РазноеСхема энергосберегающей лампы на 30 вт – Трансформатор из дросселя энергосберегающей лампы. Как сделать блоки питания шуруповерта из энергосберегающих лампочек

Схема энергосберегающей лампы на 30 вт – Трансформатор из дросселя энергосберегающей лампы. Как сделать блоки питания шуруповерта из энергосберегающих лампочек

Содержание

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 %. Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц. В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

Принципиальная схема эконом лампы

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом

Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003. Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Преобразователь лампы

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном

ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Колба лампы

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Лампа с электронным балластом

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

Схема включения позистора в люминесцентной лампе

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Блок питания из энергосберегающей лампы своими руками

Очень часто причиной поломки электроприбора становится неисправность аккумулятора. Вследствие этого нужен ремонт или же покупка нового оборудования. Но можно избежать больших затрат, сделав блок питания из энергосберегающей лампы своими руками. Все необходимые детали можно взять из обычной люминесцентной лампы, стоимость которой невелика.

Блок: 1/5 | Кол-во символов: 342
Источник: https://rusenergetics.ru/remont/blok-pitaniya-energosberegayushhej-lamp

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Блок: 2/8 | Кол-во символов: 527
Источник: https://go-radio.ru/lumen.html

11:27 pm — Схемы энергосберегающих ламп.

Какие у меня есть схемы энергосберегающих ламп и балластов к люминисцентным лампам.
Люминисцентные лампы сейчас неактуальны из-за запрета их со следующего месяца, но для памяти пусть будет этот пост.

У них у всех два недостатка: транзисторы работают в линейном режиме и маленький дроссель. Если менять транзистор на большего размера, то надо параллельно переходу база-эмиттер и эмиттерному резистору припаять дополнительный резистор, он необходим для уменьшения усиления транзистора. Уменьшать усиление транзистора необходимо из-за того, что у транзисторов h31 увеличивается при увеличении мощности и транзисторы переключаются не из-за насыщения сердечника «кольца» положительной обратной связи, а из-за эффекта Кирка в транзисторах, то есть недостатка величины h31 для дальнейшего увеличения тока коллектора. Подбирать номинал этих двух резисторов можно по осциллографу, то есть начать с резистора номиналом 47 Ом и последовательно его уменьшать до тех пор, пока частота переключений не приблизится к резонансной и дальше увеличиваться не будет. Резонансной частоты достичь не удастся, она все равно будет ниже. Если нет осциллографа, то уменьшать номинал до тех пор, пока лампа не потухнет, а потом впаять резистор немного большего сопротивления. Если эти резисторы не монтировать, то будет перегруз лампы, дросселя и конденсатора 47нФ, так как частота может опуститься до резонансной для колебательного контура образованного конденсатором 47нФ и дроселем. В результате может разрушиться даже конденсатор 47нФ.

светильник ВУШК-675851-002

dial NHSB23 2700K E27 220-240V~50Hz 23W 170mA

балласт fintar dr184b

балласт fintar ebfl418

балласт fintar mcur418

балласт feron EB52 : EB315 E/B T8 2x36W 230V/50Hz 0.99C ABS CE

балласт TDM EB-T8-118-EA3

балласт ETL-118-A2 1Х18ВТ Т8/G13 ASD

светильник TDM Electric ЛПО136

каждый день 20w

лампочка народная 25Вт НЛ-DS-25Вт-4000K-E27

nakai 7Вт

nakai 11Вт

nakai 18Вт

nakai 20Вт

navigator ncl-sf10 20Вт

navigator ncl-sf10 30Вт

navigator ncl-sh 45Вт

tc-3u37a

TDM ELECTRIC КЛЛ-25Вт-4000K-E27

экономка 15w

Блок: 2/2 | Кол-во символов: 2125
Источник: https://zepete.livejournal.com/173053.html

Виды энергосберегающих ламп

Существует несколько критериев, по которым классифицируют энергосберегающие лампы. Самые распространенные из них — цоколь и температура свечения.

Цоколем называется элемент, использующийся для фиксации изделия в осветительном приборе и подаче электроэнергии. Его основные типы — резьбовой и штырьковый.

Наиболее часто в бытовой сфере используют резьбовые цоколи, вкручиваемые в обычные патроны. Они обозначаются буквой E и числовым значением, указывающим на диаметр в миллиметрах. Стандартным считается E27, в то время как E14 применяется в настольных светильниках или бра. И все же резьбовые цоколи чаще устанавливают в ДРЛ и натриевых лампах, предназначенных для уличного освещения.

Штырьковый тип применяют для специфических светильников. Выпускаются с двумя или четырьмя штырьками, а сами разъемы имеют маркировку с буквой G и числовым значением. Актуальны для мощных осветительных приборов.

В зависимости от температуры свечения энергосберегающая лампа излучает свет определенного оттенка (измеряется в Кельвинах):

  1. Теплый свет (желтый) — 2700 К. Оттенок схож со свечением обычных ламп (накаливания).
  2. Естественный белый свет — 4200 К. Лампы дневного света, нейтральный оттенок.
  3. Холодный свет (белый) — 6400 К. Приближен к синему спектру, поэтому характеризуется голубоватым оттенком. Обычно применяется на промышленных объектах в лампах от 65 Вт и выше.

Также энергосберегающие лампы выпускаются разных форм — бывают трубчатыми, спиральными, дугообразными. В первом случае отсутствуют какие-либо защитные элементы.

