключения блока питания и выключатель.
Как сделать мини бесперебойник 12 В для роутера
Чтобы исключить случайное замыкание батарей, что очень опасно, подключение будет сделано через предохранители.
Как сделать мини бесперебойник 12 В для роутера
Изолируем термоусадкой все термоусадкой. Элементы скрепляем между собой изолентой.
Как сделать мини бесперебойник 12 В для роутера
Вырезаем окошко для вольтметра.
Как сделать мини бесперебойник 12 В для роутера
Как сделать мини бесперебойник 12 В для роутера
Вклеиваем его горячим клеем и им же изолируем контакты на его плате, чтобы не произошло случайного замыкания.
Как сделать мини бесперебойник 12 В для роутера
Контроллер зарядки приклеиваем на аккумуляторы при помощи двухстороннего скотча. Припаиваем провода к плате согласно схемы.
Как сделать мини бесперебойник 12 В для роутера
Как сделать мини бесперебойник 12 В для роутера

Схема бесперебойника на модулях


Как сделать мини бесперебойник 12 В для роутера
Собираем схему бесперебойника.
Как сделать мини бесперебойник 12 В для роутера
На выход припаиваем конденсатор, чтобы исключить микроброски и исключить передачу рабочей частоты преобразователя.
Как сделать мини бесперебойник 12 В для роутера
Как сделать мини бесперебойник 12 В для роутера
Переменным резистором, на повышающем преобразователе, настраиваем выходное напряжение 12 В для питания роутера.
Как сделать мини бесперебойник 12 В для роутера
Собираем ставим на зарядку.
Как сделать мини бесперебойник 12 В для роутера

Работа устройства:


Раньше роутер работал от своего блока 12 В. Его мы заменили на другой, 8,4-9 Вольтовый — это нужно для работы всего устройства.
Итак, при рабочей сети, блок питания преобразует сетевое напряжение в 8,4-9 В, далее оно подается на повышающий преобразователь и балансный контроллер заряда аккумуляторов. Повышающий преобразователь поднимает напряжение до 12 В и подает его на роутер. Роутер работает. Как только произойдет отключение тока в сети, контроллер заряда переключить свою работу с зарядки на потребление, и на выходе повышающего преобразователя появится напряжение от аккумуляторов 8, 4 В (если они максимально заряжены). И дальнейшая работа роутера будет производится от них.
По истечению времени батареи будут разряжаться и как их напряжение будет подходить к 2,7 Вольта, котроллер отключит элементы, исключив их полный разряд.

Итог работы таков:


При потреблении роутером тока в 1 Ампер, примерное время работы бесперебойника — 30 минут.
Как сделать мини бесперебойник 12 В для роутера
Если роутер будет потреблять 0,5 Ампера, то питания хватит на полтора часа.
Как сделать мини бесперебойник 12 В для роутера
Замеряем сколько потребляет наш роутер в реале.
Как сделать мини бесперебойник 12 В для роутера
Примерно четверть Ампера, а следовательно, источник обеспечит стабильную работу роутер на более чем 2,5 часа.
Такой мини бесперебойник можно использовать не только для роутера, но и для маршрутизатора, для станции проводного телефона, для питания съемного жесткого диска, и для других целей.
Как сделать мини бесперебойник 12 В для роутера

Смотрите видео


sdelaysam-svoimirukami.ru

Проектирование мощного ИБП двойного преобразования (on-line). Часть 1 / Habr

Пролог

Хотелось бы поприветствовать всех кто увлекается и занимается электроникой! Данная серия публикаций будет посвящена полному циклу проектирования мощного источника бесперебойного питания мощность 3,2 кВт и самое главное — с чистым синусом на выходе.

Немного о себе расскажу — работаю инженером-электронщиком на предприятии, занимающимся производством станков и линий с ЧПУ, а так же мощных импульсных устройств: ИБП, стабилизаторы напряжения, инверторы. Вместе с предприятием прошел путь от проектирования систем от 1 кВт и до 1135 кВт.

Мои публикации будут носить больше учебный характер с попытками донести до интересующихся основы силовых расчетов, трассировки плат и ВЧ цепей, программирование микроконтроллеров STM32, а так же ПЛИС от Altera. И конечно еще множество сложных, но интересных вещей. Пожалуй, начнем…

А зачем он вдруг нам понадобился этот чистый синус и ИБП вообще?

Данные устройства нужны для создания автономных систем как на производстве, так и в быту. Сам как обитатель частного дома сталкиваюсь с проблемами подачи электроэнергии. Применение ИБП позволяет обеспечить нормальное функционирования основных систем дома, такие как:

— система отопления;
— работа скважины и погружного насоса;
— резервирование домашнего сервера;
— обеспечение бесперебойной работы роутеров;
— банальное обеспечение освещения в доме.

Все, что выше — это проблемы, с которыми можем сталкиваться мы с вами. Они глобальны, но стоит ли вообще производить ИБП? Ведь пару часов без света можно и переждать!

От части это правильно, но я привык жить в цивилизованном мире. Тогда обратимся к производству, зачем там резервирование? Из своего опыта опишу несколько основных проблем:

— необходимость обеспечивать бесперебойную работу конвейерных линий;
— обеспечение автономности дата-центров, серверов компаний и прочих сетей от перебоев питания;
— защита дорогостоящего оборудования от повышенного и пониженного напряжения и коротких замыканий;

Вроде бы все проясняется! Осталось определиться: «а зачем именно чистый синус?»

Данный вопрос имеет место быть, ведь 80% современных устройств имеет встроенный импульсный блок питания, что позволяет питать их постоянным током с напряжением +310В. Осталось понять что же за оставшиеся 20%…

В основном это системы и устройства, где имеются трехфазные двигатели (асинхронные), а так же высокоточное оборудование и прочее. Если подумать, то в эту категорию попадет 90% оборудования на производстве + ко всему еще и такие бытовые устройства, как котельное оборудование, циркуляционные насосы в теплых полах и отопление, насос для скважин.

Получился достаточно серьезный повод заняться проектированием!

Что же вы получите после изучения цикла статей?

