Самодельный лабораторный блок питания: vladikoms — LiveJournal
Когда то у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его интерфейс управления мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:
Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное — мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это — напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.
Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи — низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.
Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.
Вкратце о конструкции:
Принципиальная схема (кликабельно)
Как уже говорил — девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.
Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 — TL494, VD1 — диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 — весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 — взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.
Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 — при входном напряжении около 40 В он начинал ужасно глючить — просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.
Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей — в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части — слаботочную и силовую.
Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения — TL494 c обвязкой, и плата сигнализации — включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её «до ума». Там тоже были свои заморочки.
Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.
Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед
Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.
Обновление 09.01.2019
По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях
Модификация № 1
Предложена acxat_smr
Принципиальная схема
Драйвер полевика (точнее, двух параллельно — выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.
Внешний вид конструкции
Модификация № 2
Предложена rond_60
Принципиальная схема
Недавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в — 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю — на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 — горячая! Добавил номинал 4.7к резистору R1 — блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков — толку нет (сжег 6 микрух). У меня есть кой — какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все — блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.
Сегодня настраивал свой БП. Спасибо большое shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал shc68 конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.
Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель — холодный, трансформатор тоже.
Внешний вид конструкции
Модификация № 3
Предложена andrej_l
За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpg
При отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.
Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы — 10 оборотные
https://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0
В качестве V-A метра применён китайский модуль
https://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.
Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)
Окончательная схема одного канала
Rшунт 0,0015 Ом — Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и «-«, при большом токе они оказывают значительное влияние. Провод 1,5 кв.мм
Настройка:
1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 — 100 кГц подбирая R107
2 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.
3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.
4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток — небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.
5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе.
Внешний вид:
Осциллограммы
vladikoms.livejournal.com
Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания
автор DDREDD.
Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.
За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.
Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.
Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания ( в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.
Блок питания;
R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.
Индикатор;
Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)
Печатную плату автора я повторять не стал, а перерисовал её по своему и сделал, как мне кажется, гораздо удобней (не говоря о том что я на треть уменьшил её в размерах).
В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.
За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.
Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.
Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.
Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.
Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.
Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.
Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.
День как говорится, закончился для меня очень удачно.
Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.
Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.
Трансформатор с вторичной обмоткой со средней точкой не подойдёт!
Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.
Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.
Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.
Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.
Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь
Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.
Долго мне пришлось повозиться, прежде чем на появились положительные результаты.
И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.
Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).
Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.
Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.
В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.
Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.
Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.
Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.
Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.
Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).
Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.
P.S. Сам ещё её не собирал.
При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.
Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.
Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.
В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.
Удачи в сборке!
Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.
Архив для статьи
vprl.ru
Лабораторный блок питания 1,2В-30В 6А
Всем доброго времени суток. Предлагаю вашему вниманию один из многих вариантов лабораторного блока питания. Данная конструкция сделана по гибридной схеме (использованы линейные и импульсные элементы) и работает в диапазоне 1,2-30В с регулировкой тока до 6А. Идея хоть и не нова, хотелось поделиться тем, что получилось у меня.
Стремиться к миниатюризации конструкции необходимости не было. Поэтому основой конструкции стали: силовой трансформатор от еще советского диапроектора «Диана-207» и китайские модули.
В данной конструкции было использовано:
— корпус G768A фирмы Gainta размерами 140х190х80
— китайский модуль преобразователя DC-DC CC/CV XL4016 9А 300W
— китайский модуль ампер-вольтметра 100V 10A
— трансформатор тороидальный от советского диапроектора «Диана-207»
— гнезда типа «тюльпан»
— кабельный ввод 7мм
— держатель для предохранителя 20х5
— вентилятор 50х50х15мм 12V
— стеклотекстолит фольгированный односторонний
— кусок оргстекла 125х175х5мм
— крепеж М3, М6
— провод монтажный
— трубка термоусадочная
— радиодетали согласно схеме
— стойки для плат 10мм с резьбой под винт 3мм
Далее и подробнее характеристики деталей по ходу описания
Из инструментов использовалось:
— дрель (желательно на стойке)
— МФИ типа «Dremel»
— паяльник
— отвертки, кусачки и т.д.