Блок: 2/7 | Кол-во символов: 1550
Источник: https://220.guru/osveshhenie/istochniki-sveta/sxema-energosberegayushhej-lampy.html

Принцип работы и устройство энергосберегающей лампы

КЛЛ состоит из стеклянной колбы полого типа, внутренняя часть которой заполнена парами ртути. При подаче электрического тока между электродами образуется дуговой разряд, связанный с пусковым конденсатором. За счет этого формируется ультрафиолетовое излучение, спектр которого невидим для человеческого глаза. Чтобы преобразовать свечение в видимый свет, внутренние стенки покрываются люминофором, гарантирующим яркое свечение. Если сравнить с лампой накаливания одинакового энергопотребления, то световая отдача будет существенно выше. Стоимость прибора зависит от того, из чего состоит люминофор.

Недостатком энергосберегающих ламп является тот факт, что их нельзя напрямую подключать к сети питания на 220 В. Находящиеся в них в выключенном состоянии пары ртути имеют высокое сопротивление, поэтому для формирования разряда нужен импульс с большим напряжением. После образования разряда сопротивление становится отрицательным. Если в схеме нет защитных элементов, то это приведет к короткому замыканию. В трубчатых приборах применяют электромагнитный балласт, устанавливаемый непосредственно в светильник.

Блок: 3/7 | Кол-во символов: 1163
Источник: https://220.guru/osveshhenie/istochniki-sveta/sxema-energosberegayushhej-lampy.html

Особенности импульсного блока питания

ИБП — это инверторная система, в которой входное напряжение выпрямляется, а затем преобразуется в импульсы. Главная особенность ИБП заключается в значительном увеличении частоты тока, передающегося на трансформатор. Также стоит отметить небольшие габариты такого устройства. Ещё одним преимуществом является то, что БП во время работы не имеет никаких потерь энергии, в отличие от линейных, которые теряют значительную часть во время преобразования на трансформатор.

Принцип функционирования импульсного блока питания из энергосберегающей лампы заключается в следующем:

  1. Входной выпрямитель, состоящий из диодного моста и конденсатора, превращает переменный ток (входной) в постоянный.
  2. Инвертор, в свою очередь, трансформирует постоянный ток в переменный, но частота при этом возрастает с 50 Гц до 10 кГц, что является выше в 200 раз.
  3. Такой ток передаётся на трансформатор. Он будет или повышать, или понижать напряжение.
  4. Выходной выпрямитель преобразует переменный ток в постоянный, но при этом частота остаётся высокой.

Как правило, в современных схемах используются MOSFET — транзисторы. Их главная особенность — очень быстрая скорость переключения. Соответственно в таких балластах должны быть использованы и быстродействующие диоды. Они размещаются в выходном выпрямителе.

При изготовлении ИБП лучше использовать диоды Шоттки, поскольку они меньше всего теряют энергию во время работы на высокой частоте (в отличие от кремниевых, у которых этот показатель значительно выше).

Если же выходное напряжение очень низкое, тогда функцию выпрямителя может выполнять транзистор. Кроме того, можно вместо этого использовать дроссель. Такие простые преобразователи тока встречаются в схемах энергосберегающих ламп на 20 Вт.

Блок: 3/5 | Кол-во символов: 1757
Источник: https://rusenergetics.ru/remont/blok-pitaniya-energosberegayushhej-lamp

Изготовление ИБП своими руками

Чаще всего во время изготовления импульсного БП требуется незначительно изменять строение дросселя, если для этой цели используется двухтранзисторная схема. Конечно же, некоторые элементы в устройстве нужно будет удалить.

Если же изготавливается БП, который будет иметь мощность 3,7−20 Ватт, в таком случае трансформатор не является основной составляющей. Вместо него лучше всего сделать несколько витков провода, которые закрепляются на магнитопровод. Для этого необязательно избавляться от старой намотки, их можно выполнить поверх.

Рекомендуется для этой цели использовать провод марки МГТФ, имеющий фторопластовую изоляцию. Понадобится небольшое его количество. Несмотря на это обмотка будет полностью покрыта, поскольку большая часть отводится на изоляцию. Из-за этого такие устройства имеют низкие показатели мощности. Для её увеличения требуется использовать трансформатор переменного тока.

Использование трансформатора

Главным преимуществом при изготовлении блока питания своими руками является то, что есть возможность подстраиваться под показатели трансформатора. Кроме этого, не потребуется цепь обратной связи, которая чаще всего является неотъемлемой частью в работе устройства. Даже если во время сборки были сделаны какие-либо ошибки, чаще всего такой блок будет работать.

Для того чтобы сделать собственноручно трансформатор, потребуется иметь дроссель, межобмоточную изоляцию, а также обмотку. Последнюю лучше всего выполнить из лакированного медного провода. Следует не забывать о том, что дроссель будет работать под напряжением.

Обмотку нужно тщательно изолировать даже тогда, когда она имеет заводскую специальную защитную плёнку из синтетического материала. В качестве изоляции можно использовать или электрокартон, или же обычную бумажную ленту, толщина которой должна быть не меньше 0,1 мм. Только после того, как будет сделана изоляция, можно поверх неё наматывать медный провод.

Что касается обмотки, то провод лучше всего выбрать как можно толще, а вот количество необходимых витков можно подобрать исходя из требуемых показателей работы будущего устройства.

