РазноеСхема масляного насоса – устройство, принцип работы, типы. Где находится и как работает шестеренный, регулируемый роторный маслонасос

Схема масляного насоса – устройство, принцип работы, типы. Где находится и как работает шестеренный, регулируемый роторный маслонасос

Содержание

Масляный насос — Энциклопедия журнала «За рулем»

Схемы масляных насосов:
ашестеренный с наружным зацеплением;
бшестеренный с внутренним зацеплением;
вроторный;
1 — ведущая шестерня;
2 — корпус насоса;
3 — всасывающий канал;
4 — ведомая шестерня;
5 — ось;
6 — нагнетательный канал;
7 — разделительный сектор;
8 — ведомый ротор;
9 — ведущий ротор

Масляный насос может приводиться в действие от коленчатого вала двигателя, распределительного вала или дополнительного приводного вала. Обычно применяют масляные насосы шестеренного типа с наружным или внутренним зацеплением шестерен. Насосы с внутренним зацеплением более компактны и приводятся непосредственно от коленчатого вала, поэтому они широко применяются в двигателях легковых автомобилей.
Шестеренные масляные насосы с увеличением частоты вращения могут создавать очень высокое давление и подавать больше масла, чем это необходимо для работы двигателя. Поэтому на выходе из насоса устанавливается редукционный клапан, который открывается, когда давление превышает заданную величину и перепускает масло обратно во впускную полость насоса.

Падение давления масла в смазочной системе может привести к быстрому выходу двигателя из строя, поэтому оно контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к указателю давления масла, установленному на приборной панели, или к контрольной лампе аварийного давления. В некоторых двигателях сигнал от датчика давления используется электронным блоком управления, который может отключить двигатель в случае опасного снижения давления масла.

В поддоне картера современного двигателя установлен датчик контроля уровня масла

В отдельных конструкциях применяют датчики и для контроля уровня масла в поддоне картера.
В двигателях многих грузовых автомобилей используются двухсекционные масляные насосы для разделения потоков масла. Для охлаждения масла могут использоваться масляные радиаторы или водомасляные теплообменники. Масляный радиатор обдувается воздухом, который охлаждает протекающее через него масло; теплообменник отдает тепло от масла в охлаждающую жидкость. При включении масляного радиатора может произойти падение давления в основных магистралях смазочной системы. Чтобы этого не произошло, перед входом в радиатор устанавливают предохранительный клапан.

устройство, принцип работы, типы. Где находится и как работает шестеренный, регулируемый роторный маслонасос

Поговорим о сердце любого двигателя внутреннего сгорания – маслонасосе. Именно масляный насос нагнетает давление в системе смазки, позволяя смазывать трущиеся пары, отводить тепло и продукты износа. Рассмотрим принцип работы и устройство шестеренных и роторных насосов регулируемого, а также нерегулируемого типа.

Принципиальные различия в устройстве

На подавляющем большинстве автомобилей установлен нерегулируемый масляный насос. От избытка давления систему смазки предохраняет редукционный клапан, который сбрасывает излишки масла. Современные автомобили все чаще агрегатируются регулируемым масляным насосом. Принудительное изменение производительности масляной помпы позволяет уменьшить механические потери, снизив тем самым расход топлива и количество вредных выбросов. По внутреннему устройству маслонасосы разделяются на шестеренные и роторные.

Принцип работы шестеренного маслонасоса

Ведомая шестерня закреплена на оси, а ведущая приводится во вращение приводным валом. Вращающиеся шестерни забирают масло через всасывающий канал, куда оно поступает по маслоприемнику из картера. Далее, масло под давлением поступает в нагнетательную полость, откуда уже распределяется по каналам масляной системы. Именно так работает простейший шестеренный насос.

Производительность маслонасоса напрямую зависит от скорости вращения коленчатого вала. Но повышение давления в системе сверх нормы приведет к выдавливанию сальников и увеличению механических потерь. Поэтому избыток масла стравливается редукционным клапаном, который открывается при превышении расчетного давления. Подробно устройство и принцип работы клапана, позволяющего сбрасывать масло обратно во впускную полость, вы можете изучить из статьи «Редукционный клапан масляного насоса».

1- заборные шестерни; 2- клапан; 3-запорная пружина.

Виды

По способу зацепления шестерен помпы для перекачивания жидкостей делятся на агрегаты с внутренним и внешним зацеплением.

Устройство агрегатов с шестерней в шестерни позволяет приводить маслонасос в действие непосредственно от коленчатого вала. Принцип работы способствует уменьшению габаритных размеров корпуса без потери производительности. Поэтому именно нерегулируемые маслонасосы с внутренним зацеплением чаще всего устанавливаются на современные автомобили.

Роторный тип

Устройство объединяет в корпусе внутренний (ведущий) и внешний (ведомый) роторы. Моторное масло забирается лопастями ведущего ротора и, проходя через нагнетательную полость, подается к каналам масляной системы двигателя. Выше показано устройство нерегулируемой масляной помпы, поэтому ее принцип работы предполагает наличие редукционного клапана.

Регулируемый насос

Регулируемый масляный насос роторного типа оснащается подвижным статором и регулировочной пружиной. Вращаясь внутри внешнего ротора, внутренний ротор захватывает из всасывающей полости масло, перенаправляя его под давлением в нагнетательную область. Объем перекаченного масла зависит от скорости вращения внутреннего ротора и от объема полости между внутренним и внешним ротором, который соединен с подвижным статором. Изменяя объем, мы можем регулировать производительность масляного насоса.

Регулировка производительности

Принцип работы регулировки объема заключается в смещении подвижного статора. В режиме низкого давления пружина регулятора, преодолевая сопротивления масла в нагнетательной полости, задвигает статор (промежуточный корпус) в крайнее положение. Объем полости между наружным и ведомым ротором уменьшается, что приводит к снижению количества перекачиваемого масла.

При повышении оборотов коленчатого вала и возрастании давления в нагнетательной полости масло преодолевает сопротивление регулировочной пружины. Смещение промежуточного корпуса ведет к увеличению зазора между наружным и внутренним роторами. Увеличивается количество перекачиваемого масла и давление в системе.