Томить не буду, а получите вы следующий девайс:


Рисунок 1 — Вид основной панели ИБП на 3200 Вт

Описание: на выходе вы получите именно такое устройство и никак иначе. Все сделано в ручную и к производству прибегал по минимуму. На нашем оборудование был лишь изготовлен корпус — стандартный под серверную стойку 2U и глубиной 600 мм.

На панели присутствует куллер охлаждения, работающий на всасывание воздуха. Так же им управляет «мозг» на основе STM32F103RBT6 с помощью ШИМ с обратной связью по температуре. То есть значение оборотов зависят от температуры радиаторов силовых ключей и от температуры трансформатора. Измерение температуры реализовано «по старинке» на DS18B20, общающемся по интерфейсу 1-Wire.


Рисунок 2 — Вид рабочей панели с полными параметрами работы устройства

Все данные о работе прибора выводятся на TFT панель 2,4″, работающую через интерфейс SPI через встроенный в дисплей контроллер ILI9341. Светодиодная шкала добавлена для более наглядного отображения режимов работа: «красный светодиод горит? Караул!»

Теперь посмотрим несколько с другого ракурса на устройство:

Рисунок 3 — Вид задней панели устройства

Описание: на задней панели все скромно и функционально: разъем для входного кабеля, 4 «розетки» для подключения нагрузки, предохранители на 25А, клемма подключения аккумуляторных батарей с предельным (испытанным мною) током в 110А (производитель заявил о 150А).

Характеристики по техническому заданию

Сначала несколько замечаний к общему функционалу. Первое, как и любой ИБП on-line типа, наше устройство должно выполнять функцию стабилизатора напряжения. Так поступают в топовой компании Schneider Electric и я решил перенять их опыт, чего греха таить. Теперь к характеристикам… Требуется получить:

— мощность номинальная: 3200 Вт
— диапазон входного напряжения: 85 — 265 В (такая цифра заявлена у Шнайдера)
— выходное напряжение: 230 В +- 3% (именно 230, а не 220. Стандарты нынче изменились)
— напряжение на DC шине: 48 В
— номинальный ток по сети 230В: 16 А
— номинальный ток по DC шине: 80 А
— пусковые токи: 650% от номинального
— перегрузочная способность: 150% в течение 30 минут, 200% в течение 12 минут
— время работы от АКБ: батареи внешние и время зависит от количества батарей
— возможность удаленного доступа к устройству
— наработка на отказ, не менее: 120 000 часов

Думаю с требованиями предъявляемыми к устройству все ясно, тогда приступаем к этапу определения концепции проектирования и выбору топологий.

Проектирования структурной схемы устройства

Пожалуй это самый важный этап проектирования. Любая ошибка выльется в огромную потери времени, ресурсов и денег, по этому советую отнестись к этой задаче крайне внимательно и без спешки.
Мысли

1) Необходимо выбрать методы коммутации цепей (переключение). Существует несколько методов/типов и у каждого свои плюсы и минусы. Рассмотрим типичные из них:

а) Механический — это способ коммутации цепей по средствам электромеханических устройств, чаще всего реле. Плюсы: простота. Минусы: низкая надежность, большое время переключения (порядка 0,2 секунды пока реле новое), возможность залипания реле, что вызовет процесс горение дуги между контактами. Думаю понятно почему это не наш метод? Мы же все таки ориентируемся на Шнайдер.
б) Электронный — это способ коммутации по средствам НЕ механических компонентов: диодов, симисторов, полевых транзисторов, тиристоров. Вариантов может быть много, самый адекватный на мой взгляд — диодный вентиль. Плюсы: простота, отсутствие механических подвижных элементов. Минусы: дополнительные потери тепла. В нашем случае при 80А и падение на диодах Шоттки 0.5В нам придется дополнительно рассеивать около 180 Вт, а таких диода минимум два. Потери в виде 10% К.П.Д. считаю кощунством, поэтому метод опять не наш.
в) Полный отказ от коммутации. Собственно, а зачем она нам? Слышал кучу возгласов против, но это обычно возмущаются диванные профессионалы некомпетентные инженеры или любители. Могу смело заявить, что по такой схеме у нас работает проект на одной АЭС, его мощность 750 кВт и там именно такая схема.

В чем собственно сущность — АКБ наши просто висят в буферной схеме на DC шине и постоянно находятся в процессе заряда-разряда. Многих это пугает, но вы попробуйте сами полежать месяц на диване, а потом удивитесь, что вам тяжело подниматься по лестнице. Так и с АКБ — их необходимо «тренировать» и поэтому буферная схема им полезна при условии очень быстрой защиты по току.

Плюсы: дешево, сердито, надежно, отсутствие самого понятия «время переключения» или «время перехода с питания от сети на батареи» и отсутствие дополнительных потерь. Минусы: придется использовать исключительно гелевые аккумуляторы свинцовые аккумуляторы с электролитом в состоянии геля. Это, например, АКБ от фирмы Delta серия GX. Не реклама это, но исторически сложилось, что использую именно их по причине банальной доступности и пригодного качества.

2) Необходимо выбрать схему преобразования: ВЧ vs НЧ

Спорить тут можно бесконечно и каждый гнет свою линию. Многие производственники называют преобразование на частотах 10-150 кГц ненадежным, но это обычно элементарный PR ход с попытками оправдать свою несостоятельность в производстве подобного оборудования. Я думаю если бы технология не была лучшим выбором, то ведущие мировые компании не перешли бы на нее и не занимались бы в течение последних 20 лет ее совершенствованием.

Из бонусов преобразования НЧ на частоте 50 Гц могу отметить простоту производства, дубовость схемы большую толерантность к кривым рукам неквалифицированным пользователям.

Из минусов… их много, но главный — просто огромнейшие габариты! Когда-то пытались по такой схеме сделать 1100 кВт, так вот там одной меди было 1,8 тонны! Думаю можете себе представить все масштабы.

Спор на тему выбора технологии развивать не буду, т.к. даже среди моих коллег он обычно превращался в драку с явным переходом на личности. Поэтому просто выберем технологию преобразования на высокой частоте (10-150 кГц).