Таким образом, можно сделать ИБП, который будет иметь мощность более 20 Вт.

Назначение выпрямителя

Для того чтобы в импульсном блоке не произошло насыщение магнитопровода, требуется использовать только двухполупериодный выходной выпрямитель. В том случае, если трансформатор должен понижать напряжение, рекомендуется использование схемы с нулевой точкой. Чтобы выполнить такую схему, нужно иметь две абсолютно одинаковые вторичные обмотки. Их можно сделать самостоятельно.

Следует учитывать то, что выпрямитель по типу «диодный мост» для этой цели не подходит. Это связано с тем, что значительное количество мощности во время передачи будет теряться, а значение электрического напряжения будет минимальным (менее 12В). Но если делать выпрямитель из специальных импульсных диодов, тогда стоимость такого устройства обойдётся значительно дороже.

Наладка устройства

После того как БП будет собран, требуется проверить его работу на максимальной мощности. Это необходимо для того, чтобы измерить температуру нагревания трансформатора и транзистора, значения которых не должны превышать 65 и 40 градусов соответственно. Чтобы избежать перегрева этих элементов, достаточно увеличить сечение провода обмотки. Также часто помогает изменение мощности магнитопровода в большую сторону (учитывается ЭПР). В том случае, если дроссель был взят из балласта светодиодного фонаря, увеличить сечение не получится. Единственным вариантом будет контролировать нагрузку на прибор.

Блок: 4/5 | Кол-во символов: 3582
Источник: https://rusenergetics.ru/remont/blok-pitaniya-energosberegayushhej-lamp

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Isotronic 11W

Блок: 4/16 | Кол-во символов: 53
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Ремонт бытовых люминесцентных ламп с электронным балластом

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Блок: 5/8 | Кол-во символов: 934
Источник: https://go-radio.ru/lumen.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Luxtek 8W

Блок: 5/16 | Кол-во символов: 49
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Как происходит зажигание лампы

Когда напряжение попадает на динистор, образовывается импульс, который идет на транзистор и провоцирует его открытие. После того как запуск завершен, эта часть цепи блокируется диодом. После открытия транзистора конденсатор разряжается, что необходимо для предупреждения повторного открытия динистора. Транзисторы воздействуют на трансформатор. Он выполнен из ферритового колечка, обработанного тремя обмотками, расположенными в несколько рядов. Напряжение на нити дается через конденсатор с повышающего резонансного контура.

Свечение в трубке начинается на резонансной частоте, которую определяет конденсатор большей емкости. В момент зажигания его напряжение составляет до 600 Вт. При запуске оно превышает среднее в 5 раз, потому важно, чтобы колба была целой и герметичной. В противном случае возможно повреждение транзисторов.

После полной ионизации газа в колбе конденсатор с самой большей емкостью, который определял частоту свечения, шунтируется. Это приводит к понижению частоты и переходу управления генератором ко второму конденсатору. Генерируемое напряжение снижается, но остается в пределах такого, которое необходимо для поддержания горения лампочки.

Принципиальный момент заключается в том, что катод и анод поочередно меняются своими местами, это помогает обеспечить бесперебойность работы схемы и значительно упрощает ремонт, если его нужно сделать.

Блок: 5/9 | Кол-во символов: 1405
Источник: https://hitropop.com/energosberezhenie/svet/skhema-ehnergosberegayushchej-lampy.html

Опасность люминесцентных ламп и рекомендации по использованию

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Блок: 6/8 | Кол-во символов: 1247
Источник: https://go-radio.ru/lumen.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Maway 11W

Блок: 6/16 | Кол-во символов: 49
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Разборка люминесцентной лампы с электронным балластом

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Блок: 7/8 | Кол-во символов: 958
Источник: https://go-radio.ru/lumen.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Maxi-Lux 15W

Блок: 7/16 | Кол-во символов: 52
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Целесообразность вмешательства в схемы

Производить ремонт ламп на 30 W или энергосберегающих приборов другой мощности можно только в том случае, если вы уверенны в своих силах и знаниях. Когда же вы не понимаете, как устроена схема лампы, и что в ней может сломаться, лучше всего не пытайтесь самостоятельно устранить поломку.

Запрещено производить какие-либо действия с экономками, если нарушена целостность их колб. В трубке содержится ртуть или ее пары, потому при ее разгерметизации прибор становится опасным для здоровья и жизни человека.

Блок: 8/9 | Кол-во символов: 546
Источник: https://hitropop.com/energosberezhenie/svet/skhema-ehnergosberegayushchej-lampy.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Polaris 11W

Блок: 8/16 | Кол-во символов: 51
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Подытожим

Схемы энергосберегающих ламп практически одинаковы во всех моделях. Различия могут быть в наличии диодов, шунтирующих спиралей и других элементов. Однако если вы знаете устройство электроники одного прибора, то работать со всеми остальными будет довольно просто.

Схемами интересуются зачастую люди, которые хотят самостоятельно починить вышедшие из строя осветительные приборы. Делать это несложно, если вы имеете необходимые навыки и уверены, что экономку можно привести в рабочее состояние.