Особенности работы регулируемого масляного насоса в определенных режимах позволяют на 30% снизить механические потери в сравнении с нерегулируемыми агрегатами. Поскольку насос перекачивает ровно такой объем, который на данном режиме работы необходим для смазывания деталей двигателя, замедляются темпы старения масла.

Шиберные агрегаты

В автомобиле шиберные помпы используются не только для нагнетания смазочных материалов в двигателе, но и в качестве насоса гидроусилителя руля. С точки зрения принципа работы и устройства, интерес вызывают двухрежимные масляные насосы, все чаще устанавливающиеся на двигатели производства VAG-Group (к примеру, Audi, Volkswagen). Устройство рассмотрим на примере маслонасоса с мотора V6 TDI объемом 4.2 л.

Масло нагнетается лопатками, которые при вращении ротора под воздействием центробежной силы прижимаются к рабочей зоне статора. В этом плане принцип работы ничем не отличается от обычного лопастного маслонасоса. Но конструкторы оснастили помпу эксцентриковым поворотным регулирующим кольцом. Также устройство предполагает наличие соленоида, который по команде блока управления двигателем (Engine Control Unite) открывает доступ маслу к регулировочной полости.

Процесс смены режимов

  • Режим сниженной производительности. ЭБУ замыкает клапан управления давлением на массу, открывая доступ маслу к каналу второй управляющей поверхности. По другому масляному каналу давление масла постоянно воздействует на управляющую поверхность №1. Действующее на обе поверхности давление масла преувеличивает усилие пружины. Регулирующее кольцо поворачивается против часовой стрелки, уменьшая тем самым объем рабочей камеры маслонасоса.
  • Режим высокой производительности. ЭБУ отключает питание электромагнитного клапана. Масляный канал управляющей поверхности 2 перекрывается, а давление масла действует только на зону 1. Поскольку создаваемого усилия недостаточно для преодоления сопротивления пружины, регулирующее кольцо поворачивается по часовой стрелке и отклоняется от центра. Таким образом, увеличивается объем рабочей камеры и количество перекачиваемого моторного масла. Соответственно, давление в системе также возрастает.

Регулировка производительности осуществляется ЭБУ, который считывает информацию о режиме работе двигателя с ДМРВ (либо ДАД+ДТВ), ДПКВ, ДПДЗ, датчика положения педали акселератора, ДТОЖ, датчика температуры масла. Разумеется, полноценная работа системы невозможна без датчика давления масла, устройство, принцип работы и способы проверки которого мы уже рассматривали. Смена режимов работы происходит при повышении оборотов коленчатого вала выше 2500 об./мин либо при возрастании нагрузки на двигатель (динамичный разгон, буксировка груза).

Вне зависимости от конструкции и принципа работы, выход маслонасоса из строя приведет к серьезным поломкам и необходимости капитального ремонта двигателя. Поэтому полезно знать признаки неисправности и понимать технологию проверки масляного насоса.

Масляный насос двигателя: устройство, неисправности и диагностика

Система смазки является одной из основных систем двигателя современного автомобиля. Ее назначение – подача моторного масла к взаимодействующим друг с другом механическим элементам ДВС для уменьшения трения, снижения износа, частичного отвода тепла и очищения поверхностей. Учитывая специфичные ударно-радиальные нагрузки, воздействующие на основные элементы КШМ и ГРМ, тяжелые условия работы большинства узлов и деталей двигателя, к надежному и безотказному функционированию системы смазки предъявляют особые требования. В первую очередь это касается «сердца» системы – масляного насоса.

Назначение масляного насоса

Для большинства деталей двигателя статичной смазки недостаточно – они требуют регулярного поступления свежих порций смазочного материала, предварительно охлажденных и отфильтрованных от продуктов износа. Поэтому важно обеспечить циркуляцию масла в системе, создав определенное давление в магистралях. Именно эта задача и возложена на масляный насос.

Маслонасос создает разрежение в системе, засасывая смазочный материал из поддона картера через маслоприемник. В процессе движения по этой линии масло фильтруется через последовательный полноточный фильтр, реже – через неполноточный элемент. Прошедшее через насос масло поступает в главную магистраль, а оттуда распределяется по каналам и подается к потребителям в соответствии с условиями их работы. Так, подшипники коленчатого и распределительного валов получают масло под максимальным давлением, шестерни ГРМ, клапанный механизм и часть зеркала цилиндров смазываются разбрызгиванием, а к штангам, толкателям, кулачкам масло поступает уже самотеком.

Масляный насос

Устройство и принцип работы

Масляный насос приводится в действие крутящим моментом, поступающим от распределительного вала через зубчатую передачу или шкив. Существуют также автономные схемы привода насоса, использующие электродвигатель, однако они не получили широкого распространения.

Конструктивно насос представлен герметичным металлическим корпусом, в котором расположена одна пара или две пары шестерен. В паре шестерен одно из зубчатых колес является ведущим, то есть соединено шпонкой с валом привода, а второе вращается свободно. При проектировании и изготовлении масляных насосов основным требованием, предъявляемым к конструкции, является минимальный зазор между зубцами взаимодействующих шестерен, а также между зубцами каждой шестерни и корпусом. Это необходимо для обеспечения максимального КПД прибора.

Транспортировка смазочного материала осуществляется во впадинах, образующихся между зубьями взаимодействующих шестерен при их вращении. Таким образом, шестерни «выдавливают» масло в главный канал непрерывным потоком, формируя требуемое давление, регулировка которого возложена на редукционный клапан.

Редукционный клапан чаще всего располагается в корпусе масляного насоса и необходим для предохранения системы смазки от избыточных давлений, особо опасных во время пуска холодного ДВС, когда вязкость смазочного материала велика. Клапан располагают в канале, противоположные края которого соединены с камерами нагнетания и всасывания масляного насоса. Когда давление в норме, канал перекрыт поршнем или шариком, который поджимается пружиной. Сжатие пружины регулируют масляной пробкой, задавая тем самым давление в системе. При превышении порогового значения, поршень или шарик отходит от седла, открывая канал и выпуская часть нагнетаемого в главную магистраль масла обратно в камеру всасывания.

