РазноеСхема импульсного блока питания на 10 а и регулировкой напряжения – Простые импульсные блоки питания » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Схема импульсного блока питания на 10 а и регулировкой напряжения – Простые импульсные блоки питания » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Содержание

Импульсный блок питания на IR2153

Приветствую, Самоделкины!
В данной статье мы вместе с Романом (автором YouTube канала «Open Frime TV») соберем универсальный блок питания на микросхеме IR2153. Это некий «франкенштейн», который содержит в себе лучшие качества из разных схем.

В интернете полно схем блоков питания на микросхеме IR2153. Каждая из них имеет некие положительные особенности, но вот универсальной схемы автор еще не встречал. Поэтому было принято решение создать такую схему и показать ее вам. Думаю, можно сразу к ней перейти. Итак, давайте разбираться.

Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом мы убиваем двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги. Автор специально сделал несколько отверстий в плате под разные размеры конденсаторов.

Если же блока нету в наличии, то цены на пару таких конденсаторов ниже чем на один высоковольтный. Емкость конденсаторов одинакова и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.


Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что экономит нам место. И это еще не все. Напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.


Следующая особенность схемы, это запитка для IR2153. Все кто строил блоки на ней сталкивались нереальным нагревом питающих резисторов.


Даже если их ставить от переменки, количество тепла выделяется очень много. Тут же применено гениальное решение, использование вместо резистора конденсатор, а это нам дает то, что нагрев элемента по питанию отсутствует.

Такое решение автор данной самоделки увидел у Юрия, автора YouTube канала "Red Shade". Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.

Но после тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое автор установил защиту. Если она не нужна, то можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.


Ток защиты регулируется с помощью вот этого подстроечного резистора:

Номиналы резисторов шунта изменяетюся в зависимости от максимальной выходной мощности. Чем больше мощность, тем меньше нужно сопротивление. Вот к примеру, для мощности ниже 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то нужны резисторы на 0,2 Ом, ну и при 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом.

Данный блок не стоит собирать мощностью выше 600 Вт, а также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц, это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.


Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.

Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.

Если же нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.


Также необходимо отметить и такие вспомогательные элементы как снабберы (Snubber) в обвязке трансформатора;

сглаживающие конденсаторы;

а также Y-конденсатор между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.

Про данные конденсаторы есть отличный ролик на Ютубе (ссылку автор прикрепил в описании под своим видеороликом (ссылка ИСТОЧНИК в конце статьи)).

Нельзя пропускать и частотозадающую часть схемы.

Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая - это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.


Сейчас вы можете видеть 2-е макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.

Макетки автор делал для того, чтобы со спокойной душой заказать изготовление данной платы в Китае. В описании под оригинальным видеороликом автора, вы найдете архив с данной платой, схемой и печаткой. Там будет в двух платках и первый, и второй варианты, так что можете скачивать и повторять данный проект.

После заказа автор с нетерпением ждал платы, и вот они уже приехали. Раскрываем посылку, платы достаточно хорошо упакованы - не придерешься. Визуально осматриваем их, вроде все отлично, и сразу же приступаем к запайке платы.


И вот она уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне. Автор применил вот такие круглые, потому что их размеры весьма скромные.


Далее видим конденсаторы фильтра.

Их можно достать из старого блока питания компьютера. Дроссель автор мотал на кольце т-9052, 10 витков проводом 0,8 мм 2 жилы, но можно применить дроссель из того же компьютерного блока питания.
Диодный мост – любой, с током не меньше 10 А.

Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой по низкой.


Ну и остается дроссель по низкой стороне, его мотаем 8-10 витков на таком же сердечнике, что и сетевой.
Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.

Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.


Если все работает в штатном режиме лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.

Как видим защита сработала, все хорошо, теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.


Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.

А на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Схема импульсного блока питания - четыре версии на чипе IR2153

Схема импульсного блока питания — 4 рабочие схемы

Схема импульсного блока питания-1Схема импульсного блока питания-1

Схема импульсного блока питания, но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.

Но вот сейчас, в середине 2018 года, автор решил вновь предложить их вам для повторения, схемы абсолютно рабочие. В данной статье к сожалению не каждая схема имеет для наглядности фото уже готового прибора, но это пока все, что есть.

В общем начнем пока с так называемого «высоковольтного» блока питания:

Схема импульсного блока питания-2Схема импульсного блока питания-2

Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.

В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.

Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.

Схема импульсного блока питания-3Схема импульсного блока питания-3

Схема импульсного блока питания-4Схема импульсного блока питания-4

Схема импульсного блока питания-5Схема импульсного блока питания-5

Теперь рассмотрим следующий блок питания:

Схема импульсного блока питания-6Схема импульсного блока питания-6

Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.

Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.

Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.

Схема импульсного блока питания-7Схема импульсного блока питания-7

Схема импульсного блока питания-8Схема импульсного блока питания-8

Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:

Схема импульсного блока питания-9Схема импульсного блока питания-9

Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.

Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.

Схема импульсного блока питания-10Схема импульсного блока питания-10

Четвертая схема импульсника:

Схема импульсного блока питания-11Схема импульсного блока питания-11

В этой схеме все упрощено до придела, здесь нет защиты от короткого замыкания, но собственно она не особо и нужна. В этом варианте блока питания, ток на выходе вторичной цепи 260v уменьшается на сопротивлении R6. Резистор R1 обрезает пиковый ток при пуске, а также сглаживает сетевые искажения.

Схема импульсного блока питания-12Схема импульсного блока питания-12

Схема импульсного блока питания-13Схема импульсного блока питания-13

Скачать: Дополнительные файлы

Как работают импульсные блоки питания: 7 правил

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Содержание статьи

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Схема трансформаторного блока питанияСтруктурная схема блока питания

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Силовой трансформатор

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Структурная схема импульсного блока питания

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Импульсный блок питания

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели фильтров

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы для ВЧ фильтров

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Как работает фильтр

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

Самодельный блок питания

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Фильтр ВЧ помех

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Фильтр ВЧ

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

Универсальный фильтр

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сложный фильтр

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Схема фильтра

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Ферритовый фильтр

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Ферритовый фильтр на кабеле

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Схема выпрямителя

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

Схема управления силовым ключом

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

ШИМ импульсы

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
Как работает импульсный трансформатор

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Схема электронного генератора

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Двухполупериодная схема

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Двухполярная схема питания

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Прямоходовая схема блока питания

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Как работает дроссель

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

Полумостовая схема

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Мостовая схема

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Пушпульная схема

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Простая схема выпрямителя

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

Простая схема стабилизации напряжения

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

Схема импульсного блока питания

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Как работает оптопара

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Схема стабилизации

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП - зарядное для автомобильных АКБ.

Схема регулируемого лабораторного БП из ATX

   Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ из ПК

   Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию - соответственно рекомендую допаять, если отсутствует.

ИМПУЛЬСНЫЙ КОМПЬЮТЕРНЫЙ БЛОК ПИТАНИЯ

   Выходной дроссель +12 В перемотал. Новый - 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ из АТХ

   Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ на 2003

   На вывод 4 подал прямое напряжение +5 вольт с "дежурки" (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Делаем ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-22

   Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ и МАГНИТОЛА

   Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).

Испытания блока питания

   Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

   Форум по АТХ БП

   Обсудить статью ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ


Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт

Ну, наконец, после небольшого перерыва выкладываю новую статью по сборке импульсного источника двухполярного питания на ir2153 для усилителя низкой частоты. Данный ИИП мощностью 300 Вт может питать такие усилители как “Ланзар” или усилитель на TDA7294 и др., требующие двухполярное питание.

Рассматриваемый блок питания я буду задействовать для питания своего будущего усилителя “Ланзар”. Мощность источника питания 300-400 Вт будет достаточной для двух каналов усилителя  по 100Вт с КПД=55%.

Схема была найдена на просторах интернета, собрана, отработана мною и выложена в виде данной статьи, как проверенная схема, чтобы вы могли без проблем повторить её. Вы же меня понимаете друзья, как редко найденная в интернете схема запускается и работает с первого раза.

На самом деле, схема не сложна, но я с ней помучился и попробую вам объяснить некоторые моменты настройки защиты.

Данный импульсный блок питания имеет защиту от перегрузки. Блок питания нестабилизированный.

Мощный преобразователь напряженияМощный преобразователь напряжения

Схема ИИП на ir2153 для усилителя низкой частоты.

Импульсный источник питания 300ВтИмпульсный источник питания 300Вт

Данный источник питания не имеет стабилизации, поэтому в выходном каскаде отсутствуют дроссели.

Напряжение планировал +-45Вольт, но расчеты не точны вследствие неизвестного материала сердечника трансформатора, в итоге +-50Вольт при токе 3.5А. Сердечник импортный. Ну, я не огорчился, нормальное напряжение +-50Вольт, в самый раз для моего будущего усилителя.

 DSC06665DSC06665

Опишу немного работу схемы.