Основные элементы конструкции
Схема ЛБП
Силовой трансформатор в диапроекторе обеспечивает долговременное питание лампы КГМ 24х150 то есть отдает 6,25А при 24В и имеет удобные дополнительные обмотки. Напряжения на обмотках указаны в режиме холостого хода. Поэтому все остальное подбиралось под него. Включение китайских модулей типовое, согласно схемам, указанным на сайте продавца (Aliexpress). Питание модуля ампер-вольтметра осуществляется от отдельного выпрямителя с конденсаторами фильтра. Провод измерения напряжения белого цвета (на схеме он рыжего цвета). С модуля понижающего преобразователя DC-DC CC/CV выпаяны подстроечные потенциометры и в место них на переднюю панель выведены регулировочные. У меня временно стоят обыкновенные регуляторы, но далее будут установлены многооборотные (места на панели и в корпусе рассчитывались именно под них). Так же выпаян индикаторный CC-CV двуцветный светодиод HL2 и с помощью маленькой платки, на которой установлен и светодиод HL1 «POWER», выведен на переднюю панель. Диоды VD10, VD11 можно установить в случае использования ЛБП в качестве зарядного устройства. Они служат для блокировки обратного тока. У меня они пока не установлены, но платка изготовлена (на случай необходимости), на которой установлены диоды P600D (каждый диод рассчитан на ток до 6А).
Блок выпрямителей.
В блоке выпрямителя стоит диодный мост KBU1010 на ток до 10А на небольшом радиаторе. Конденсатор фильтра 6800 мФ на 50В. Для удобства монтажа на плате установлены клемники и разъем для вентилятора (из компьютерного хлама). Так же на плате установлен предохранитель (с целью сберечь трансформатор т.к. модуль DC-DC допускает регулировку до 9А). Резистор R1 служит для снижения, при необходимости, оборотов вентилятора. У меня в конечном итоге поставлена перемычка. Размер печатной платы 55х66мм (см. фото).
Китайский модуль преобразователя DC-DC CC/CV XL4016 9А 300W (подробное описание на сайте продавца Aliexpress).
Китайский модуль ампер-вольтметра 100V 10A (подробное описание на сайте продавца Aliexpress).
Сборка конструкции в корпусе.
Корпус G768A фирмы Gainta размерами 140х190х80 выполнен из высокопрочного ABS пластика, передняя и задняя панели выполнены из алюминия. В комплекте идут самоклеющиеся резиновые ножки.Для того чтобы не делать в корпусе лишних отверстий, основные элементы конструкции крепятся на установочной панели из прозрачного оргстекла 125х175мм толщиной 5мм. Установочная панель крепиться к нижней части корпуса четырьмя винтами с резьбой М3.
Блок выпрямителей и модуль преобразователя крепятся на стойках высотой 10мм под винт 3мм. Силовой трансформатор крепится с помощью винта и стоек 6мм. Подложка трансформатора выполнена из самоклеющейся основы для мебельных ножек.
Для фиксации трансформатора использованы резиновые втулки от транспортировочного крепежа для стиральной машинки. Прижимная шайба изготовлена из куска ламината и устанавливается через прокладку из самоклеющейся основы для мебельных ножек.
Компоновка элементов в корпусе.
Сетка вентилятора высверлена прямо в корпусе. На задней панели вентиляционные отверстия расположены по бокам от трансформатора. Так как при сборке корпуса трансформатор находится впритык к верхней крышке, то воздушный поток эффективно охлаждает и силовой выпрямитель, и модуль преобразователя.
Передняя панель распечатана на простой бумаге. С наружной стороны закрыта светорассеивающей пленкой от сломанного LCD монитора.
Фото китайских модулей взяты из интернета, остальные свои. Если нужна дополнительная информация, пишите на почту, постараюсь обязательно ответить.
Отзывы, предложения и комментарии очень приветствуются.
Апрель 2019г.
Станислав Шурупкин.
Email: [email protected]
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru
Лабораторный блок питания своими руками
При создании различных электронных устройств, рано или поздно, встаёт вопрос о том, что использовать в качестве источника питания для самодельной электроники. Допустим, собрали вы какую-нибудь светодиодную мигалку, теперь её нужно от чего-то аккуратно запитать. Очень часто для этих целей используют различные зарядные устройства для телефонов, блоки питания компьютеров, всевозможные сетевые адаптеры, которые никак не ограничивают ток, отдаваемый в нагрузку.А если, допустим, на плате этой самой светодиодной мигалки случайно остались незамеченными две замкнутые дорожки? Подключив её к мощному компьютерному блоку питания собранное устройство легко может сгореть, если на плате имеется какая-либо ошибка монтажа. Именно для того, чтобы не случалось таких неприятных ситуаций, существуют лабораторные блоки питания с защитой по току. Заранее зная, какой примерно ток будет потреблять подключаемое устройство, мы можем предотвратить короткое замыкание, и, как следствие, выгорание транзисторов и нежных микросхем.
В этой статье рассмотрим процесс создания именно такого блока питания, к которому можно подключать нагрузку, не боясь, что что-нибудь сгорит.
Схема блока питания
Схема содержит в себе микросхему LM324, которая совмещает в себе 4 операционных усилителя, вместо неё можно ставить TL074. Операционный усилитель ОР1 отвечает за регулировку выходного напряжения, а ОР2-ОР4 следят за потребляемым нагрузкой током. Микросхема TL431 формирует опорное напряжение, примерно равное 10,7 вольт, оно не зависит от величины питающего напряжения. Переменный резистор R4 устанавливает выходное напряжение, резистором R5 можно подогнать рамки изменения напряжения под свои нужны. Защита по току работает следующим образом: нагрузка потребляет ток, который протекает через низкоомный резистор R20, который называется шунтом, величина падения напряжения на нём зависит от потребляемого тока. Операционный усилитель ОР4 используется в качестве усилителя, повышая малое напряжение падения на шунте до уровня 5-6 вольт, напряжение на выходе ОР4 меняется от нуля до 5-6 вольт в зависимости от тока нагрузки. Каскад ОР3 работает в качестве компаратора, сравнивая напряжение на своих входах. Напряжение на одном входе задаётся переменным резистором R13, который устанавливает порог срабатывания защиты, а напряжение на втором входе зависит от тока нагрузки. Таким образом, как только ток превысит определённый уровень, на выходе ОР3 появится напряжение, открывающее транзистор VT3, который, в свою очередь, подтягивает базу транзистора VT2 к земле, закрывая его. Закрытый транзистор VT2 закрывает силовой VT1, размыкая цепь питания нагрузки. Происходят все эти процессы за считанные доли секунды.
Резистор R20 стоит взять мощностью ватт на 5, чтобы предотвратить его возможный нагрев при долгой работе. Подстроечный резистор R19 задаёт чувствительность по току, чем больше его номинал, тем большей чувствительности можно добиться. Резистор R16 настраивает гистерезис защиты, рекомендую не увлекаться с повышением его номинала. Сопротивление 5-10 кОм обеспечит чёткое защёлкивание схемы при срабатывании защиты, более большое сопротивление даст эффект ограничения по току, когда напряжение не выходе будет пропадать не полностью.
В качестве силового транзистора можно применить отечественные КТ818, КТ837, КТ825 или импортный TIP42. Особое внимание стоит уделить его охлаждению, ведь вся разница входного и выходного напряжение будет рассеиваться в виде тепла на этом транзисторе. Именно поэтому не стоит использовать блок питания на малом выходном напряжении и большом токе, нагрев транзистора при этом будет максимальным. Итак, перейдём от слов к делу.
Изготовление печатной платы и сборка
Печатная плата выполняется методом ЛУТ, который неоднократно описывался в интернете.
На печатной плате добавлен светодиод с резистором, которые не указаны в схеме. Резистор для светодиода подойдёт номиналом 1-2 кОм. Этот светодиод включается при срабатывании защиты. Также добавлены два контакта, обозначенные словом «Jamper», при их замыкании блок питания выходит из защиты, «отщёлкивается». Кроме того, добавлен конденсатор 100 пФ между 1 и 2 выводом микросхемы, он служит для защиты от помех и обеспечивает стабильную работу схемы.
Скачать плату:
Настройка блока питания
Итак, после сборки схемы можно приступить к её настройке. Первым делом, подаём питание 15-30 вольт и замеряем напряжение на катоде микросхемы TL431, оно должно быть примерно равно 10,7 вольт. Если напряжение, подаваемое на вход блока питания, небольшое (15-20 вольт), то резистор R3 стоит уменьшить до 1 кОм. Если опорное напряжение в порядке, проверяем работу регулятора напряжения, при вращении переменного резистора R4 оно должно меняться от нуля до максимума. Далее, вращаем резистор R13 в самом крайнем его положении возможно срабатывание защиты, когда этот резистор подтягивает вход ОР2 к земле. Можно установить резистор номиналом 50-100 Ом между землёй и выводом крайним выводом R13, который подключается к земле. Подключаем какую-либо нагрузку к блоку питания, устанавливаем R13 в крайнее положение. Повышаем напряжение на выходе, ток будет расти и в какой-то момент сработает защита. Добиваемся нужной чувствительности подстроечным резистором R19, затем вместо него можно впаять постоянный. На этом процесс сборки лабораторного блока питания закончен, можно установить его в корпус и пользоваться.
Индикация
Для индикации выходного напряжения весьма удобно использовать стрелочную головку. Цифровые вольтметры хоть и могут показывать напряжение вплоть до сотых долей вольта, постоянно бегущие цифры плохо воспринимаются глазом человека. Именно поэтому рациональнее использовать именно стрелочные головки. Сделать вольтметр из такой головки очень просто – достаточно поставить последовательно с ней подстроечный резистор номиналом 0,5 – 1 МОм. Теперь нужно подать напряжение, величина которого заранее известна и подстроечным резистором подстроить положение стрелки, соответствующее прикладываемому напряжению. Успешной сборки!
sdelaysam-svoimirukami.ru
Схема профессионального лабораторного БП | 2 Схемы
Очень популярная схема блока питания для лабораторного источника питания, который может обеспечить питание 0-30 В вызвала такой интерес, что несколько китайских поставщиков выпустили набор со всеми деталями, включая печатную плату, по вполне привлекательной цене около 10 долларов. Вот оригинальная схема этого регулируемого БП:
Схема конечно хороша, но слишком устарела, поэтому проведена её модернизация: добавлен ЖК-дисплей, изменен механизм настройки тока, использующий дисплей, так что можно установить режим ограничения тока перед подключением проверяемого устройства. Собраны сразу два стабилизатора чтоб при надобности соединить их параллельно, чтобы получить больший ток, или последовательно, чтобы получить регулируемое двойное напряжение +0-30 В / масса / -0-30 В или напряжение 0-60 В. Также разработана простая система двойного слежения, когда один источник контролирует другой.
Список деталей схемы поставляемый с комплектом, приведен в конце статьи, со всеми изменениями и дополнениями. Из этого списка не будем использовать D7, а D8 — стабилитрон 1N4733A 5V1, требующий смещения 60 мА. Заменим этот тип стабилитроном BZX55C5V6 или BZX79C5V6, для обоих требуется ток смещения всего 5 мА. ОУ U1 установит опорное напряжение в два раза больше напряжения стабилитрона — 11,2 В. При необходимом смещении 5 мА для D8, R4 должен быть 1K, а не 4K7.
Поскольку надо ограничить максимальный ток до 1 или 1,5 А, необходимо пересчитать R18. Этот резистор в любом случае имел неправильное значение (56К) в оригинальной конструкции.
Также необходимо поставить цифровой дисплей напряжения и тока. Их диапазон рабочего напряжения где-то между 3,5 и 30 В постоянного тока. Обратите внимание, что эти дисплеи должны быть гальванически развязаны от источника питания во избежание лишнего шума. Альтернативой является хорошая фильтрация в цепи напряжения питания, чтобы избежать этого дела.
Эти дисплеи способны работать с большими токами — до 10 А с внутренним шунтом. Красный провод подключен к выходу блока питания и является входом для измерения напряжения. Это устройство имеет внутренний шунтирующий резистор, который подключен между желтым и черным проводом. Чтобы было проще, подключим черный провод к выходу минуса блока питания (4), а желтый провод станет новым выходом минуса.
На задней панели индикатора есть два подстроечных резистора, которые можно использовать для регулировки (подстройки) напряжения и тока. Чтобы точно установить напряжение питания блока питания, используйте эталонный прибор.
- Есть еще два дополнения. Одним из них является добавление светодиода, показывающего что устройство имеет основное питание. Этот зеленый светодиод подключен к 12 В через резистор 4K7 к земле.
- Вторым дополнением является еще один конденсатор 3300 мкФ / 50 В (C12), параллельный C1, чтобы обеспечить большую стабильность исходного питания и уменьшить пульсации при более высоких токах.
Конечно использован большой радиатор, на него размещена LM7812, Q2 и Q4. Существует достаточно места для добавления другого выходного транзистора, параллельного Q4, если надо увеличить ток. С этим радиатором не понадобится вентилятор (с токами ниже 1,5 А).
Можете использовать трансформаторы разных размеров и использовать их для нескольких стабилизаторов (при двухполярной сборке БП).
После всех модификаций и экспериментов с источником питания, возникла необходимость добавить способ отображения настройки ограничения тока, поэтому я добавлена небольшая цепь к БП, чтобы можно было установить постоянный ток / ограничение тока.
Вот улучшенная схема:
А это оригинальный список деталей, поставляемых с комплектом, но с изменениями и дополнениями:
R1 = 2K2 1W Заменено на версию 2W
R2 = 82R Заменен на версию 2W
R3 = 220R Не требуется (заменен на LM337)
R4 = 4K7 Значение изменено на 1K
R5, R6, R13, R20, R21 = 10K R13 не требуется
R7 = 0,47R 5 Вт
R8, R11 = 27K
R9, R19 = 2K2
R10 = 270K Значение изменено на 1K
R12, R18 = 56K R18 см. Текст
R14 = 1K5 Не требуется
R15, R16 = 1K
R17 = 33R Значение изменено на 68R
R22 = 3K9 Значение изменено на 1K5
RV1 = 100K 10 подстроечник заменен на 5K 10-ти оборотный подстроечник
P1, P2 = 10K линейный P1 заменен на 10-ти оборотный подстроечник
C1 = 3300 мкФ / 50 В
C2, C3 47 мкФ / 50 В
C4 = 100 нФ
C5 = 220 нФ
C6 = 100 пФ
C7 = 10 мкФ / 50 В
C8 = 330 пФ
C9 = 100 пФ
D1, D2, D3, D4 = 1N5408
D5, D6, D9, D10 = 1N4148
D7, D8 = 1N4733A, стабилитрон 5V1, D8 = BCX55C5V6, D7 не требуется
D11 = 1N4004
Q1 = 2SD9014
Q2 = 2SD882
Q3 = 2SD9015
Q4 = 2SD1047 Не требуется
U1, U2, U3 = TL081 Заменяется на 3x TLE2141
U4 = LM7824 Заменено на LM7812
D12 = красный светодиод
Дополнительные детали:
R23, R27 = 4K7
R24 = 1K
R25 = 240R
R26 = 10R
RV2 = 2K
RV3 = 200K или 250K (необязательно)
U5 = TLE 2141