Исходя из доводов описанных выше и еще десятка других, которые вылезут в ходе выполнения проекта получим такую схему:


Рисунок 4 — Блок-схема силовой части ИБП двойного преобразования

Немного объясню отображенные этапы:

1) Практически сразу после входа напряжение подается на PFC — он же корректор мощности. Он нужен в первую очередь для снижения потерь, поэтому он просто необходим. В китайских схемах и большинстве отечественных он вообще не предусмотрен, это снижает себестоимость, но качество прибора можно смело «делить на 2».
Подробно что это за параметр и модуль расскажет гугл или я в следующей части статьи. Могу сказать одно — готовьтесь к достаточно серьезному «матану» и вспоминайте неравенства Коши.

2) Далее идет первое преобразование — 85-255В переменного тока в 48 В постоянного тока. Сразу прошу обратить внимание на несколько моментов. Во-первых, диапазон входных напряжений очень широкий, это создаст проблему — если напряжение в 3 раза ниже номинального (85В например), то соответственно ток вырастит в 3 раза, поэтому данную особенность (закон Ома) надо держать в голове. Это вынудит нас дальше при расчетах трансформаторов и силовых IGBT ключей закладывать минимум трехкратный запас по току.

Во-вторых, 48В это примерная величина для понимания. Ибо напряжение на батареи в заряженном состоянии 14,2В, при соединение последовательно 4-х АКБ получим напряжение 56,8 В. Из этого следует, что на самом деле напряжение на DC шине будет около 57В — это сделано для того, чтобы приложенный к АКБ потенциал был выше собственного, тогда возникнет разность потенциалов и будет протекать ток. Ток «побежит» в сторону меньше потенциала, то есть на батареи. Как только потенциал в DC шине меньше чем на батареях (например, пропало напряжение в сети) они начинают отдавать энергию (это отсылка к методу коммутации и почему нету процесса переключения).

3) АКБ сидят на DC шине в буферной зоне. Почему именно 48В и зачем объединять батареи? Все просто! Ток при питании от 48 В — около 80 А, если запитывать от 12 В, то ток будет более 300А! Огромная величина — огромные потери. Да и батареи, даже гелевые, спасибо за такой режим работы не скажут и благополучно умрут через год, вместо 10 лет на которые они способны.

4) Еще один DC-DC преобразователь 48 -> 380 В. Принцип работы и схемотехника будут в другой части статьи, пока лишь объясню почему 380В, а не 310, которые получаются после выпрямления сети. 380 В необходимы нам, чтобы спокойно и без потерь нарезать синусоидальный сигнал отличной формы. Когда начнем разбирать данный процесс, поймете зачем такой запас.

5) LC-фильтр/контур или по-научному ФНЧ 4-го порядка. Необходим чтобы после нарезки синуса с помощью ШИМ отфильтровать все лишние гармоники, помехи, шумы и прочий мусор и получить на выходе наш заветный чистенький сигнал. Он рассчитан на 1 кГц, что при частоте модуляции в 75,8 кГц позволяет получить пульсации не более +- 3 В. Это попадает в наши требования по ТЗ и поэтому дополнительно увеличивать порядок фильтра, а следовательно его габариты, попросту не вижу.

Осталось упомянуть еще несколько модулей, которые я не изобразил на блок-схеме. Почему? Да попросту они не влияют на принципиальное понимание работы и структуры данного устройства, а некоторые являются отдельной «кастой». Что я забыл:

— модуль управления, по сути «мозги» всех измерений и индикация на STM32F100RBT6
— модуль формирования чистого синуса, это отдельная плата, но входит она в большой блок DC-AC
— модуль дежурного питания, который обеспечивает низковольтное питание (+15В, + 5В, +3,3В) на популярной TOP227 мощностью 70 Вт
— модуль аварийного питания, который преобразует 48В с АКБ во все те же +15, +5, +3,3В.

Эпилог

Да бы не перегружать читателя поток информации — я планирую разбить весь процесс проектирования и самостоятельного изготовления ИБП на не менее чем 10 частей. А как вы хотели? Это дело сложное и ответственное!

Я планирую по мимо того, что посвящу для каждого описанного выше модуля целую часть, еще и выделить одну статейку как пособие по выбору компонентов, поиску выгодных цен. Так же отдельно будет рассмотрено изготовление трансформаторов и дросселей, их расчетам и намотке. Все данные этапы будут сопровождаться подробным фото отчетом и виде.

Надеюсь вас заинтриговал, а возможно кому-то уже стало интересно, так что читаем дальше…

Расчет и изготовление «сердца» ИИП — импульсный трансформатор.

Часть 2
Часть 3
Часть 4.1
Часть 4.2
Часть 5
Часть 6

habr.com

РадиоКот :: ИБП за копейки!

РадиоКот >Лаборатория >Аналоговые устройства >

ИБП за копейки!

Всем привет! Как то захотел я собрать усилитель на TDA7294. И друг продал за копейки корпус. Такой черный, красивый, а в нем когда то жил спутниковый ресивер 95-х годов. И как на зло ТС-180 не помещался, не хватило по высоте буквально 5 мм. Начал смотреть в сторону тороидального трансформатора. Но увидел цену, и как то сразу перехотелось. И тут же в глаз пал компьютерный БП, думал перемотать, но снова же куча регулировок, защит по току, брррр. Начал гуглить схемы импульсных блоков питания, большая плата, куча деталей, лень вообще что то делать стало. Но случайно на форуме нашел тему о переделке электронных трансформаторах Ташибра. Почитал так, вроде ничего сложного.

На следующий день поехал хоз-маг и купил пару подопытных. Одна така цацка стоит 40 грн.

Тот что сверху  BUKO.
Снизу копия Ташибры, только имя сменилось.
Между собой они немного различаются. У ташибры например 5 витков у вторичной обмотке, а у BUKO 8 витков. У последнего еще немного плата побольше, с дырками под установку доп. деталей.
Но доработка обоих блоков идентична!
Во время доработок нужно быть предельно осторожным, т.к. на транзисторах присутствует сетевое напряжение.
И если вы случайно коротнете выход, и транзисторы сделают новогодний салют я не виноват, все вы делаете на свой страх и риск!
Рассмотрим схему.

Все блоки от 50 до 150 ватт идентичны, отличаются только мощностью деталей.
В чем состоит доработка?
1) Необходимо добавить электролит после сетевого диодного моста. Чем больше — тем лучше. Я поставил 100 мкф на 400 вольт.
2) Необходимо поменять обратную связь по току на связь по напряжению. Зачем? А затем что бп запускается только с нагрузкой, а без нагрузки он не запустится.
3) Перемотать трансформатор (при необходимости).
4) Установить на выходе диодный мост (например КД213, импортные шоттки приветствуются) и конденсатор.

В синему кружку катушка обратной связи по току. Необходимо выпаять ее 1 конец, и на плате ее замкнуть. Сделали КЗ на плате? Значить идем дальше!
Потом берем кусок витой пары на силовой трансформатор мотаем 2 витка и на трансформатор связи мотаем 3 витка. На концы припаиваем к резистору 2.4-2.7 ом 5-10W. Подключаем лампочку на выход и ОБЯЗАТЕЛЬНО лампочку на 150 ватт в разрыв сетевого провода. Включаем — лампочка не засветилась, убираем ее, снова включаем и видим что лампочка на выходе светится. А если не засветилась то нужно провод в трансформатор звязи завести с другой стороны. Посветила лампочка теперь выключаем. НО перед тем как что то делать обязательно разрядите сетевой конденсатор резистором на 470 ом!!
Я собирал БП для стерео УНЧ на TDA7294. Соответственно мне нужно перемотать его на напряжение 2Х30 вольт.
На трансформаторе 5 витков. 12V/5вит.=2,8 вит/вольт.
30V/2,8V=11витков. Тоесть нам надо намотать 2 катушки по 11 витков.
Выпаиваем трансформатор из платы, снимаем 2 витка из транса, и соответственно сматываем вторичную обмотку. Потом я намотал катушки обычным многожильным проводом. Сразу одну катушку, потом вторую. И соединяем начала обмоток или концы и получаем средний отвод.
Тоесть таким образом мы можем намотать катушку на необходимое напряжение!
Частота блока питания с ОС по напряжению 30 кгц.
Потом я собрал диодный мост из КД213, поставил электролиты и обязательно надо керамику!!!
Как соединять катушки, и какие возможные вариации можно посмотреть на схеме из соседней статьи.

Запомните — при замыканию выхода бп горит! Я сам спалил один раз. Сгорели, диоды, транзисторы и резисторы в базе! Заменил их и бп благополучно начал работать!

Ну и теперь пару фотографий готового БП для УНЧ.

Красным обозначено место закорачивания ОС по току.

Вот еще есть вариация для шуруповерта. Трансформатор тут я не перематывал. Просто его поднял вертикально, и сбоку прилепил диодный мост. Все это дело установил в коробку из аккумулятора. И сзади поставил кнопку для выключения.

Резистор припаян на плату в свободный пятачок. Желательно применять резисторы на 10W т.к. он греется во время работы! 

Таким образом мы получаем отличный ИБП за копейки, который можно применить куда угодно!!! 


Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

преобразователь 12 в 220 из ИБП

У многих пользователей ПК есть в наличии старые отработавшие свой срок ИБП. Частая их причина нетрудоспособности — это выход из строя аккумуляторов. Так как замена на новые батареи нерентабельна, а порой просто невозможна из-за отсутствия аналогов, эти устройства попросту валяются без дела или выбрасываются на помойку.

Инвертор 12 В — 220 В из старого ИБП

Но можно дать вторую жизнь ИБП, сделав из него очень полезное устройство — инвертор, преобразующий 12 в бортовой сети автомобиля в необходимое для некоторых приборов 220 в. Притом, что заводская версия инвертора обойдется в немалые деньги, а так вы сэкономите деньги, и сделаете из хлама нужную вещь.

Инвертор 12 В — 220 В из старого ИБП

Демонтаж аккумуляторов

Демонтаж аккумуляторов

Итак, первое, что нужно сделать — это удалить старые, потекшие батареи. Они достаточно просто демонтируются, сняв нижнюю крышку и отключив провода питания. Если остались следы потекшего электролита, чистим корпус от кристаллов окисления.

Демонтаж аккумуляторов.

Такая операция обеспечит устранение дальнейшего вытекания кислоты, а также значительно облегчит вес аппарата.

Изменение схемы подключения

По конструкции бесперебойники отличаются, но принцип действия у них один и тот же — преобразовывать напряжение 12 в в 220 в. То есть в каждой модели присутствует плата с электронным преобразователем напряжения. Он-то нам и нужен. Но есть одно условие, он должен быть рабочим.

Так как приборы, которые будут подключаться к этому устройству имеют стандартную вилку на 220 в, необходимо на боковой или задней панели, установить обычную бытовую розетку для скрытой проводки. К ней-то и припаиваем провода выхода с преобразователя 220 в, которые ранее подходили к специальным трехрожковым вилкам на задней панели ИБП.

Далее необходимо сделать вход для 12 в. Для этого есть два варианта: припаять шнур с разъемом для прикуривателя или подпаять провода с крокодильчиками для подключения прямо на аккумулятор.

В первом и во втором случае, провода припаивают к тем, что шли на батарею ИБП. Очень важно соблюсти полярность подключения. Красный провод — это плюс, а черный — минус.

Как и в сети авто, так и в ИБП эти цвета должны совпадать. Лучше всего, конечно, проверить полярность мультиметром, чтобы наверняка.

Такая схема подключения предусматривает моментальную работу устройства при его подключении. Если вы хотите сделать включение через тумблер или автомат, то просто в проводе, идущем от АКБ автомобиля разрываем «плюс» и присоединяем один провод на вход, а другой на выход автомата, закрепленного на корпусе ИБП. Таким образом разрывается питание инвертора, когда это необходимо.

Инвертор 12 В — 220 В из старого ИБП

Инвертор 12 В — 220 В из старого ИБП

Инвертор 12 В — 220 В из старого ИБП

Инвертор 12 В — 220 В из старого ИБП

Инвертор 12 В — 220 В из старого ИБП

Инвертор 12 В — 220 В из старого ИБП

Тонкости в работе  

Следует понимать, что такое устройство не выдаст большую мощность. Как правило. она составляет не более 150 Вт, но этого вполне достаточно для подключения небольшого телевизора, ноутбука и другой слаботочной техники.


 

volt-index.ru

Конструкция и ремонт источников бесперебойного питания 2

УСТРОЙСТВО ИБП КЛАССА OFF-LINE

К ИБП класса Off-line фирмы АРС относятся модели Back-UPS. ИБП этого класса отличаются низкой стоимостью и предназначены для защиты персональных компьютеров, рабочих станций, сетевого оборудования, торговых и кассовых терминалов. Мощность выпускаемых моделей Back-UPS от 250 до 1250 ВА. Основные технические данные наиболее распространенных моделей ИБП представлены в табл.1.

Таблица 1. Основные технические данные ИБп класса Back-UPS

Модель BK250I BK400I BK600I
Номинальное входное напряжение, В 220…240
Номинальная частота сети, Гц 50
Энергия поглощаемых выбросов, Дж 320
Пиковый ток выбросов, А 6500
Пропущенные в нормальном режиме значения выбросов напряжения по тесту IEEE 587 Cat. A 6kVA, % <1
Напряжение переключения, В 166…196
Выходное напряжение при работе от аккумуляторов, В 225 ± 5%
Выходная частота при работе от аккумуляторов, Гц 50 ± 3%
Максимальная мощность, ВА (Вт) 250(170) 400(250) 600(400)
Коэффициент мощности 0,5. ..1,0
Пик-фактор <5
Номинальное время переключения, мс 5
Количество аккумуляторов х напряжение, В 2×6 1×12 2×6
Емкость аккумуляторов, Ач 4 7 10
Время 90-% подзарядки после разрядки до 50%, час 6 7 10
Акустический шум на расстоянии 91 см от устройства, дБ <40
Время работы ИБП на полную мощность, мин >5
Максимальные габариты (В х Ш х Г), мм 168x119x361
Вес, кг 5,4 9,5 11,3

Индекс «I» (International) в названиях моделей ИБп означает, что модели рассчитаны на входное напряжение 230 В, В устройствах установлены герметичные свинцовые не обслуживаемые аккумуляторы со сроком службы 3…5 лет по стандарту Euro Bat. Все модели оснащены фильтрами-ограничителями, подавляющими скачки и высокочастотные помехи сетевого напряжения. Устройства подают соответствующие звуковые сигналы при пропадании входного напряжения, разрядке аккумуляторов и перегрузке. Пороговое значение напряжения сети, ниже которого ИБп переходит на работу от аккумуляторов, устанавливается переключателями на задней панели устройства. Модели BK400I и BK600I имеют интерфейсный порт, подключаемый к компьютеру или серверу для автоматического самостоятельного закрытия системы, тестовый переключатель и выключатель звукового сигнала.

Структурная схема ИБП Back-UPS 250I, 400I и 600I показана на рис. 1. Сетевое напряжение поступает на входной многоступенчатый фильтр через прерыватель цепи. Прерыватель цепи выполнен в виде автоматического выключателя на задней панели ИБП. В случае значительной перегрузки он отключает устройство от сети, при этом контактный столбик выключателя выталкивается вверх. Чтобы включить ИБП после перегрузки, необходимо вернуть в исходное положение контактный столбик выключателя. Во входном фильтре-ограничителе электромагнитных и радиочастотных помех используются LC-звенья и металлооксидные варисторы. При работе в нормальном режиме контакты 3 и 5 реле RY1 замкнуты, и ИБП передает в нагрузку напряжение электросети, фильтруя высокочастотные помехи. Зарядный ток поступает непрерывно, пока в сети есть напряжение. Если входное напряжение падает ниже установленной величины или вообще исчезает, а также если оно сильно зашумлено, контакты 3 и 4 реле замыкаются, и ИБП переключается на работу от инвертора, который преобразует постоянное напряжение аккумуляторов в переменное. Время переключения составляет около 5 мс, что вполне приемлемо для современных импульсных блоков питания компьютеров. Форма сигнала на нагрузке — прямоугольные импульсы положительной и отрицательной полярности с частотой 50 Гц, длительностью 5 мс, амплитудой 300 В, эффективным напряжением 225 В. На холостом ходу длительность импульсов сокращается, и эффективное выходное напряжение падает до 208 В. В отличие от моделей Smart-UPS, в Back-UPS нет микропроцессора, для управления устройством используются компараторы и логические микросхемы.

 

Принципиальная схема ИБП Back-UPS 250I, 400I и 600I практически полностью приведена на рис. 2-4. Многозвенный фильтр подавления помех электросети состоит из варисторов MOV2, MOV5, дросселей L1 и L2, конденсаторов С38 и С40 (рис. 2). Трансформатор Т1 (рис. 3) является датчиком входного напряжения.

Его выходное напряжение используется для зарядки аккумуляторов (в этой цепи используются D4…D8, IC1, R9…R11, С3 и VR1) и анализа сетевого напряжения.

Если оно пропадает, то схема на элементах IC2…IC4 и IC7 подключает мощный инвертор, работающий от аккумулятора. Команда ACFAIL включения инвертора формируется микросхемами IC3 и IC4. Схема, состоящая из компаратора IC4 (выводы 6, 7, 1 ) и электронного ключа IC6 (выводы 10, 11, 12), разрешает работу инвертора сигналом лог. «1», поступающим на выводы 1 и 13 IC2.

Делитель, состоящий из резисторов R55, R122, R1 23 и переключателя SW1 (выводы 2, 7 и 3, 6), расположенного на тыловой стороне ИБП, определяет напряжение сети, ниже которого ИБП переключается на батарейное питание. Заводская установка этого напряжения 196 В. В районах, характеризующихся частыми колебаниями напряжения сети, приводящими к частым переключениям ИБП на батарейное питание, пороговое напряжение должно быть установлено на более низкий уровень. Точная настройка порогового напряжения выполняется резистором VR2.