Все, что зеленым цветом является плавным запуском. Плавный запуск в данной схеме служит для гашения больших токов при включении источника питания в сеть. При включении в сеть, начинается зарядка большой емкости электролитического конденсатора С10, а так же электролитов в выходном каскаде C13-C16. Суть работы плавного запуска следующая, при включении источника питания в сеть, весь ток протекает через резистор R6, тем самым рассеивая излишки в виде тепла в атмосферу. Как только все емкости зарядились (прошли переходные процессы), замыкаются контакты реле K1, и весь ток начинает течь не через резистор R6 а через замкнутые контакты реле K1. Временная задержка срабатывания реле задается времязадающей емкостью С7. VDS1 является выпрямительным мостом для питания плавного запуска. VD1 стабилитрон на 13 Вольт для питания реле К1.

Перейдем к самому источнику питания. Резистор R2 ограничивает ток питания самого драйвера ir2153, то есть через него запитан драйвер. VD2 является однополупериодным выпрямителем питания драйвера.

Емкость С6 и резистор R4 задают частоту генерации драйвера ir2153. Под статьей можете скачать программу расчета номиналов данных элементов по частоте. Номиналы C6 и R4 указанные на схеме способствуют генерации прямоугольных импульсов с частотой 43-44кГц. Я убавил номинал резистора R4 до 13кОм, тем самым повысил частоту до 50кГц, трансформатор стал греться меньше, но и поднялось напряжение на нагрузке, было +-48 Вольт при токе 3А, стало +-50Вольт, но это только мне на руку.

На транзисторах VT1,VT2,R1,R3 собран “икающий” триггер защиты. R11 является датчиком тока. На нем совсем небольшое падение напряжения, и при увеличении тока во вторичной обмотке, ток первичной обмотки тоже увеличивается, увеличивается и падение напряжения на резисторе R11. Через подстроечный резистор R10 ток поступает на базу транзистора VT1, и при достижении определенного напряжения база-эмиттер примерно 0,6 Вольт транзистор открывается. Через  открытый транзистор VT1 и резистор R1 начинает протекать небольшой ток, который открывает транзистор VT2, через данный транзистор и резистор R3 питание драйвера зашунтируется. Драйвер прекращает работу, ток падает в обмотках трансформатора, транзистор VT1 закрывается. Питание на драйвер вновь появляется, так как закрыт транзистор VT1, а следовательно и VT2, и питание драйвера уже не зашунтировано.

Далее цикл повторяется, пока в первичной обмотке трансформатора не ослабится ток. Визуально это все наблюдается миганием светодиода, эффект “икания”. Подстройка защиты ведется подстроечным резистором R10, но о настройке защиты чуть ниже.

На выходе стоят диоды типа “Шоттки”, позволяющие выпрямить высокочастотный ток. Ну и в каждом из плеч выходного каскада стоят электролиты по 2000мкФ на плечо. Данных баночек вполне достаточно для импульсного источника питания мощностью до 500Вт, используемого под усилитель низкой частоты.

Варистор VDR1 защищает схему от скачков напряжения. При скачке напряжения (напряжение срабатывания MYG14-431 составляет 430В при токе 1мА) сопротивление варистора мгновенно уменьшается, выкорачивая цепь питания схемы, перегорает предохранитель, обрывая сетевое питание.

Дроссель T1 служит для подавления высокочастотных помех на входе.

Детали для сборки импульсного источника питания на ir2153

ОБОЗНАЧЕНИЕТИПНОМИНАЛКОЛИЧЕСТВОКОММЕНТАРИЙ
Драйвер питанияIR21531
VT1Биполярный транзистор2n55511
VT2Биполярный транзистор2n54011
VT3Биполярный транзисторBC5171Составной транзистор
VT4,VT5MOSFET - транзисторIRF7402Полевой транзистор
VD1Стабилитрон1n4743A113В 1.3Вт
VD2,VD4Выпрямительный диодHER1082Другой быстрый диод
VD3Выпрямительный диод1n41481
VD5,VD6Диод ШотткиMBR20100220А 100В
VDS1Выпрямительный диод1n40074
VDS2Диодный мостRS60716А 1000В
VDR1ВаристорMYG14-4311
HL1СветодиодКрасный1
K1РелеHK3FF-DC12V-SH1Обмотка на 12В 400 Ом
R1Резистор 0,25Вт8,2кОм1
R2Резистор 2Вт18кОм1
R3Резистор 0,25Вт100 Ом1
R5Резистор 0,25Вт47кОм1
R6Резистор 5Вт22 Ом1
R4,R7Резистор 0,25Вт15кОм2
R8,R9Резистор 0,25Вт33 Ом2
R10Резистор подстр.330 Ом1Однооборотный
R11,R11Резистор 2Вт0,2 Ом2
C1,C3,C17,C18Конденсатор неполярный100нФ 400В4Пленка
C2Конденсатор неполярный470нФ 400В1Пленка
C4,C5,C7Электролит220мкФ 16В3
C6,C8Конденсатор неполярный1нФ2Керамика любое напряж.
C9Конденсатор неполярный680нФ1Керамика любое напряж.
C10Электролит330мкФ 400В1
C11,C12Конденсатор неполярный1мкФ 400В2Пленка
C13-C16Электролит1000мкФ 63В4