Современные масляные насосы делят на одно- и двухсекционные. Отличие двухсекционной системы от описанной выше конструкции заключается в наличии дополнительной секции корпуса, шестерни которой отвечают за подачу масла в масляный радиатор для его охлаждения, обычно – с последующим сливом в поддон. Классическим примером такого устройства служат насосы двигателей грузовых автомобилей марок ЗИЛ и ЯМЗ.

Устройство масляного насоса

Признаки неисправности маслонасоса

Для двигателя внутреннего сгорания одинаково опасны как снижение, так и существенное повышение давления масла относительно значения, установленного заводом-изготовителем. В первом случае возрастает износ механических элементов, увеличивается доля неравномерного разрушения опорных поверхностей под действием ударных нагрузок и механических загрязнений, возникает опасность перегрева двигателя. Во втором случае снижается вязкость масла, а следовательно – его свойства, повышается температура, нарушается режим смазки деталей и распределение материала между ними. Обычно именно по отклонению давления от номинального можно судить о неисправности масляного насоса. Ее несложно заметить, считав показания манометра или контрольной лампы, расположенной на панели приборов. Однако и эти устройства могут давать сбои.

Неисправный насос

 

Неисправный насос

Перегрев ДВС, наличие местных точечных подтеков масла свидетельствуют о превышении номинального давления, что может быть вызвано неправильной регулировкой или неисправностью редукционного клапана масляного насоса. В то же время, перегрев ДВС, сопровождающийся гулом и металлическим лязгом при работе говорит о падении давления, которое, в свою очередь, может быть вызвано следующими факторами:

  • износом шестерен;
  • разгерметизацией корпуса;
  • проскальзыванием шкива привода или обломом шпонки;
  • заклиниванием редукционного клапана в открытом положении.

Тем не менее, подобные признаки могут наблюдаться и при других неисправностях системы смазки. Примером может служить засорение масляных магистралей продуктами износа, засорение полноточных фильтров, несоответствие типа масла рекомендуемому. Поэтому с уверенностью утверждать о факте поломки маслонасоса можно только после комплексной диагностики системы смазки.

Проверка технического состояния детали

Простейший, но эффективный метод диагностики производительности, а значит – и исправности масляного насоса, заключается в подключении внешнего манометра к системе смазки и наблюдении изменений его показаний при изменении частоты вращения коленчатого вала ДВС. Если значения давления соответствуют номинальным, расход моторного масла в норме, а аварийные индикаторы «молчат» — насос в порядке.

При обнаружении пониженного или повышенного давления масла проводится проверка регулировки редукционного клапана и при необходимости – настройка детали. Анализируется тип и состояние масла, фильтрующих элементов, проверяется наличие разгерметизацией системы. Если подобных неисправностей нет, выносят вердикт о поломке масляного насоса. Его проверку выполняют в такой последовательности:

  1. Внешний осмотр, проверка целостности корпуса.
  2. Демонтаж, разборка, осмотр деталей и опорных поверхностей, поиск люфтов.
  3. Измерение зазоров между зубьями, осевых расстояний, сопоставление с номинальными значениями.
  4. Измерение геометрических параметров шестерен, сопоставление с номинальными значениями.

На основе анализа выявленных проблем выносится вердикт о целесообразности ремонта масляного насоса. Если нарушена целостность корпуса, присутствует сильный износ рабочих пар или деформированные детали, насос, как правило, подлежит замене.

Проверка масляного насоса

Особенности ремонта и замены

Ремонт масляного насоса может заключаться в замене рабочей пары (что не всегда целесообразно), замене редукционного клапана и РТИ, постановке втулок в изношенные посадочные отверстия. В ряде случаев возможно восстановление шестерен путем наплавки с последующей слесарной обработкой. Поддаются ремонту и нарушенные резьбовые соединения – их растачивают либо снабжают резьбовыми втулками.

Однако куда чаще масляный насос заменяется в сборе. Это связано с относительно невысокой стоимостью детали, а также большой трудоемкостью работ по восстановлению изношенных элементов. В таком случае процесс сводится к демонтажу изношенного маслонасоса и установке нового с герметичным подключением к прочим элементам системы смазки. Разумеется, при этом проводится замена моторного масла и фильтров, не будет лишней и последующая промывка системы.

От технического состояния элементов системы смазки во многом зависит характер работы, надежность и ресурс двигателя. Поэтому важно тщательно следить за их работой и не забывать проверять исправность деталей в ходе проведения ТО автомобиля.

Какими бывают масляные насосы, и для чего они нужны в автомобиле? Блог › Масляный насос.

Масляный насос обеспечивает принудительную циркуляцию смазочного масла в двигателе. Поломка масляного насоса относится к числу самых опасных, так как ведет к возникновению масляного голодания, перегреву и заклиниванию двигателя.

Типы масляных насосов

Масляные насосы, постоянное давление в которых поддерживает редукционный клапан, относятся к нерегулируемым, в отличие от регулируемых. В регулируемых насосах давление поддерживается посредством изменения производительности. В подавляющем большинстве современных двигателей используются не регулируемые и не обслуживаемые насосы.

В конструкции некоторых турбированных двигателей применяется дополнительный электрический масляный насос, в течение ограниченного времени подающий масло к оси турбины после остановки двигателя

В зависимости от конструкции в автомобильных двигателях применяются шестеренчатые, роторные и пластинчатые масляные насосы. Шестеренчатый насос — наиболее распространенный тип. Роторные насосы также встречаются. Пластинчатый или коловратный насос относится к редкому типу.

Устройство и принцип работы масляного насоса шестеренчатого типа

В системах смазки двигателей внутреннего сгорания чаще всего используются масляные насосы шестеренчатого типа. При незначительных размерах они обладают высокой надежностью и производительностью. Шестеренчатые масляные насосы относятся к разряду нерегулируемых.В литом корпусе насоса располагаются две небольшие шестерни — ведущая и ведомая, при этом зазор между корпусом насоса и торцами зубцов шестерней минимален. Ведущая шестерня крепится с помощью шпонки к (изредка встречаются иные схемы привода), а ведомая — свободно вращается на оси.