Блок: 9/9 | Кол-во символов: 522
Источник: https://hitropop.com/energosberezhenie/svet/skhema-ehnergosberegayushchej-lampy.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Brownie X 20W

Блок: 9/16 | Кол-во символов: 53
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Philips Ecotone 11W

Блок: 10/16 | Кол-во символов: 59
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Ikea 7W

Блок: 11/16 | Кол-во символов: 47
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Osram Dulux EL 11W

Блок: 12/16 | Кол-во символов: 58
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Eurolite 23W

Блок: 14/16 | Кол-во символов: 52
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Vitoone

Блок: 15/16 | Кол-во символов: 47
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Ñõåìà ýíåðãîñáåðåãàþùåé ëàìïû Philips Economy 6YR 23W

Âíèìàíèå! Âñå ýëåìåíòû ýíåðãîñáåðåãàþùåé ëàìïû íàõîäÿòñÿ íàïðÿæåíèåì! Ðàáîòû ïî óñòðàíåíèþ íåèñïðàâíîñòåé íåîáõîäèìî ïðîâîäèòü, ïðèíÿâ âñå ìåðû áåçîïàñíîñòè! Åñëè Âàøà êâàëèôèêàöèÿ íå ïîçâîëÿåò âàì ýòîãî ñäåëàòü, ëó÷øå âîçäåðæèòåñü îò ïîïûòîê ðåìîíòà!

Блок: 16/16 | Кол-во символов: 310
Источник: https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html

Кол-во блоков: 37 | Общее кол-во символов: 24950
Количество использованных доноров: 7
Информация по каждому донору:
  1. https://go-radio.ru/lumen.html: использовано 4 блоков из 8, кол-во символов 3666 (15%)
  2. https://rusenergetics.ru/remont/blok-pitaniya-energosberegayushhej-lamp: использовано 4 блоков из 5, кол-во символов 6638 (27%)
  3. https://hitropop.com/energosberezhenie/svet/skhema-ehnergosberegayushchej-lampy.html: использовано 5 блоков из 9, кол-во символов 4254 (17%)
  4. https://220.guru/osveshhenie/istochniki-sveta/sxema-energosberegayushhej-lampy.html: использовано 3 блоков из 7, кол-во символов 3339 (13%)
  5. https://www.asutpp.ru/remont-energosberegayushhej-lampy-svoimi-rukami.html: использовано 2 блоков из 5, кол-во символов 3999 (16%)
  6. https://www.calc.ru/Skhemy-Energosberegayushchikh-Lamp.html: использовано 13 блоков из 16, кол-во символов 929 (4%)
  7. https://zepete.livejournal.com/173053.html: использовано 1 блоков из 2, кол-во символов 2125 (9%)

isanshop.ru

Схемы энергосберегающих ламп. — Мысли злого плебея — ЖЖ

11:27 pm — Схемы энергосберегающих ламп.

Какие у меня есть схемы энергосберегающих ламп и балластов к люминисцентным лампам.

Люминисцентные лампы сейчас неактуальны из-за запрета их со следующего месяца, но для памяти пусть будет этот пост.

У них у всех два недостатка: транзисторы работают в линейном режиме и маленький дроссель. Если менять транзистор на большего размера, то надо параллельно переходу база-эмиттер и эмиттерному резистору припаять дополнительный резистор, он необходим для уменьшения усиления транзистора. Уменьшать усиление транзистора необходимо из-за того, что у транзисторов h31 увеличивается при увеличении мощности и транзисторы переключаются не из-за насыщения сердечника «кольца» положительной обратной связи, а из-за эффекта Кирка в транзисторах, то есть недостатка величины h31 для дальнейшего увеличения тока коллектора. Подбирать номинал этих двух резисторов можно по осциллографу, то есть начать с резистора номиналом 47 Ом и последовательно его уменьшать до тех пор, пока частота переключений не приблизится к резонансной и дальше увеличиваться не будет. Резонансной частоты достичь не удастся, она все равно будет ниже. Если нет осциллографа, то уменьшать номинал до тех пор, пока лампа не потухнет, а потом впаять резистор немного большего сопротивления. Если эти резисторы не монтировать, то будет перегруз лампы, дросселя и конденсатора 47нФ, так как частота может опуститься до резонансной для колебательного контура образованного конденсатором 47нФ и дроселем. В результате может разрушиться даже конденсатор 47нФ.

светильник ВУШК-675851-002

dial NHSB23 2700K E27 220-240V~50Hz 23W 170mA

балласт fintar dr184b

балласт fintar ebfl418

балласт fintar mcur418

балласт feron EB52 : EB315 E/B T8 2x36W 230V/50Hz 0.99C ABS CE

балласт TDM EB-T8-118-EA3

балласт ETL-118-A2 1Х18ВТ Т8/G13 ASD

светильник TDM Electric ЛПО136

каждый день 20w

лампочка народная 25Вт НЛ-DS-25Вт-4000K-E27

nakai 7Вт

nakai 11Вт

nakai 18Вт

nakai 20Вт

navigator ncl-sf10 20Вт

navigator ncl-sf10 30Вт

navigator ncl-sh 45Вт

tc-3u37a

\TDM ELECTRIC КЛЛ-25Вт-4000K-E27

экономка 15w

zepete.livejournal.com

СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

     Энергосберегающие лампы с цоколем, аналогичным обычной лампе накаливания, успели стать довольно популярными. Но несмотря на рекламные характеристики долговечности, выходы из строя этих ламп происходят часто. Разборка корпуса КЛЛ проводится с помощью плоской отвертки, которой проводят постепенно отжимая защелки по периметру. В цоколе лампы установлена плата электронного блока, которая соединена проводами с баллоном лампы с одной стороны и двумя проводами с цоколем с дрогой стороны. 