U6 = LM337
C 11 = 47 мкФ / 25 В
C12 = 3300 мкФ / 50 В
C13 = 22 мкФ / 10 В
D13 = 10 В 1 Вт
D14 = зеленый светодиод
D15 = красный светодиод
Индикатор вольт / ампер
S1 двухпозиционный переключатель
S2 кнопка
Испытания блока питания
Как оказалось, большая часть измеренного шума исходит от дисплея V/A метр. Импульсный регулятор, который стоит в этом дисплее, подает много шума обратно в источник питания. Для решения этих проблем вернемся к использованию LM7824, который был частью набора, и применим его вместо D10, стабилитрона 10 В, который использовался для создания питания для U3, U5 и Q3.
Чтобы противодействовать просачиванию шума с дисплея, используем D10 для уменьшения питания и для питания дисплея.
Также переместим токовый шунт дисплея с выходной клеммы за пределы токовой петли обратной связи. Это уменьшило еще немного шума и сделало настройку более точной. Поскольку шунт находился внутри контура обратной связи, напряжение на шунте при более высоких токах создавало ошибку. Небольшое, потому что шунт всего 25 мОм, но все же создавало.
Чтобы максимально устранить большие токи на печатной плате, подключим коллекторы Q4 и Q3 непосредственно к точке, где объединяются катоды D1 и D2 и конденсаторы фильтра C1 и C2.
Ещё установим дополнительные подстроечники, чтобы установить максимальное выходное напряжение (RV2) и максимальный выходной ток (RV3). Важно установить максимальный предел тока. Конденсатор C16 используется тоже для устранения шума.
Поскольку светодиоды D14 и D15 теперь подключены к шинам 24 В, их резисторы ограничения тока (R27 и R23) должны удвоиться в значении.
Наконец, выходной конденсатор C7 был увеличен с 10 мкФ до 470 мкФ. Вот окончательная схема с последними изменениями:
Время нарастания питания теперь составляет около 5 мсек, а время спада составляет чуть более 2 мсек при максимальном напряжении и токе, измеренных с помощью динамической электронной нагрузки.
Со всеми этими модификациями выходной шум теперь составляет 18 мВ по всему спектру напряжения и тока и, что более важно, остается на этом уровне в режиме CC / CL.
И еще одно дополнение: установлен параллельный транзистор (2SD1047) и модифицирован источник питания, чтобы он мог выдерживать больший ток. При более высоких токах также понадобится вентилятор для охлаждения, так что это тоже было добавлено в основную схему.
Трансформатор, который в итоге установлен, это 15-0-15 В при 3,5 А. Выбран диодный мост с напряжением 600 В на 10 A, который можно установить на радиатор охлаждения. Немного излишне, но это из-за пусковых токов к конденсаторам основного фильтра. Два 3300 мкФ не подходят для таких токов, поэтому установлены 2 х 10 000 мкФ на напряжение 63 В.
Корпус укомплектован главным выключателем, предохранителем и индикатором питания. Также подается с трансформатора AC 15-0-15 на гнезда на передней панели, чтобы использовать переменку для различных целей.
Позже удалось найти простой, но эффективный способ объединить два стабилизатора и создать источник питания с напряжением +30 0 -30 В или источник +60 В.
Принцип прост: если вы подключите выход 0 В одного источника питания к выходу +0-30 В второго, то фактически можете создать источник питания +30 0 -30 В или 0-60 В. Нужно отрегулировать оба измерителя напряжения для установки таких значений, но если хотите измерить цепь с переменным напряжением, нужен механизм отслеживания.