Дроссель Т1 можете выдрать из любого импульсного блока питания ПК, как это сделал я.
Скачать список компонентов для ИИП на ir2153 в файле PDF.

Трансформатор намотан на кольце марки 2000НМ, размеры 40-24-20 мм. Первичная обмотка содержит 33 витка проводом диаметра 0,85мм в две жилы (перестраховался).

Вторичная обмотка ложится в два слоя. Диаметр провода вторичной обмотки 0,85мм и имеет 13+13 витков (то есть с отводом от середины, всего 26 витков), второй слой аналогичен первому (13+13 витков). Между слоями лежит диэлектрик.

Более подробную инструкцию о расчете и намотке трансформатора читайте в статье "Расчет и намотка импульсного трансформатора", также рекомендую прочитать статью "Как перемотать трансформатор из блока питания ПК".

Печатная плата для Блока питания усилителя НЧПечатная плата для Блока питания усилителя НЧ DSC05900DSC05900

Данный импульсный источник питания на ir2153 можно пересчитать под любое напряжение, достаточно перемотать трансформатор.

Если надумаете собирать данный блок питания напряжением более +-50В, то следует заменить выходные емкости С13-С16 на более высоковольтные, например на 100В., а также заменить Шоттки, например, на MBR20200.

Импульсник на ir 2153Импульсник на ir 2153 DSC06646DSC06646

Пару слов о защите.

Может сложиться так, что после сборки ИИП описанного в этой статье, при запуске будет срабатывать защита. И регулировка подстроечного резистора не даст никакого результата. Тогда следует уменьшить номинал резистора R11 до 0,07 Ом. У меня так и сделано, параллельно зацеплены три резистора по 0,2 Ом.

Суть ребята такая, если номинал резистора R11 большой, например 0,2 Ом, то на нем будет падение напряжения больше чем нужно, и при работе ИИП постоянно будет большое напряжение на базе транзистора VT1, защита будет срабатывать.

Может случиться так, что при испытании на довольно большой нагрузке защита не срабатывает, то можно попробовать увеличить номинал R11, например до 0,15 Ом. Либо попробовать увеличить номинал подстроечного резистора R10, например до 3,3 кОм. Так как, R10 и R11 соединены параллельно, и R11 на два порядка меньше, то увеличение R10 приведет к очень малому (несколько тысячных-сотых долей) изменению эквивалентного соединения.

В общем, повозитесь с настройкой защиты и все поймете. Хотя если все номиналы будут соответствовать схеме, и мотать трансформатор будете на кольце, даже рассчитанном на другое напряжение, у вас все заработает с первого раза. От вас требуется внимательность, и аккуратность.

Замечу, что на плате стоят два резистора R11 сопротивлением 0,22 Ома, соединенных между собой параллельно,  в результате R11 равен 0,11 Ом (по правилу двух параллельно соединенных проводников). У меня на плате три резистора R11 по 0,22 Ома (параллельно соединенных), что дает в результате 0,07 Ом.

Датчик токаДатчик тока DSC06654DSC06654

Первый запуск и настройка защиты.

Первый запуск всегда делайте через лампу. Что это значит? Это значит, что от сети подключаем не напрямую питание, а в разрыв одного из двух проводов подсоединяем лампу 220 Вольт.

Через лампуЧерез лампу

Что нам даст лампа? Лампа – это тот же резистор, в котором визуально можно наблюдать рассеивание лишней мощности в виде света (тепла соответственно тоже), а также предотвратит  перегорание элементов при неисправности в блоке питания.

Если в вашем собранном блоке питания на ir2153 будет присутствовать короткое замыкание (КЗ), чего я вам не желаю, то при подключении через лампу, последняя будет гореть в полный накал и возможно ничего больше не сгорит, так как лампа рассеет всю мощность. Это очевидно, так как схема примет вид:

Через лампу1Через лампу1

Если в блоке питания будет обрыв, то лампа не загорится.