ПЛАТА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ
     Прежде всего при ремонте необходимо проверить целостность нитей лампы, сопротивление нитей должно быть 10-15 Ом. Ещё одной типичиной неисправностью является выход из строя транзисторов генератора ИП. Если наблюдается мерцание лампы, скорее всего имеется пробой высоковольтного конденсатора, включенного между нитями накала лампы.

СХЕМА КЛЛ

СХЕМА ЛЮМИНИСЦЕНТНОЙ ЛАМПЫ

     Здесь приводится сборник схем энергосберегающих ламп различных моделей и производителей. В принципе все эти схемы не сильно отличаются друг от друга и подходят к абсолютному большинству энергосберегающих ламп. 

СХЕМА ЛАМПЫ PHILIPS

     В архиве представлен сборник схем энергосберегающих ламп таких моделей:

  • — Схема энергосберегающей лампы LUXAR;
  • — Схема энергосберегающей лампы Bigluz;
  • — Схема энергосберегающей лампы Luxtek;
  • — Схема энергосберегающей лампы BrownieX;
  • — Схема энергосберегающей лампы Isotronic;
  • — Схема энергосберегающей лампы Polaris;
  • — Схема энергосберегающей лампы Maway;
  • — Схема энергосберегающей лампы Philips.

     Если причиной выхода из строя лампы является перегорание нитей подогрева стеклянной колбы, такую люминецентную лампу можно питать постоянным током, а рабочий преобразователь стоит использовать для питания обычных длинных ламп дневного света. Если причиной отказа энергосберегающей лампы является именно плата – с помощью данных схем починить её будет не проблема. Ну а когда от лампы остался только корпус с патроном — остаётся лишь переделать её в светодиодную.

     ФОРУМ по энергосберегающим люминесцентным лампам.

   Бытовая техника

elwo.ru

Схема энергосберегающей лампы на 220В разной мощности: устройство и особенности

Содержание статьи:

Любая схема энергосберегающей лампы на 220 В представляет собой совокупность электронных компонентов, каждый из которых выполняет свою, вполне конкретную функцию. Небольшие отклонения от базовой конструкции не оказывают принципиального влияния на ее общие характеристики. В основном эти различия проявляются в разнообразии типов цоколей, а также в потребляемой изделием мощности.

Виды энергосберегающих ламп

Различные формы колб и цоколей энергосберегающих ламп

Известные образцы энергосберегающих лампочек, к которым традиционно относят светодиодные, галогенные и люминесцентные модели, классифицируются по следующим признакам:

  • вид цоколя;
  • характерная для каждой модели температура свечения;
  • потребляемая мощность;
  • форма колбы.

По виду цоколя, используемого для фиксации лампочек в осветительном приборе, большинство из них делятся на резьбовые и штырьковые изделия.

Назначение цоколей ламп

Наиболее часто в быту встречаются резьбовые цоколи, которые вкручиваются в стандартные патроны различного диаметра (как для ламп накаливания).

При описании изделия этот элемент обозначается буквой «E» со следующим за ней числом, соответствующим диаметру в миллиметрах. Стандартный размер большинства выпускаемых ламп – E27, а изделия с диаметром E14 устанавливаются в светильники или бра.

Резьбовые цоколи чаще всего используются в лампах, предназначенных для уличного освещения (в ДРЛ и натриевых). Изделия штырькового типа подходят только для светильников особой конструкции и повышенной мощности. Они имеют разные модификации, отличающиеся количеством штырей (два или четыре), а их разъемы маркируются буквой «G» с соответствующим численным значком.

Типы освещенности в зависимости от цветовой температуры света

В зависимости от температуры свечения, измеряемой по Кельвину, каждый образец энергосберегающей лампы излучает свет «своего» оттенка.

  • Теплый свет с показателем 2700 К, внешне напоминающий желтый оттенок. Он очень похож на свечение обычных ламп накаливания.
  • Естественный белый с температурой 4200 К. Это так называемые «лампы дневного света», имеющие нейтральный колер.
  • «Холодное» свечение, как оттенок белого с температурным значением 6400 К.

Холодный свет близок к синему спектру и напоминает слегка голубоватый цвет. Лампочки с таким свечением чаще всего применяются в производственных помещениях и рассчитываются на мощность от 65 Ватт и более.

Энергосберегающие изделия различаются по форме колбы: спиралевидные, дугообразные и трубчатые.

Принципы работы

Принцип работы энергосберегающих излучателей рассмотрим на примере КЛЛ – компактного люминесцентного осветителя, пользующегося большим спросом у населения. Этот тип осветительных приборов состоит из полой стеклянной колбы, внутреннее пространство которой заполнено ртутными парами. При подаче высокого напряжения на контакты между его электродами формируется дуговой разряд, приводящий к образованию ультрафиолетового излучения, невидимого для человеческого глаза. Для его превращения в видимый свет внутренние стенки колбы покрываются люминофором, позволяющим получать яркое свечение.

При его сравнении с тем же показателем для ламп накаливания схожей мощности световая отдача в этом случае заметно выше. Недостаток таких изделий – невозможность прямого включения в цепь питания 220 Вольт. Как следствие – обязательность применения специального преобразующего устройства, называемого электронным балластом.

Устройство ЛЛ

Устройство лампы

Под внешними конструктивными элементами располагается электронная схема лампы – она обозначается как ЭПРА или пускорегулирующий аппарат. Этот узел в полном составе имеется далеко не в каждой модели «экономки». Там же где пусковой регулятор установлен в классической комплектации, схема эконом лампы состоит из следующих основных модулей и деталей:

  • пусковой конденсатор, обеспечивающий получение мощного импульса, необходимого для запуска схемы;
  • сетевой фильтр, позволяющий снизить уровень радиочастотных помех до приемлемого уровня – избавиться от эффекта мерцания;
  • емкостный фильтр, сглаживающий пульсации токовой составляющей;
  • ограничивающий ток дроссель, необходимый для защиты от перегрузок;
  • биполярные транзисторы и драйвер.

Схема лампочки содержит в своем составе предохранитель, защищающий ее от выхода из строя при резких скачках напряжения, и ряд дополнительных элементов.

Составляющие схемы балласта и особенности его работы

Электронный балласт энергосберегающей лампы фирмы DELUX

В состав электронного балласта входят формирователь, транзисторный ключ, а также выходной трансформатор с элементами резонансного запуска. Порядок работы этого блока:

  1. Формируемый в задающем модуле импульс тока поступает на базу транзистора и приводит к его открытию.
  2. Сразу же вслед за этим происходит заряд конденсатора, скорость которого определяется дополнительными элементами схемы.
  3. С выхода транзисторного ключа импульсы поступают на малогабаритный трансформатор.
  4. С его вторичной обмотки через резонансный контур с конденсатором пониженное импульсное напряжение подается на контакты лампы.

Принципиальная схема электронного балласта для ЛЛ

Формируемое в трубке свечение характеризуется присущей только ей резонансной частотой, зависящей от емкости подключаемого в параллель конденсатора. В начальный момент при зажигании величина импульсов достигает до 600 Вольт, что вынуждает применять специальные меры защиты от перенапряжений. Сделать это удается за счет применения в схеме шунтирующего конденсатора, позволяющего сразу же после пробоя «срывать» резонанс и переводить лампу в рабочее состояние с постоянным свечением. Его прерывание возможно только после срабатывания выключателя, установленного в самом осветительном приборе.

Порядок восстановления и необходимость в ремонте

Паз между верхней и нижней частью корпуса

При возникновении неисправностей в энергосберегающей лампочке следует разобрать ее на составные части. Для этого придется проделать следующие операции:

  1. Отсоединить две сборные половинки, а затем снять колбу.
  2. Посредством омметра, заряженного свежей батарейкой, «прозвонить» обе спирали накала на предмет отсутствия в них обрыва.

    Штыри, к которым прикручены провода

  3. При его обнаружении можно попытаться использовать хотя бы одну из них.
  4. Для этого необходимо перемкнуть сгоревшую ветвь посредством резистора номиналом 22 Ома и мощностью порядка 1-2 Ватта.

При проведении этой операции потребуется демонтировать шунтирующий спираль диод, если он есть в схеме.

Все эти действия справедливы для схем энергосберегающих ламп на 20 Вт, не более.

При перегорании спиралей в осветительных изделиях мощностью свыше 30 Ватт с большой вероятностью выйдет из строя ключевой транзистор. Для восстановления работоспособности схемы следует заменить их новыми деталями. В единичном случае ремонт изделия, стоящего копейки, не имеет смысла – гораздо проще купить новый балласт.

Опасность ЛЛ и рекомендации по использованию

Наличие ультрафиолетового компонента в излучении энергосберегающей лампы опасно для здоровья человека. Это отрицательно сказывается на состоянии большинства жизненно важных органов:

  • воздействие УФ излучения вредно для кожи и приводит к ее раннему старению;
  • возможны такие нарушения, как аллергия, экзема и псориаз;
  • нередко ультрафиолет вызывает приступы эпилепсии, мигрени, а также ухудшает общее состояние организма.

Сила опасного излучения зависит от места установки ЛЛ и расстояния до облучаемого объекта. В связи с этим их не рекомендуется использовать в светильниках, устанавливаемых на стол или навешиваемых на стены. Это тем более важно, если принимать во внимание опасность воздействия излучения на зрение человека.

Образцом практически безопасного излучателя является лампа ЛБО О8М 36 Н с электрической схемой которой можно ознакомиться в любом справочнике. При своевременном принятии защитных мер организационного характера эксплуатация энергосберегающих излучателей, как правило, не вызывает особых затруднений.

strojdvor.ru

Изготовление светодиодной лампы из негодной энергосберегающей

РадиоКот >Лаборатория >Радиолюбительские технологии >

Изготовление светодиодной лампы из негодной энергосберегающей

           Бум люминесцентных энергосберегающих ламп постепенно подходит к своему завершению. На смену им уже пришли светодиодные лампы, обладающие неоспоримыми преимуществами: лучшая экономичность, моментальный выход в рабочий режим, большой срок службы, они не содержат паров ртути и не излучают ультрафиолет после выгорания люминофора внутри колбы. Единственная заминка – это пока ещё высокая стоимость светодиодных ламп. Но если имеется вышедшая из строя люминесцентная энергосберегающая лампа, то её можно легко переделать в светодиодную, используя приведенные ниже способы.

            Сначала небольшое предисловие.

            Приобретённые несколько лет назад энергосберегающие лампы фирмы ECOLIGHT довольно таки быстро стали выходить из строя. Сначала перегорела нить накала в колбе одной лампы, но эта неисправность была оперативно устранена путём установки перемычки на печатной плате параллельно оборванной нити накала. Лампа замечательно зажигалась и от оставшейся целой нити накала. Затем та же участь постигла вторую лампу. После ремонта, поработав ещё где-то с полгода, перегорели и оставшиеся нити накала сначала в одной лампе, а через месяц и в другой. Связываться с люминесцентными лампами больше не захотелось, и возникла мысль о переделке вышедших из строя ламп в светодиодные.

            Первая лампа имела мощность 18 Вт и довольно широкий корпус диаметром 55 мм, что натолкнуло на мысль установить в нём несколько десятков ультраярких белых светодиодов с рабочим током 20 мА, включив их в сеть последовательно через диодный мост, а в качестве гасящего балласта использовать конденсатор. В результате получилась схема, показанная на рисунке ниже:

 

            Всего было использовано 40 светодиодов HL-654h345WC ø4.8 мм с яркостью 1,5 Cd и углом 140°. Схема собрана на двух печатных платах из одностороннего фольгированного стеклотекстолита:

 

            Между собой платы скреплены при помощи одной стойки по центру. Вот что получилось в итоге:

 

            Субъективно яркость свечения этой лампы оказалась примерно такая же, как и у 30-ваттной лампы накаливания, а потребляемая мощность – всего 1,1 Вт:

 

            Оттенок лампы по сравнению с лампой накаливания получился намного холоднее.

           Что интересно, однотипные и одинаковые по яркости светодиоды тёплого и холодного оттенка, имеющиеся в продаже, отличаются по цене в 4 раза, но даже применённые светодиоды тёплого свечения (более дорогие) по сравнению с лампой накаливания имеют синеватый оттенок. Что касается получившейся стоимости изготовленной светодиодной лампы, то она оказалась на уровне готовой покупной с аналогичным количеством светодиодов. Правда неизвестно, есть ли в этих готовых лампах на 220 В выпрямитель со сглаживающим конденсатором. Скорее всего, нет, ведь проще и дешевле соединить последовательно пары встречно включённых светодиодов и добавить балластный конденсатор. И пусть себе мигает лампа с удвоенной частотой сети, ведь китайскому производителю нет никакого дела до зрения потребителя.

 

            Учитывая довольно высокую стоимость сорока светодиодов (0.125$ * 40 = 5$), для переделки второй лампы мощностью 9 Вт в корпусе диаметром 38,5 мм

 

           было решено использовать один мощный трёхваттный светодиод. Выбор пал на EDEX-3LA1-E1 стоимостью 1.875$, имеющий следующие характеристики:

           цветовая температура………………………….3200 К;

           световой поток (при токе 700 мА)…………..130 лм;

           угол свечения…………………………………….135°;

           рабочий ток………………………………………700 мА;

           напряжение……………………………………….4 В.

           К этим светодиодам в продаже имеются готовые радиаторы “STAR” стоимостью 0.156$:

 

 

           Чтобы получить ток величиной до 700мА для запитки такого мощного светодиода было решено использовать уже имеющийся преобразователь в перегоревшей люминесцентной лампе. Замкнув все выводы колбы лампы и намотав на имеющийся на плате дроссель дополнительную обмотку, такой преобразователь можно превратить  источник питания с минимальными затратами. По сути, из лампы получается готовый электронный трансформатор, необходимо только обеспечить стабилизированный ток для питания светодиода.

           Вот схема энергосберегающей лампы, срисованная прямо с платы:

 

           Для переделки её в электронный трансформатор достаточно выпаять колбу, замкнуть между собой точки 2 и 4 платы и намотать дополнительную обмотку на дроссель L2. К дополнительной обмотке подключается выпрямитель с фильтром.

           Для стабилизации тока через светодиод первоначально был опробован способ, предложенный в [1]. Суть его заключается в намотке дополнительной обмотки на управляющий трансформатор T1 и шунтировании её открывающимися полевыми транзисторами для срыва колебаний преобразователя при превышении выходного напряжения (тока). Однако ничего путного из этого не вышло. Как показал анализ работы приведенной выше схемы, для восстановления колебаний преобразователя необходимо время около 3 мс для заряда конденсатора C3 до напряжения пробоя динистора DB3 (30 В). Даже при очень кратковременном шунтировании дополнительной обмотки на Т1 время повторного запуска преобразователя составляло около 3 мс. В результате регулировочная характеристика преобразователя получается неполной. При попытке лишь “слегка” уменьшить выходное напряжение, к примеру до 90…95 %, на выходе фильтра выпрямителя (с дополнительной силовой обмотки дросселя) вместо постоянного напряжения сразу появлялись короткие положительные импульсы с относительно длительными провалами 3 мс. Т.е. пределы регулирования были возможны лишь на начальном небольшом участке работы преобразователя.

           Поэтому было применено другое схемное решение, показанное на рисунке ниже:

 

           Дополнительная схема представляет собой импульсный стабилизатор тока, собранный без применения специализированных микросхем на широко распространённой дешевой элементной базе. На дроссель лампы наматывается дополнительная обмотка, напряжение с которой подаётся на диодный мост VD1…VD4 с конденсаторами фильтра C1, C3. Использование мостовой схемы вызвано сложностью намотки на дроссель L2 вдвое большого числа витков с отводом от середины ввиду ограниченного места.