Хитрость заключается в том, чтобы сделать настройку напряжения одного источника в зависимости от настройки другого. После экспериментов с разными способами в итоге остановились на следующей схеме:
Переключатель R41 должен быть установлен так, чтобы настройка напряжения на главном устройстве совпадала с выходным напряжением на ведомом устройстве. Сигнал идущий к выключателю будет близко к опорному напряжению 11V2.
Слева направо: Q4, Q3 и LM7812. Q4 и Q3 изолированы, радиатор LM заземлен, поэтому не нуждается в нем.
Наилучшая точность отслеживания может быть достигнута, если оба источника питания установлены на 30 В в режиме +/-, как на схеме. Затем можно переключить переключатель в режим слежения и настраивать R41 до тех пор, пока ведомый не покажет 30 В. Вы заметите, что отслеживание является довольно точным (около 1%) до тех пор, пока не опуститесь ниже 5 В, затем оно все больше рассинхронизируется до примерно 200 мВ при 1 В. Это должно быть связано с разницей в линейности усиления обоих операционных усилителей U2. В принципе эта точность достаточно хороша.
Также добавлен R43 в качестве меры безопасности, чтобы убедиться что ведомое питание не будет иметь неопределенного выхода, если связь между чувствительным резистором в ведущем устройстве не подключена к ведомому или когда переключатель перемещен из одного положения в другое.
Учтите, что нужно установить оба предела тока независимо для обоих источников, но если стабилизатор «мастер» переходит в режим ограничения тока, ведомый будет следовать его примеру независимо от своей настройки.
2shemi.ru
Лабораторный блок питания своими руками 0-30В 0-5А
Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.
Лабораторный блок питания своими руками 0-30В 0-5А
Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.
Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.
Лабораторный блок питания — пошаговая сборка
Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.
После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.
Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.
Шаг. 1 Установка элементов, отвечающих за регулировку напряжения
Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.
Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.
На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.
Шаг. 2 Установка конденсаторов фильтра
Устанавливаем конденсаторы С3; С4; С8 — С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.
Шаг. 3 Подключение силовых транзисторов
Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.
При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.
Шаг. 4 Балансировка транзисторов
Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.
Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.
Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности — следует уменьшить R1 до 10 Ом.
Шаг. 5 Подключение питания для ОУ и периферии
В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.
Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.
После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.
Шаг. 6 Установка операционного усилителя и элементов стабилизации тока
Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .
Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.
С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.
Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.
На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.
Шаг. 7 Установка нуля
Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).
Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.
С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.
Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.
Шаг. 8 Установка защитных диодов
Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.
Шаг. 9 Настройка ограничения максимального тока
- Выставляем на блоке 12В.
- Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
- Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
- Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
- С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.
Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.
Шаг. 10 Подключение вольтамперметра
При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.
Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.
Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!
Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.
Как и обещали, плату блока можно скачать тут:
Ну и демонстрация работы лабораторного блока питания:
Присылайте в комментах фото, какой лабораторный блок питания получился у Вас, собранный по этой схеме, будем добавлять в статью — так станет интереснее!
Работы наших читателей
Первым решил поделиться своей поделкой Денис Фролов. До этой сборки вообще не имел дела с радиоэлектроникой. Трансформатор используется тороидальный. Плата вытравлена при помощи фоторезиста, наклеена навигация. Денис решил немного усложнить блок, добавлена настольная зарядка для девайсов.
Следующим прислал свой фотоотчет Старков Сергей. Радиоэлектроникой занимался еще с 15ти летнего возраста. Трансформатор брал на 160 ватт с вых. 12,25,36 вольт. Корпус так же как и трансформатор взят с какого-то киповского оборудования. Вольтамперметр как и у всех — китайский. Лицевую часть делал в программе FrontDesigner 3.0, распечатал на струйном принтере на фотобумаге и покрыл лаком. корпус правда еще не успел покрасить.