Применение масла с пониженной вязкостью в двигателях большой мощности связано с необходимостью облегчить работу масляного насоса

Когда вал передает вращение шестерням насоса, они захватывают зубцами масло из всасывающего канала и нагнетают его в систему через нагнетательный канал. Если давление нагнетаемого масла избыточно — срабатывает редукционный клапан в корпусе насоса, состоящий из шарика с пружиной. Под давлением масла шарик сжимает пружину, пропуская часть смазки в двигателя. Это позволяет поддерживать оптимальное давление масла в системе (4-5 кг/см).Шестеренчатые насосы подразделяются на два вида: с наружным или внутренним зацеплением. Наружное зацепление предполагает расположение двух шестерней рядом друг с другом, а внутреннее зацепление означает, что одна шестерня располагается внутри другой.Частота и производительность шестеренного масляного насоса в единицу времени пропорциональны. Этим объясняется разница в показаниях шкалы датчика давления масла при разных режимах работы двигателя.

Устройство и принцип работы роторного масляного насоса

Регулируемые масляные насосы роторного типа более совершенны по конструкции, чем нерегулируемые. Они способны поддерживать оптимальное давление масла в системе при любой частоте вращения коленчатого вала.Регулируемый масляный насос роторного типа состоит из ведущего и ведомого роторов, смонтированных внутри в литого корпуса. Помимо роторов в конструкции есть также подвижный статор, имеющий регулировочную пружину. При повороте статора, объем полости между роторами изменяется с целью регулировки .

Патент на изобретение роторного насоса первым получил канадец Чарльз Барнс в 1874 году

Когда частота вращения коленчатого вала увеличивается, потребность трущихся деталей в масле возрастает. Давление в системе падает, и регулировочная пружина смещает статор. Он сдвигает ведомый ротор, увеличивая, тем самым, объем полости между ним и ведущим ротором. Давление масла увеличивается, и производительность насоса возрастает.Когда скорость вращения коленчатого вала снижается, происходит обратный процесс. Расход масла уменьшается, а давление в системе возрастает. Регулировочная пружина сжимается, перемещая статор. Тот меняет положение ведомого ротора, уменьшая объем межроторной полости, давление масла падает, и производительность насоса снижается.Нерегулируемый роторный насос подает масло в систему по тому же принципу, что и шестеренчатый. Масло, поступающее в насос через всасывающий клапан, захватывается лопастями и перегоняется в нагнетательный канал системы. В случае повышения давления масла, происходит его сброс через редукционный клапан.Использование регулируемых масляных насосов роторного типа позволяет значительно снизить количество отбираемой мощности. Благодаря тому, что роторный насос работает на меньших оборотах, чем шестеренчатый, увеличивается, а вспенивание снижается.

Эксплуатация масляного насоса

На длительность эксплуатации масляного насоса влияют, по большому счету, только два фактора: качество и количество масла, залитого в систему смазки. Как и любой подвижный механизм, насос должен смазываться, и делается это за счет того же масла, которое насос прокачивает через себя. Исходное качество масла, равно как и частота его замены, влияют на срок службы насоса.

В двигателях Fiat 1964 года выпуска привод масляного насоса осуществлялся от распредвала. При переходе на двухвальную систему ГРМ компания перешла к обычной системе привода от коленвала

К «слабым местам» конструкции можно отнести пружины, применяемые в конструкции масляного насоса. Как и любым напряженным металлическим элементам, им свойственна усталость металла, приводящая к ослаблению пружины и, как следствие, падению давления в системе смазки.При выходе из строя масляного насоса производится его замена, так как литой корпус не подлежит разборке.

«Масляным» является насос, оказывающий давление в системе на смазку, вследствие чего, все подвижные элементы двигателя внутреннего сгорания обеспечиваются смазкой. В сухом картере, помимо транспортировки смазки, эта деталь в автомобиле способствует так же перекачке масла с картера двигателя к масляному баку.

Приведение в действие масляного насоса осуществляется посредством коленчатого вала либо распределительного вала через приводной вал.

Виды (по характеру управления)

Их можно объединить в две группы, зависимо от особенностей управления:

  1. Регулируемые.
  2. Нерегулируемые.
Первые поддерживают неизменное давление в системе смазки благодаря регулированию производительности насоса. В нерегулируемых же давление не изменяется за счёт действия редукционного клапана.

Виды масляных насосов (зависимо от конструкции)

По конструкционным особенностям они могут быть:

  1. Роторного типа (масло передаётся лопастями роторов).
  2. Шестеренного типа (масло передаётся посредством шестерёнок).
Последние, в свою очередь, по конструкции делятся на два вида: с наружным зацеплением (две шестерни находятся около друг друга), и с внутренним зацеплением (одна шестерня находится в другой). Если производительность таких насосов одинаковая, габаритные размеры у шестерённого насоса внутреннего зацепления меньше, чем у насосов с наружным зацеплением шестерёнок, вследствие нахождения шестерёнок одной в другой.

1. Устройство масляного насоса шестеренного типа


  1. ведомая шестерня
  2. всасывающий канал
  3. ведущая шестерня
  4. приводной вал
  5. нагнетательный канал
  6. ось ведомой шестерни
В корпусе насоса размещены ведущая (первая) и ведомая (вторая) шестерни. Они передают масло от всасывающего канала через нагнетательный канал в систему. Зависимо от частоты вращения коленчатого вала, прямо пропорционально меняется производительность масляного шестеренного насоса. Если давление нагнетаемого масла выше допустимой величины, определённой для насоса, то часть масла переходит во всасывающую полость или прямо в картер двигателя при помощи редукционного клапана, срабатывающего с ростом давления автоматически.

Масляные насосы шестеренного типа относятся к нерегулируемым видам .

2. Устройство роторного типа


  1. всасы

Устройство масляного насоса двигателя автомобилей ВАЗ 2108, 2109, 21099

устройство масляного насоса 2108На автомобилях ВАЗ 2108, 2109, 21099 и их модификациях масляный насос двигателя шестеренчатого типа с внутренним зацеплением и приводом от переднего конца коленчатого вала (ведущая шестерня установлена на двух лысках носка коленчатого вала). Масляный насос имеет редукционный клапан для поддержания нужного давления в системе смазки двигателя. Также имеется большая ведомая шестерня, работающая в паре с ведущей. Обе шестерни установлены в корпусе закрытом крышкой. Помимо этого в крышке масляного насоса устанавливается передний сальник коленчатого вала.