Во время работы от батареи микросхема IC7 формирует импульсы возбуждения инвертора PUSHPL1 и PUSHPL2. В одном плече инвертора установлены мощные полевые транзисторы Q4…Q6 и Q36, в другом -Q1…Q3 и Q37. Своими коллекторами транзисторы нагружены на выходной трансформатор. На вторичной обмотке выходного трансформатора формируется импульсное напряжение с эффективным значением 225 В и частотой 50 Гц, которое используется для питания подключенного к ИБП оборудования. Длительность импульсов регулируется переменным резистором VR3, а частота — резистором VR4 (рис. 3). Включение и выключение инвертора синхронизируется с напряжением сети схемой на элементах IC3 (выводы 3…6), IC6 (выводы 3…5, 6, 8, 9) и IC5 (выводы 1…3 и 11…13). Схема на элементах SW1 (выводы 1 и 8), IC5 (выводы 4…В и 8…10), IC2 (выводы 8…10), IC3 (выводы 1 и 2), IC10 (выводы 12 и 13), D30, D31, D18, Q9, BZ1 (рис. 4) включает звуковой сигнал, предупреждающий пользователя о проблемах с электропитанием. Во время работы от батареи ИБП каждые 5 с издает одиночный звуковой сигнал, указывающий на необходимость сохранения файлов пользователя, т.к. емкость аккумуляторов ограничена. При работе от батареи ИБП осуществляет контроль за ее емкостью и за определенное время до ее разряда подает непрерывный звуковой сигнал. Если выводы 4 и 5 переключателя SW1 разомкнуты, то это время составляет 2 минуты, если замкнуты — 5 минут. Для отключения звукового сигнала надо замкнуть выводы 1 и 8 переключателя SW1.

Все модели Back-UPS, за исключением BK250I, имеют двунаправленный коммуникационный порт для связи с ПК. Программное обеспечение Power Chute Plus позволяет компьютеру осуществлять как текущий контроль ИБП, так и безопасное автоматическое закрытие операционной системы (Novell, Netware, Windows NT, IBM OS/2, Lan Server, Scounix и UnixWare, Windows 95/98), сохраняя файлы пользователя. На рис. 4 этот порт обозначен как J14. Назначение его выводов:

1 — UPS SHUTDOWN. ИБП выключается, если на этом выводе появляется лог. «1» в течение 0,5 с.

2 — AC FAIL. При переходе на питание от батарей ИБП генерирует на этом выводе лог. «1».

3 — СС AC FAIL. При переходе на питание от батарей ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.

4, 9 — DB-9 GROUND. Общий провод для ввода/вывода сигналов. Вывод имеет сопротивление 20 Ом относительно общего провода ИБП.

5 — СС LOW BATTERY. В случае разряда батареи ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.

6 — ОС AC FAIL При переходе на питание от батарей ИБП формирует на этом выводе лог. «1». Выход с открытым коллектором.

7, 8 — не подключены.

Выходы с открытым коллектором могут подключаться к ТТЛ-схемам. Их нагрузочная способность до 50 мА, 40 В. Если к ним нужно подключить реле, то обмотку следует зашунтировать диодом.

Обычный «нуль-модемный» кабель для связи с этим портом не подходит, соответствующий интерфейсный кабель RS-232 с 9-штырьковым разъемом поставляется в комплекте с программным обеспечением.

КАЛИБРОВКА И РЕМОНТ ИБП
Установка частоты выходного напряжения

Для установки частоты выходного напряжения подключить на выход ИБП осциллограф или частотомер. Включить ИБП в режим работы от батареи. Измеряя частоту на выходе ИБП, регулировкой резистора VR4 установить 50 ± 0,6 Гц.

Установка значения выходного напряжения

Включить ИБП в режим работы от батареи без нагрузки. Подключить на выход ИБП вольтметр для измерения эффективного значения напряжения. Регулировкой резистора VR3 установить напряжение на выходе ИБП 208 ± 2 В.

Установка порогового напряжения

Переключатели 2 и 3, расположенные на тыловой стороне ИБП, установить в положение OFF. Подключить ИБП к трансформатору типа ЛАТР с плавной регулировкой выходного напряжения. На выходе ЛАТРа установить напряжение 196 В. Повернуть резистор VR2 против часовой стрелки до упора, затем медленно поворачивать резистор VR2 по часовой стрелке до тех пор, пока ИБП не перейдет на батарейное питание.

Установка напряжения заряда

Установить на входе ИБП напряжение 230 В. Отсоединить красный провод, идущий к положительному выводу аккумулятора. Используя цифровой вольтметр, регулировкой резистора VR1 установить на этом проводе напряжение 13,76 ± 0,2 В относительно общей точки схемы, затем восстановить соединение с аккумулятором.

Типовые неисправности

Типовые неисправности и методы их устранения приведены в табл. 2, а в табл. 3 — аналоги наиболее часто выходящих из строя компонентов.