Прекрасную работу прислал нам Роберт Ганеев из Татарстана. Плату Роберт изменил под свой корпус, использовал три транзистора TIP36C, при сборке возникли небольшие трудности с параллельной работой трех транзисторов. Проблему решили уменьшением R1 до 10 Ом.
Вконтакте
Одноклассники
comments powered by HyperCommentsdiodnik.com
Самодельный лабораторный блок питания
Для настройки самодельной электроники и не только самодельной, требуется источник питания. Для каждого устройства требуется свое напряжения питания. У каждого мастера должен быть универсальный блок питания, идеальный вариант это лабораторный блок питания. У меня есть только регулируемый блок питания. На нем нет возможности установить ограничение тока. Выход есть, соберу свой ЛБП.Комплектующие
Лежал у меня алюминиевый корпус. Насколько я помню, корпус от регулятора паяльника времен СССР. Он крепкий и легкий.
Трансформатор от старого телевизора, может еще от чего. Я сделал отвод от 22-х вольт. Обмотки были рассчитаны на 27 вольт, мне показалось много. Намотал отдельную обмотку для питания Вольт-Ампер метра. Напряжение порядка 7-8 вольт. Сетевая обмотка соответственно 220 вольт.
Диодный мост самодельный. Состоит из диодов Д242. Диоды установлены на радиаторы.
После моста установлю электролитический конденсатор. Емкость и рабочее напряжение видны на фото.
Вольт-Ампер метр из Китая. Точность довольно хорошая. На крайний случай есть подстроечные резисторы, которыми можно подкорректировать значения.
Регулировать напряжение, и ток буду при помощи китайского модуля. Главное, не превышать входящее напряжение выше 30 вольт. На модуле установлен маломощный стабилизатор с максимальным входным напряжением 30 вольт.
Выходные клеммы советские. Одну пометил красным лаком, будет плюсовой.
Передняя панель отсутствует. Сделаю из композитного пластика.
Сборка
Собирать буду по простой схеме. В первичной цепи трансформатора установил выключатель и предохранитель. С вторички напряжение поступает на диодный мост и электролитический конденсатор. С них напряжение поступает на понижающий модуль. С модуля, через Вольт-Ампер метр поступает на выходные клеммы. Подстроечные резисторы выпаиваем и на проводах выносим за пределы платы, но устанавливаем регулируемые. Нижняя часть схемы, с линейным стабилизатором, служит для питания Вольт-Ампер метра.Схема регулируемого блока питания
Расставляю силовые элементы на нижней части корпуса. Конденсатор установил между трансформатором и диодным мостом.
Соединяем трансформатор, диодный мост и понижающий модуль. Витые провода пойдут на регулировочные резисторы.
Так получилась часть для питания приборчика. Диодный мостик, электролитический конденсатор и стабилизатор на 5 вольт.
На задней панели вырезаю отверстие под сетевой разъем. Такой разъем можно снять со старого компьютерного блока питания.
На заготовке из композитного пластика, вырезаю все необходимые отверстия. Сетевой выключатель клавишный, до последнего момента не знал что установить. Разметку производил по защитной пленке, ее при установке сниму.
Распаиваю резисторы. Подключаю выключатель. Распаял провода на Вольт-Ампер метр. В разрыве предохранитель, на задней панели.
Устанавливаем все элементы передней панели на свои места. Защитная пленка снята.
Ручки на резисторы нашел разных цветов. Верхнюю крышку покрасил. Можно испытать. Диапазон регулировки получился от 1 до 27 вольт. Ток на короткое замыкание получился около 9 ампер.
Такой ЛБП получился. Для всех моих потребностей более чем достаточно.
Видео по сборке
[media=https://www.youtube.com/watch?v=4rqTPJbt_bo&]
www.freeseller.ru