Через свой маслоприемник с сетчатым фильтром масляный насос забирает моторное масло из поддона двигателя и нагнетает его в каналы системы смазки. Маслоприемник крепится болтами к крышке второго коренного подшипника и к корпусу насоса. Соединение трубки маслоприемника и корпуса масляного фильтра уплотнено уплотнительным кольцом.

Устройство масляного насоса двигателя автомобилей ВАЗ 2108, 2109, 21099

корпус масляного насоса

Детали корпуса масляного насоса 

  1. Корпус в сборе с шестернями.
  2. Корпус без шестерен.
  3. Разделительный сегмент шестерен.
  4. Ведомая шестерня.
  5. Ведущая шестерня.

Крышка масляного насоса, устройство

крышка масляного насоса

Примечания и дополнения

— При выходе масляного насоса из строя или возникновении каких-либо проблем в его работе давление масла в системе смазки резко падает и на щитке приборов загорается лампа аварийного давления масла. Движение на автомобиле в таком случае запрещено, так как может привести к выходу из строя двигателя.

Еще статьи по двигателю автомобилей ВАЗ 2108, 2109, 21099 и его системах

— Ремонт масляного насоса двигателя автомобилей ВАЗ 2108, 2109, 21099

— Система смазки двигателя автомобилей ВАЗ 2108, 2109, 21099

— Моторное масло для двигателей автомобилей ВАЗ 2108, 2109, 21099

— Синий дым из глушителя, причины

— Повышенный расход масла двигателем автомобилей ВАЗ 2108, 2109, 21099, причины

Назначение, устройство и работа приборов системы смазки

Маслоприемник 11 предназначен для забора масла из поддона двигателя. Он имеет металлическую сетку, которая задерживает крупные частицы металла, нагара и других примесей. Маслоприемник размещен в поддоне так, что он забирает наименее загрязненное масло из верхних слоев (частицы металла, нагара и другие примеси находятся в нижних слоях масла и осаждаются на дне поддона). С этой же целью в некоторых двигателях маслоприемник делается плавающим.

Рис. Схема работы шестеренчатого масляного насоса: 1 — корпус насоса; 2 — нагнетательная полость; 3 — ведомая шестерня; 4 — ведущая шестерня; 5 — редукционный клапан; 6 — пружина клапана; 7 — впускная полость

Масляный насос служит для подачи масла к трущимся деталям двигателя под давлением. В автомобильных двигателях обычно применяются шестеренчатые масляные насосы, принцип действия которых состоит в следующем. Шестерни насоса, вращаясь в противоположные стороны, своими зубьями захватывают масло из впускной полости 7, сообщенной с маслоприемником. Заключенное между впадинами зубьев и корпусом масло переносится в нагнетательную полость 2. Когда зубья входят в зацепление, масло выдавливается из впадин и накапливается в нагнетательной полости, создавая в ней давление, под действием которого масло поступает к трущимся деталям двигателя.

В чугунном корпусе 4 масляного насоса размещены ведущая 2 и ведомая 3 шестерни.

Ведущая шестерня жестко связана с валом 5. На противоположном конце вала закреплена шестерня 6 привода насоса.

Ведомая шестерня насоса свободно вращается на оси 8, установленной в корпусе. Обе шестерни плотно прилегают к стенкам корпуса насоса.

Масляный насос приводится в действие распределительным или коленчатым валом.

Рис. Масляный насос: 1 — крышка насоса; 2 — ведущая шестерня; 3 — ведомая шестерня; 4 — корпус насоса; 5 — вал привода насоса; 6 — шестерня привода насоса; 7 и 9 — прокладки; 9 — ось ведомой шестерни; 10 — редукционный клапан; 11 — пружина клапана; 12 — регулировочная пробка

Давление в системе смазки зависит от количества масла, подаваемого насосом в магистраль, вязкости масла и изношенности деталей двигателя. При малом давлении в системе смазки количество подаваемого масла к трущимся деталям будет недостаточно. Инструкциями по эксплуатации автомобилей особо оговаривается минимально допустимое давление масла, при котором двигатель может нормально работать.

Чрезмерное давление может вызвать повреждение приборов системы смазки. Для предупреждения чрезмерного давления служит редукционный клапан, который ограничивает давление в системе смазки.

Редукционный клапан устанавливается в корпусе масляного насоса или в масляной магистрали. Работает он следующим образом. При нормальном давлении в системе смазки клапан (шарик) 5 под действием пружины 6 закрывает перепускное отверстие, соединяющее нагнетательную 2 и впускную 7 полости масляного насоса. Натяжение пружины клапана регулируется пробкой 12.

Рис. Фильтр грубой очистки масла: 1 — пробка сливного отверстия; 2 — отстойник; 3 — стержень очистительных пластин; 4 — корпус фильтра; 5 — перепускной клапан; 6 — пружина; 7 — корпус клапана; в — гайка; 9 — центральный стержень; 10 — гайка сальника; 11 — сальник; 12 — рукоятка; 13 — фильтрующая стальная пластина; 14 — промежуточная звездочка; 15 — очистительная пластина; 16 — прокладка; 17— стержень

Если давление в масляной магистрали повысилось и стало выше нормального, клапан .под действием давления, образовавшегося в нагнетательной полости 2, смещается влево, сжимая пружину, и открывает (перепускное отверстие. При этом в магистраль поступает только часть масла, а остальное масло по соединительному каналу перетекает из нагнетательной полости во впускную. Как только давление в масляной магистрали станет нормальным, клапан под действием пружины перекроет перепускное отверстие.

Масляные фильтры служат для тщательной очистки масла от механических примесей, не задержанных сеткой маслоприемника насоса.

На двигателях устанавливаются два масляных фильтра: фильтр грубой очистки, который присоединяется к системе смазки последовательно (через него проходит все масло, нагнетаемое насосом), и фильтр тонкой очистки, который присоединяется к системе смазки параллельно (через него проходит только небольшая часть масла).

Фильтр грубой очистки состоит из корпуса, колпака (отстойника) с пробкой и фильтрующего элемента. Фильтрующие элементы бывают пластинчатого или сетчатого типа.

Фильтрующий пластинчатый элемент состоит из стальных пластин 13 и промежуточных звездочек 14, собранных на центральном стержне 9. Между пластинами, разделенными звездочками, образуются зазоры (щели), через которые проходит масло.

Рис. Масляный фильтр грубой очистки двигателя ЯАЗ-М-206Б: 1 — прокладка стержня колпака; 2 — стержень колпака; 3 — колпак; 4 — наружный фильтрующий элемент; 5 — внутренний фильтрующий элемент; 6 — резиновое уплотнительное кольцо; 7 — корпус фильтра; 8 — прокладка болта корпуса; 9 — болт корпуса; 10 — пробка сливного отверстия

Все частицы, размер которых больше зазора между пластинами, задерживаются в зазорах между пластинами или остаются на наружной поверхности фильтрующего элемента и оседают в отстойнике, откуда они периодически удаляются через сливное отверстие. Фильтр очищается поворотом рукоятки 12. При этом поворачивается центральный стержень, а вместе. с ним и фильтрующий элемент. Очистительные пластины 15, входящие в зазоры между пластинами 13, неподвижны и при повороте фильтрующего элемента очищают наружную его поверхность и зазоры между пластинами 13.

Устройство фильтра с сетчатыми фильтрующими элементами показано на рисунке.

Масло входит через верхний канал в корпус 7 фильтра и затем под давлением проходит через очень мелкую сетку фильтрующих элементов 4 и 5. Очищенное масло через канал в центральной части корпуса уходит в масляную магистраль, как показано на рисунке стрелками.

Рис. Фильтр тонкой очистки: 1 — крышка корпуса фильтра; 2 — калиброванное отверстие; 3 — корпус фильтра; 4 — центральная трубка; 5 — прокладка; 6 — картонная пластина; 7 — перепускное отверстие; 8 — пробка сливного отверстия; 9 — втулка; 10 — пружина; 11 — грязевой отсек

Примеси, размер частиц которых больше ячеек сетки, задерживаются сеткой и оседают в колпаке 3, откуда они удаляются через отверстие, закрываемое пробкой 10. Часть примесей осаждается на поверхности фильтрующих элементов, вследствие чего сетки со временем засоряются и фильтр перестает работать. Поэтому фильтры такого типа должны периодически разбираться для очистки и промывки фильтрующих элементов.

В системе смазки предусмотрен перепускной клапан 5, который при засорении фильтра грубой очистки позволяет непрофильтрованному маслу проходить в магистраль, минуя фильтр.

Фильтр тонкой очистки состоит из корпуса 3, крышки 1 корпуса и фильтрующего элемента, который помещен на центральной трубке 4.

Фильтрующий элемент собран из картонных пластин 6 и прокладок 5. В прокладках сделаны грязевые отсеки 11, а в перемычках между отсеками — радиальные каналы.

На пластинах 6 сделано по наружной окружности пять вырезов, глубина которых немного больше ширины кольцевой поверхности прокладок 5. Образующиеся таким образом между прокладками и пластинами узкие щели служат для прохода масла в грязевые отсеки.

Фильтрующий элемент с обеих сторон закрыт стальными крышками и стянут скобами.

Фильтрация масла происходит следующим образом. Масло из главной магистрали поступает в фильтр через входную трубку и заполняет его корпус. Часть примесей, находящихся в масле, осаждается при этом на дно корпуса.

Находясь под давлением, масло через щели, образованные вырезами в пластинах 6, проходит в грязевые отсеки, а из отсеков через зазоры между пластинами и прокладками — в радиальные каналы в перемычках. Так как зазоры между пластинами и перемычками прокладок очень малы, то почти все примеси остаются в грязевых отсеках и в радиальные каналы поступает очищенное масло. Из радиальных каналов масло проходит в кольцевой зазор между элементом и центральной трубкой и затем через отверстие 2 и трубку стекает в картер. Фильтрующие элементы со временем засоряются и их необходимо периодически заменять.

Рис. Фильтр тонкой очистки двигателя ЯАЗ-М-206Б: 1 — пробка сливного отверстия; 2 — центральная трубка; 3 — калиброванное отверстие; 4 — крышка; 5 — пружина; 6 — гайка крышки; 7 — прокладка; 8 — фильтрующий элемент; 9 — корпус

На рисунке изображен фильтр, фильтрующий элемент 8 которого сформован из минеральной шерсти на стальном каркасе. Элемент устанавливается в корпус 9 и прижимается пружиной 5 к буртику центральной трубки 2.

Масло из главной магистрали поступает через входной штуцер во внутреннюю полость корпуса фильтра. Находясь под давлением, масло проходит через фильтрующий элемент.

Очищенное масло попадает через калиброванное отверстие 3 в центральную трубку 2 и стекает в картер.

В случае засорения фильтрующий элемент заменяется новым.

В последнее время в отечественной автомобильной промышленности стали широко применяться вместо фильтра тонкой очистки более совершенные фильтры центробежной очистки масла.

Фильтр центробежной очистки масла состоит из ротора 6, который, опираясь на шарикоподшипник 14, может свободно вращаться на оси 1, закрепленной в корпусе 15 фильтра. На ротор фильтра надет и закреплен фасонной гайкой 11 колпак 7.

Соединения колпака и ротора уплотнены резиновыми уплотнителем 5 и прокладкой 10. Снаружи все детали фильтра закрыты съемным кожухом 8.

Работает фильтр следующим образом. Масло из магистрали двигателя проходит, как показано на рисунке стрелками, через сверления в оси ротора и самом роторе, заполняет полость колпака и через фильтрующую сетку 9 и вертикальные каналы ротора поступает к двум жиклерам 2, через которые оно с силой выбрасывается в полость корпуса фильтра и по его стенкам стекает в картер двигателя.

Под действием реактивного момента струй масла, выбрасываемого под давлением из жиклеров, ротор вместе с колпаком и сопряженными с ним деталями приводится во вращение со скоростью порядка 5000—6000 об/мин.