Таблица 2. Типовые неисправности ИБП Back-UPS 250I, 400I и 600I

Проявление дефекта Возможная причина Метод отыскания и устранения дефекта
Запах дыма, ИБП не работает Неисправен входной фильтр Проверить исправность компонентов MOV2, MOV5, L1, L2, С38, С40, а также проводники платы, соединяющие их
ИБП не включается. Индикатор не светится Отключен автомат защиты на входе (прерыватель цепи) ИБП Уменьшить нагрузку ИБП, отключив часть аппаратуры, и затем включить автомат защиты, нажав контактный столбик автомата защиты
Неисправны батареи аккумуляторов Заменить аккумуляторы
Неправильно подключены аккумуляторы Проверить правильность подключения аккумуляторных батарей
Неисправен инвертор Проверить исправность инвертора. Для этого отключить ИБП от сети переменного тока, отсоединить аккумуляторы и разрядить емкость С3 резистором 100 Ом, прозвонить омметром каналы «сток-исток» мощных полевых транзисторов Q1…Q6, Q37, Q36. Если сопротивление составляет несколько Ом или меньше, то транзисторы заменить. Проверить резисторы в затворах R1 …R3, R6…R8, R147, R148. Проверить исправность транзисторов Q30, Q31 и диодов D36…D38 и D41. Проверить предохранители F1 и F2
Заменить микросхему IC2
При включении ИБП отключает нагрузку Неисправен трансформатор Т1 Проверить исправность обмоток трансформатора Т1. Проверить дорожки на плате, соединяющие обмотки Т1. Проверить предохранитель F3
ИБП работает от аккумуляторов несмотря на то, что есть напряжение в сети Напряжение в электросети очень низкое или искажено Проверить входное напряжение с помощью индикатора или измерительного прибора. Если это допустимо для нагрузки, уменьшить чувствительность ИБП, т.е. изменить границу срабатывания при помощи переключателей, расположенных на задней стенке устройства
ИБП включается, но напряжение в нагрузку не поступает Неисправно реле RY1 Проверить исправность реле RY1 и транзистора Q10 (BUZ71). Проверить исправность IC4 и IC3 и напряжение питания на их выводах
Проверить дорожки на плате, соединяющие контакты реле
ИБП жужжит и/или отключает нагрузку, не обеспечивая ожидаемого времени резервного электропитания Неисправен инвертор или один из его элементов См. подпункт «Неисправен инвертор»
ИБП не обеспечивает ожидаемого времени резервного электропитания Аккумуляторные батареи разряжены или потеряли емкость Зарядите аккумуляторные батареи. Они требуют перезарядки после продолжительных отключений сетевого питания. Кроме того, батареи быстро стареют при частом использовании или при эксплуатации в условиях высокой температуры. Если приближается конец срока службы батарей, то целесообразно их заменить, даже если еще не подается тревожный звуковой сигнал замены аккумуляторных батарей. Емкость заряженной батареи проверить автомобильной лампой дальнего света 12 В, 150 Вт
ИБП перегружен Уменьшить количество потребителей на выходе ИБП
После замены аккумуляторов ИБП не включается Неправильное подключение аккумуляторных батарей при их замене Проверьте правильность подключения аккумуляторных батарей
При включении ИБП издает громкий тональный сигнал, иногда с понижающимся тоном Неисправны или сильно разряжены аккумуляторные батареи Зарядить аккумуляторные батареи в течение не менее четырех часов. Если после перезарядки проблема не исчезнет, следует заменить аккумуляторные батареи
Аккумуляторные батареи не заряжаются Неисправен диод D8 Проверить исправность D8. Его обратный ток не должен превышать 10 мкА
Напряжение заряда ниже необходимого уровня Откалибровать напряжение заряда аккумулятора

Таблица 3. Аналоги для замены неисправных компонентов

Схемное обозначение Неисправный компонент Возможная замена
IC1 LM317T LM117H, LM117K
IC2 CD4001 К561ЛЕ5
IC3, IC10 74С14 Составляется из двух микросхем К561ТЛ1, выводы которых соединить согласно цоколевке на микросхему
IC4 LM339 К1401СА1
IC5 CD4011 К561ЛА7
IC6 CD4066 К561КТ3
D4…D8, D47, D25…D28 1N4005 1N4006, 1N4007, BY126, BY127, BY133, BY134, 1N5618… 1N5622, 1N4937
Q10 BUZ71 BUZ10, 2SK673, 2SK971, BUK442…BUK450, BUK543…BUK550
Q22 IRF743 IRF742, MTP10N35, MTP10N40, 2SK554, 2SK555
Q8, Q21, Q35, Q31, Q12, Q9, Q27, Q28, Q32, Q33 PN2222 2N2222, BS540, BS541, BSW61…BSW 64, 2N4014
Q11, Q29, Q25, Q26, Q24 PN2907 2N2907, 2N4026…2N4029
Q1…Q6, Q36, Q37 IRFZ42 BUZ11, BUZ12, PRFZ42

Геннадий Яблонин

Источник: Журнал «Ремонт электронной техники»



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • ИСТОЧНИК ПИТАНИЯ С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ на LT1070.
  • Существуют схемы усилителей НЧ, пере­датчиков, других устройств, которые требуют питания не только от двуполярного источника, но и от двух гальванически развязанных источ­ников, не имеющих соединения с «землей» или общих связанных цепей. Организовать питание такого устройства в стационарных условиях весьма просто, так как источником питания служит электросеть, а значит будет силовой или импульсный трансформатор. Достаточно сделать две вторичные обмотки, не соединен­ные с другими цепями, и переменные напряже­ния с них подать на отдельные независимые выпрямители. Подробнее…

  • Ремонт модуля S20609 в инверторных сварках
  • В некоторых моделях сварочных инверторов, например Helper Prestige, ProfHelper, BestWeld и др., принадлежащих к условному семейству TECNICA устанавливают залитый эпоксидным компаундом субмодуль блока управления S20609.

    О его ремонте и пойдёт речь в статье, ниже…

    Подробнее…

  • Мощный самодельный трансформаторный стабилизатор
  • Простой мощный стабилизатор из старых телевизионных трансформаторов

    Из старых  давно отслуживших свою службу ламповых телевизоров типа «Рекорд», «Горизонт», «Темп», «Электрон», «Фотон», «Радуга», «Рубин», «Чайка» и им подобных, а точнее их силовых трансформаторов можно сделать достаточно мощный (2-3 кВт) стабилизатор сетевого напряжения. Для этого трансформаторы нужно соединить специальным способом.

    Подробнее…


Популярность: 24 983 просм.

www.mastervintik.ru

Сварочный аппарат из бесперебойника


Приветствую, Самоделкины!
Не так давно AKA KASYAN, автор одноименного YouTube канала занимался ремонтом бесперебойника, который принадлежал его знакомому. Повреждение были довольно серьезными, а все из-за неправильной установки аккумуляторов.

Данный бесперебойник был успешно восстановлен, но долго пылился без дела, пока автору не пришла в голову мысль сделать из него совсем другой прибор, а точнее сварочный аппарат.


Да, мы будем ломать рабочий бесперебойник. Вандализм? Возможно, но бесперебойники такого класса без всяких наворотов сейчас можно купить буквально за копейки, особенно без аккумуляторной батареи.
Автор же будет делать из внутренностей этого прибора довольно недешевое устройство, аппарат специфический, предназначенный для сварки скруток угольным электродом. Как известно самым распространенным способом соединения проводников является пайка при помощи припоя.


Но припой не славится своей долговечностью, и если речь идет о качественном монтаже «на века», то сварка проводов естественно в приоритете.


Дополнительным плюсом является то, что на месте сварки не будут образовываться дополнительные потери, а, следовательно, не будет и нагрева, получится буквально цельный проводник. Если же речь идет о пайки с помощью припоя, то под токами большой величины припой может даже расплавится.

Перед сваркой необходимо выполнить скрутку. Затем провода свариваются вместе, а на месте сварки образуется характерная для этого способа капелька.


Стоит сказать, что данный бесперебойник 24-вольтовый, то есть, он работает от 2-ух последовательно соединенных аккумуляторов с напряжением 12В.

Очень важно чтобы сварочный аппарат, а точнее трансформатор, обеспечивал необходимое напряжение холостого хода, которого было бы достаточно для образования дуги. Поэтому в данном случае трансформатор от 12-вольтового бесперебойника не подойдет. Он не обеспечит нужного напряжения, в результате чего мы получим максимум плавление провода за счет короткого замыкания. А качественно выполненной сварки с красивой капелькой с таким трансформатором получить не удастся.

В данном примере напряжение на вторичной обмотке трансформатора составляет около 26В. Этого будет вполне достаточно для образования дуги. Конечно под нагрузкой напряжение просядет, но значения не будут критическими.


Если же вы захотите использовать трансформатор с более низким выходным напряжением, например, от 12-вольтового бесперебойника, то придется искать второй такой же аналогичной трансформатор подключить вторичные обмотки последовательно, чтобы увеличить общее напряжение.


Мощность данного бесперебойника составляет порядка 400Вт. Приступим к его разборке.

На кадрах ниже отчётливо видны следы мини пожара.

Из этого бесперебойника нам нужен только трансформатор. Как видим он довольно неплохой, как по железу, так и по обмоткам, да и вес говорит о соответствующем качестве.

Обмотки, кстати, тут медные, что, согласитесь, не может не радовать. Видно, что бесперебойник довольно старый, а меди в те времена не жалели.

Данный трансформатор имеет низковольтную силовую обмотку на 24В с отводом от середины, сетевую обмотку с отводами и дополнительную маломощную обмотку.

Сейчас нам нужна сетевая обмотка, займемся ее поиском. Для этого нам понадобится мультиметр в режиме Ом-метра. Необходимо отыскать те отводы, между которыми будет самое большое сопротивление. В данном случае это около 8Ом.

Далее берем обыкновенную лампу накаливания с мощностью от 40 до 100Вт. Ее необходимо подключить последовательно с ранее проверенной обмоткой в сеть. Не забывайте о технике безопасности, все оголенные провода обязательно изолируем.

Лампа накаливания включенная таким образом в цепь, будет выполнять роль страховки. В случае чего, она ограничит ток и не даст обмотке сгореть. Если лампа не горит, значит все сделано правильно.

Затем переключаем мультиметр в режим измерения переменного напряжения и проверяем напряжение на силовой обмотке трансформатора.

Как видим, напряжение на концах обмотки составляет около 26В. Теперь трансформатор пока отложим в сторону. Далее нам необходим угольный электрод. В строительных магазинах порой можно встретить угольные электроды с медным напылением, но намного проще за сущие копейки купить батарейку формата D, у них внутри имеется угольный стержень, который отлично подойдет для данной самоделки.


Только стоит отметить, что такой электрод имеется только в обычных солевых батарейках, не алкалиновых, а именно в солевых.
Итак, батарейку необходимо разобрать и извлечь угольный стержень (электрод). Испорченную батарейку необходимо утилизировать соответствующим образом сдав в специализированный пункт приема химических источников тока, берегите природу!


Опытным путем было установлено, что система ограничения тока сварки в данном случае не нужна. Сварка будет происходить на максимальных значениях тока, но это не мешает варить провода небольшого сечения. Ток в режиме короткого замыкания у данного трансформатора составляет более 100А. Конечно в таком режиме трансформатор быстро выйдет из строя и попросту сгорит, но такое возможно только из-за залипания электрода, а в нашем случае он угольный и залипнуть к медному проводу просто никак не сможет, так что с этим тоже все хорошо. К тому же ток частично будет ограничен сопротивлением самого электрода и проводов.
За счет образования высокотемпературной дуги у нас есть возможность варить провода, сечение которых в разы больше, чем сечение обмоток самого трансформатора. Трансформаторы от бесперебойника не рассчитаны на долговременную работу под большой нагрузкой, поэтому не исключен перегрев. Но в данном случае мы же не собираемся пользоваться аппаратом часами на пролет, не давая ему отдохнуть. Включил, поварил, выключил. За этот временной промежуток даже обмотки не успеют нагреться.
Теперь займемся изготовлением держателя для электрода и массы. Масса — это образно, тут можно особо не заморачиваться, взять плоскогубцы, присобачить к ним провода и все.

Автор решил изготовить более удобный держатель для электрода. Для этого ему понадобилась монтажная клемма соответствующего диаметра, в которую свободно входит наш угольный электрод. Также понадобится медная трубка. Ее необходимо расплющить и все запаять вместе. Получилась вот такая штука.


Во время работы места паек будут нагреваться, но припой не расплавится, так как соединения обладают довольно большой теплопроводностью, и нагрев достаточно быстро передается рукоятке. Рукоятку необходимо изолировать термостойким каптоновым скотчем.
Затем берем плоскогубцы, снимаем изоляцию и припаиваем к ним провод. Такие массивные участки автор паял мощным паяльником мощностью 300Вт.

Далее необходимо подобрать корпус. Для этого автор использовал корпус от старого компьютерного блока питания.

Аппарат не содержит ни единого полупроводника, подключение проще простого, так что справится любой человек с базовыми знаниями по электронике.

Ну а в конце попробуем сварить вместе провода самого разного сечения и посмотрим, на что способен этот малыш.

Для такого простого и бюджетного аппарата вполне неплохой результат. Основные достоинства аппарата: малая себестоимость, высокая надежность (так как тут нечему ломаться), сравнительно небольшой вес и скромные размеры. Ему поддаются провода большого диаметра, что позволит применить аппарат не только для любительских, но и для профессиональных работ.

Ну а на этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о