           На микросхеме DA1 выполнен стабилизатор напряжения +2,5 В для питания компаратора DA2 и резистивного формирователя опорного напряжения R5, R6. Резистор R7 сопротивлением 0,1 Ом выполняет функцию датчика тока. На транзисторах VT1, VT2 собран силовой ключ. В исходном состоянии при подаче питания, пока ток через светодиод HL1 ещё не протекает, на выходе компаратора DA2 высокий уровень, VT1 закрыт а VT2 открыт через R4. Через дроссель L1 в нагрузку протекает нарастающий ток. При превышении на инвертирующем входе компаратора DA2 опорного напряжения последний переключается в состояние с низким уровнем на выходе. VT1 резко открывается и шунтирует переход з-и VT2, закрывая последний и вызывая ток самоиндукции в цепи VD5, L1, C4, C5, HL1, R7. После уменьшения напряжения на инвертирующем входе компаратора DA2 по мере разряда C4, C5, последний опять переходит в состояние с высоким уровнем на выходе. VT1 закрывается, VT2 открывается и весь процесс повторяется заново. Частота колебаний при входном напряжении 7 В составляет 50…70 кГц. Измеренный КПД импульсного стабилизатора тока составил 86%.

           Величина тока через светодиод выбрана равной 0,6 А для более щадящего режима работы и меньшего его нагрева.

 

               Процедура переделки энергосберегающей лампы

           Вскрывается корпус лампы при помощи плоской отвёртки (крепление на защёлках). Верхняя часть с колбой осторожно утилизируется (Внимание! В колбе пары ртути! При повреждении колбы необходимо провести обработку окружающих контактировавших предметов раствором марганцовки). Из платы конденсатор C5 можно выпаять, т.к. в работе он не участвует. Закорачиваются точки 2 и 4 на плате. Выпаивается дроссель L2 и проводом МГТФ-0,1 наматывается дополнительная обмотка из 14 витков (практически до полного заполнения зазора). Лучше использовать именно МГТФ для хорошей гальванической развязки.

 

           Дроссель впаивается на место. Не помешает проверить ESR-метром электролит C3. При возможности его лучше заменить на новый ёмкостью 4,7…10 мкФ х 400 В (105°С). Это уменьшит пульсации частотой 100 Гц на выходе преобразователя.

           После этого изготавливается плата из одностороннего фольгированного стеклотекстолита:

 

 

           Для изготовления дросселя L1 использован готовый ДП2-0,1 на 100 мкГн. С него ножом снята штатная обмотка и намотана новая проводом ПЭВ2 ø0,3 мм в равномерно по всей длине сердечника в 3 слоя. Индуктивность дросселя 51 мкГн. Можно использовать и покупной дроссель подходящих габаритов с индуктивностью 47 мкГн и рассчитанный на ток не менее 1,5…2 А.

           Транзистор VT2 IRLML6401 можно попробовать заменить на IRLML6402.

           Диоды VD1…VD4 SS14 можно заменить на любые подходящие SMD-диоды Шоттки, рассчитанные на ток не менее 1А и обратное напряжение 30…40В, например SM5818, SM5819.

           Диод VD5 SS24 (2А, 40В) заменим на SS22, 10BQ015 или аналогичные.

           Как было сказано выше, светодиод распаивается на готовый радиатор “STAR”, который в свою очередь устанавливается на более массивный радиатор. В данном случае использован радиатор со старой материнской платы. С отрезанными “ушками” крепления его габариты 37,5 х 37,5 х 6 мм. Радиатор крепится к дополнительной плате на 3-х стойках М3х15. Сама плата крепится к верхней части корпуса лампы несколькими витками изоленты. Между штатной и дополнительной платами необходимо проложить изоляционную прокладку, вырезанную, например, из нефольгированного стеклотекстолита.

 

            Первое включение доработанной лампы желательно производить с нагрузкой в виде 5-ваттного резистора сопротивлением 5…6 Ом с последовательно включённым амперметром. К сети 220 В лампу безопаснее включать через обычную лампочку накаливания на 40…60 Вт. В нормальном режиме работы её спираль светиться не должна. На катоде VD5 должны присутствовать прямоугольные импульсы частотой 50…70 кГц. Напряжение на C3 должно быть 5…8 В, ток через нагрузку 0,6 А. Более точно величину тока можно выставить подбором сопротивления резистора R5. После этого можно подключать светодиод.

            Субъективно яркость свечения доработанной таким образом лампы соответствует лампе накаливания мощностью 30 Вт. Оттенок тёплый, но по сравнению с лампой накаливания немного холоднее. Измеренная потребляемая мощность составила 3,3 Вт:

 

            Себестоимость второго варианта светодиодной лампы составила около 3.2$.

 

            Литература:

1) Как стабилизировать электронный трансформатор. А.Е.Шуфотинский. Радиоаматор №1/2010.

Файлы:
Datasheet на светодиод
Плата 1 в Layout
Плата 2 в Layout

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп


Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампБесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
За час работы измерил температуру нагрева светодиода и она показала 40 градусов Цельсия.
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
По моим ощущениям освещенность от светодиода примерно соответствует лампе накаливания на 100 ватт .
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Эта переделанная настольная лампа на светодиоде работает уже полгода. Нареканий нет, меня устраивает. В общем результате получился драйвер для светодиодов бесплатно и из бросовых материалов. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о