Рис. Фильтр центробежной очистки масла двигателя автомобиля Урал-375: 1 — ось ротора: 2 — жиклер; 3 — поддон: 4 и 10 — прокладки; 5 — уплотнитель; 6 — ротор; 7 — колпак; 8 — кожух; 9 — фильтрующая сетка; 11 — гайка крепления колпака; 12 — гайка крепления ротора; 13 — барашек; 14 — шарикоподшипник; 15 — корпус фильтра

Под действием центробежных сил находящиеся во вращающемся вместе с ротором и колпаком масле механические примеси как более тяжелые, чем масло, отбрасываются к стенкам колпака 7, на которых и оседают, образуя плотный осадок. Очищенное таким образом масло далее выбрасывается через жиклеры ротора фильтра, освобождая место в полости колпака для поступления следующей порции неочищенного масла. Следует отметить, что процесс очистки масла в таком фильтре идет при работающем двигателе непрерывно и характеризуется очень высокой степенью очистки масла.

Накапливающийся на внутренних стенках колпака 7 осадок из механических примесей периодически удаляется при промывке колпака и фильтрующей сетки в бензине при техническом обслуживании автомобиля.

Масляный радиатор. Во время работы двигателя масло нагревается, становится менее вязким и легче выжимается из зазоров между трущимися поверхностями. Чтобы не допустить возникновения полусухого трения, необходимо охлаждать масло, поддерживая его температуру в определенных пределах. Масло частично охлаждается в поддоне двигателя, однако для современных многооборотных двигателей естественное охлаждение масла в поддоне недостаточно, приходится применять специальные масляные радиаторы.

Рис. Установка масляного радиатора на автомобиле ГАЗ-63: 1 — масляный радиатор; 2 — радиатор системы охлаждения двигателя; 3 — кран включения масляного радиатора

Обычно применяются трубчатые масляные радиаторы, которые устанавливаются перед водяным радиатором. Масляный радиатор 1 подключается к масляной магистрали параллельно, поэтому через него проходит только часть масла, нагнетаемого насосом в магистраль. Включается масляный радиатор краном 3 при работе автомобиля в тяжелых дорожных условиях и летом при температуре окружающего воздуха выше 20° С.

На рисунке показан масляный радиатор двигателя ЯАЗ-М-206Б, включенный в систему охлаждения.

Радиатор состоит из корпуса 6, секций 2, омываемых охлаждающей жидкостью системы охлаждения двигателя, и крышки 1. Масло, проходя внутри секций, охлаждается или нагревается в зависимости от температуры охлаждающей жидкости системы охлаждения.

Контрольные приборы системы смазки служат для контроля за уровнем и давлением масла.

Переполнение поддона картера маслом приводит к чрезмерному нагарообразованию в камерах сжатия цилиндров, недостаток масла — к нарушению смазки трущихся деталей двигателя. Уровень масла проверяется маслоизмерительным стержнем, вставляемым в картер через специальное отверстие. На нижнем конце стержня нанесены метки верхнего, нижнего и промежуточных уровней масла. Нормальный уровень масла должен находиться около верхней метки. Если уровень масла находится ниже нижней метки, запускать двигатель нельзя.

Рис. Масляный радиатор двигателя ЯАЗ-М-206В: 1 — крышка; 2 — секция; 3 — выходное водяное отверстие; 4 — паронитовые прокладки; 5 — входной масляный канал; 6 — корпус; 7 — выходной масляный канал; 8 — входное водяное отверстие

Давление масла в системе смазки двигателя контролируется по манометру или по электрическому указателю давления, расположенным на щитке приборов. Стрелки этих приборов указывают давление масла в кг/см2.

На двигателе ЯАЗ-М-206Б для контроля за давлением масла, кроме манометра, используется также сигнальная лампочка, которая загорается, если давление в системе смазки падает ниже допустимого.

Система смазки двигателя ВАЗ | Системы смазки двигателя автомобиля

Система смазки двигателя за счет подачи масла к трущимся поверхностям обеспечивает:

  • уменьшение трения и повышение механического КПД двигате­ля;
  • уменьшение износа трущихся деталей;
  • охлаждение деталей двигателя;
  • вынос продуктов износа из сопряжений деталей двигателя.

Система смазки двигателя ВАЗ — комбинированная, т.е. смазывание происходит одновременно двумя способами: под давлением и разбрызгиванием. При температуре масла 85 °С и частоте вращения коленвала 5600 мин-1, давление в системе смазки составляет от 3,5 до 4,5 кгс/см2. При минимальной частоте вращения коленчатого вала (от 850 до 900 мин-1) минимальное давление должно составлять не менее 0,5 кгс/см2. Вместимость системы смазки, включая масло в масляном фильтре, составляет 3,75 л.

Рис. Схема системы смазки двигателя ВАЗ:
1 — масляный насос; 2 — масляный картер: 3 — канал подачи масла от насоса к фильтру; 4 — горизонтальный канал для подачи масла от фильтра в масляную магистраль; 5 — канал для подачи масла к шестерне привода масляного насоса и распределителя зажигания; 6 — канал в шейке коленчатого вала; 7 — передний сальник коленчатого вала; 8 — канал подачи масла от масляной магистрали к коренному подшипнику и к валику привода масляного насоса и распределителя зажигания; 9 — шестерня привода масляного насоса и распределителя зажигания; 10 — валик привода масляного насоса и распределителя зажигания; 11 — канал для стока масла; 12 — канал в кулачке распределительного вала; 13 — магистральный канал в распределительном валу; 14 — канал в опорной шейке коленчатого вала; 15 — кольцевая выточка на средней опорной шейке распределительного вала; 16 — крышка маслоналивной горловины; 17 — наклонный канал с головке цилиндров; 18 — вертикальный канал в блоке цилиндров; 19 — масляная магистраль; 20 — датчики давления и контрольной лампы давление масла; 21 — канал подачи масла к коренному подшипнику; 22 — канал подачи масла от коренного подшипника к шатунному; 23 — указатель уровня масла; 24 — масляный фильтр; 25 — перепускной клапан масляного фильтра; 26 — противодренажный клапан

Система смазки двигателя ВАЗ состоит из следующих элементов:

  • масляный картер 2;
  • указатель уровня масла 23;
  • масляный насос 1;
  • приемный патрубок насоса с мелкой фильтрующей сеткой;
  • полнопоточный масляный фильтр 24;
  • редукционный клапан;
  • указатель давления масла;
  • датчики 20 давления масла;
  • контрольной лампы недостаточного давления масла в системе;
  • каналы подвода масла.

Под давлением смазываются подшипники коленчатого и распределительного валов, подшипники вала привода вспомогательных агрегатов, подшипник шестерни привода масляного насоса и распределителя зажигания.

Разбрызгиванием смазываются стенки цилиндров, поршни с поршневыми кольцами, поршневые пальцы в бобышках поршня, цепь привода распределительного вала, опоры рычагов привода клапанов и стержни клапанов в направляющих втулках.

Циркуляция масла в системе обеспечивается масляным насосом. Насос засасывает масло из картера и по каналу 3 в блоке цилиндров подает его в полнопоточный фильтр 24. Очищенное масло из фильтра, через главную масляную магистраль 19 и каналы 21 в блоке цилиндров, поступает к коренным подшипникам и подшипникам вала привода вспомогательных агрегатов. От коренных подшипников масло через внутренние каналы 22 в коленчатом валу поступает к шатунным подшипникам. Часть масла через отверстия в нижних головках шатунов разбрызгивается и смазывает цилиндры и детали поршневой группы двигателя. Через каналы 17 и 18 в блоке и головке цилиндров, далее через магистральный канал 13 в распределительном валу масло подается к подшипникам и кулачкам вала. Цепь привода распределительного вала смазывается маслом, выходящим из передних опор распределительного вала и вала привода вспомогательных агрегатов.

На блоке цилиндров установлены датчик давления масла и датчик контрольной лампы недостаточного давления установлены. Датчики соединяются с главной масляной магистралью. В момент запуска двигателя зажигается контрольная лампа зажигается, поскольку давление масла в системе надостаточное. При работающем двигателе лампа должна гаснуть. В нектороых случаях лампа может гореть и при нагретом двигателе, когда он работает на малых частотах вращения коленчатого вала при холостом ходе.

Масляный насос

В картере двигателя устанавливается шестеренчатый насос с маслоприемником и редукционным клапаном в крышке. Крепится насос к блоку цилиндров двумя болтами.

В корпусе насоса установлены шестерни: ведущая — неподвижно на валике насоса и ведомая — свободно на оси, запрессованной в корпус. Привод насоса осуществляется цепной передачей от звездочки коленчатого вала на звездочку вала привода вспомогательных агрегатов, который установлен в блоке цилиндров в сталеалюминиевых втулках. Валик имеет винтовую шестерню, находящуюся в зацеплении с шестерней привода масляного насоса и распределителя зажигания, которая вращается в металлокерамической втулке. На последних моделях автомобилей валик привода вспомогательных агрегатов устанавливается также в металлокерамических втулках.

Масляный фильтр

Фильтр полнопоточный, неразборный, навертывается на штуцер блока цилиндров и соединяется каналами с масляным насосом и главной масляной магистралью. Для снятия фильтра используется приспособление А.60312. При установке фильтр рекомендуется завертывать вручную без приспособления. В стальном корпусе фильтра установлен фильтрующий элемент из специального картона. Фильтр имеет противодренажный и перепускной клапаны. Противодренажный клапан не позволяет стекать маслу из системы при остановке двигателя, перепускной — перепускает масло при засорении фильтрующего элемента из насоса в главную масляную магистраль.

Вентиляция картера двигателя

Рис. Схема вентиляции картера двигателя автомобиля ВАЗ: 1 — трубка; 2 — маслоотделитель; 3 — крышка; 4 — шланги; 5 — пламегаситель; 6 — вытяжной коллектор; 7 — фильтрующий элемент; 8 — шланг; 9 — ось дроссельной заслонки; 10 — золотник; 11 — канавка золотника; 12 — калиброванное отверстие.

Вентиляция картера двигателя ВАЗ — принудительная, закрытая, не допускающая выделения картерных газов в атмосферу. Осуществляется за счет разрежения в цилиндрах двигателя.

Система вентиляции картера включает в себя:

  • шланг 4;
  • маслоотделитель 2;
  • вытяжной коллектор 6, размещенный снизу воздушного фильтра.

Картерные газы при работе двигателя отсасываются в вытяжной коллектор через маслоотделитель 2 с крышкой 3, где масло отделяется и стекает вниз по трубке 1. В шланге 4 установлен пламегаситель 5, не допускающий прорыва пламени в картер при «хлопках» в карбюратор.

Из вытяжного коллектора газы далее могут проходить двумя путями:

  • в воздушный фильтр, минуя фильтрующий элемент 7, и через карбюратор в цилиндры двигателя с горючей смесью;
  • через шланг 8 в золотниковое устройство карбюратора и далее в задроссельное пространство карбюратора.

Золотниковое устройство регулирует режим отсоса картерных газов при различной частоте вращения коленчатого вала и состоит из золотника 10 на оси 9 дроссельной заслонки первой камеры и калиброванного отверстия 12. Золотник имеет канавку 11.

При малой частоте вращения коленчатого вала (при закрытых дроссельных заслонках) разрежение на входе в карбюратор незначительное, и основная масса газов отсасывается по шлангу 8 через калиброванное отверстие 12 в задроссельное пространство карбюратора. Калиброванное отверстие ограничивает количество отсасываемых газов, и вентиляция оказывает малое влияние на величину разрежения за дроссельной заслонкой.

С повышением частоты вращения коленчатого вала при открывании дроссельной заслонки золотник 10 поворачивается и открывает дополнительный путь для газов по канавке 11. Газы отсасываются как по шлангу 8, так и в воздушный фильтр. Общее количество отсасываемых газов увеличивается.

При высокой частоте вращения коленчатого вала (дроссельные заслонки открыты) основная масса газов отсасывается в воздушный фильтр в пространство за фильтрующим элементом.

Отправить ответ

avatar
  Подписаться  
Уведомление о