При нормальном запуске ИИП наблюдается следующая картина, лампа должна вспыхнуть и погаснуть. Вспыхивает лампа в момент зарядки всех емкостей. Если емкости не разрядить, то второй запуск пройдет без вспыхивания лампы.

Для настройки защиты лампу исключите из цепи, иначе лампа будет рассеивать мощность и не позволит вам, как следует нагрузить ваш ИИП.

Для проверки защиты нужно нагрузить наш ИИП на ir2153. Нагружать будем мощными резисторами. Для этого их нужно рассчитать.  Расчет производим с помощью закона Ома.  На выходе у меня +-50В, если я замерю не относительно ноля, а на плечах, то получу напряжение +100В. Я хочу выжать из моего блока питания ток 3А, это 300Вт (мощность = ток*напряжение). Теперь 100В/3А=33,3 Ом.

Я нашел несколько 25Вт резисторов и собрал из них 33 Ом. Наливаете в тазик воды и опускаете в него подключенные резисторы . В разрыв амперметр, чтобы замерить ток.

Ток потребления 3 Ампера.

DSC06720DSC06720

Напряжение на плечах 102 Вольта.

DSC06725DSC06725

Далее плавным вращением подстроечного резистора R10, добиваемся загорания светодиода, который должен начать мигать.  После того, как поймали место, где срабатывает защита, крутим подстроечный резистор R10 в обратном направлении, пока защита перестанет срабатывать. В этом положении оставляем R10. Все, защита настроена, при перегрузке более 300Вт в моем случае, сработает защита.

DSC06652DSC06652 DSC06649DSC06649

Несколько советов.

После пайки обязательно сотрите остатки канифоли спиртом или ацетоном. Посадите ключи и Шоттки на радиаторы, через диэлектрические прокладки. После настройки защиты погоняйте ваш блок питания сначала минут  15, потом можете час. После 1 часа работы, трансформатор нагрелся до 64 градусов и рост температуры остановился. Это нормально. Ключи IRF740 работают до 150 градусов, и соответственно будут нагреваться.

Замеры температуры при работе схемы:

Температура трансформатораТемпература трансформатора DSC06708DSC06708

При желании и наличии осциллографа, можете пересчитать R4 и С6, для оптимальной настройки частоты. Уменьшив R4 до 13кОм, я увеличил частоту до 50кГц, что сразу сказалось на работе моего блока питания, повысился КПД, а следовательно и уменьшилось выделение тепла.

DSC06688DSC06688

Печатная плата для ИИП на ir2153 СКАЧАТЬ

Даташит на ir2153 СКАЧАТЬ

Список компонентов для сборки ИИП на ir2153 (PDF) СКАЧАТЬ

Программа расчета частоты драйвера ir2153 по R4 и C6 СКАЧАТЬ

Статья по расчету и намотке импульсного трансформатора ПЕРЕЙТИ

Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.


Похожие статьи

Простые импульсные блоки питания » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Несколько раз меня выручали блоки питания, схемы которых стали уже класическими, оставаясь простыми для любого, кто хоть раз уже что-то электронное в своей жизни паял.

Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…

Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.

Содержание / Contents

Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится.

На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры - структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102)
Ошибка. Диод VD1 включить наоборот!Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.

Ошибка. Диод VD1 включить наоборот!

Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.

Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.

Из особенностей — выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.

Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.

Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.

Камрад, смотри полезняхи!

Константин (riswel)

Россия, г. Калининград

C детства - музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, - для интереса, - и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

 

МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

Всем привет! После сборки усилителя на ТДА7294, сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется... И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

Схема ИБП для УМЗЧ

Схема ИБП для УМЗЧ

Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 - самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.

Плата травится

Плата вытравилась

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Детали и плата для БП

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

сетевой фильтр снял с БП

БП от проигрывателя дисков

Далее внимательно распаиваем детали на плате согласно схеме и ПП.

распаиваем детали на плате согласно схеме

распаиваем детали на плате по схеме

Теперь самое интересное в ИИП - трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.

ExcellentIT программа

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

кольцо с первичной обмоткой

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

заматываем изолентой кольцо с первичной обмоткой

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Трансформатор в ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

Кольцо в МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ БЛОК ПИТАНИЯ

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

выпрямитель использован однополярный со средней точкой

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ БЛОК ПИТАНИЯ 2

МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ БЛОК ПИТАНИЯ 220

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

Примечания и советы

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХ ПОЛЯРНЫЙ БЛОК ПИТАНИЯ

инвертор на IR2153

Всем удачи! Специально для Радиосхем - с вами был Alex Sky.

   Форум по ИБП

   Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *