РазноеВпуск сжатие рабочий ход выпуск: 403 — Доступ запрещён – 403 — Доступ запрещён

Впуск сжатие рабочий ход выпуск: 403 — Доступ запрещён – 403 — Доступ запрещён

Строение двигателей / Habr

Недавно наткнулся на прекрасный сайт (англ.), который по полочкам размусоливает и показывает строение большинства типов двигателей. Попытаюсь вольно и сжато пересказать самое на мой взгляд главное, совсем по пальцам и как для самых маленьких. Конечно можно было бы позаимствовать точные определения из авторитетных источников, но такой любительский перевод обещает быть единственным в своем роде 🙂

А можете ли Вы сходу объяснить Вашей девушке, в чем отличие бензинового двигателя от дизельного? Четырёхтактного и двухтактного движков? Нет? Тогда приглашаю под кат.


Работающий четырёхтактный двигатель впервые был представлен немецким инженером Николаусом Отто в 1876, с этих пор он также известен под названием цикл Отто. Но все же корректнее называть его четырёхтактным. Четырёхтактный двигатель является, наверное, одним из самых распространенных типов двигателей в наше время. Он используется почти во всех автомобилях и грузовиках.

Под четырьма тактами подразумеваются: впуск, сжатие, рабочий ход, и выпуск. Каждый такт соответствует одному ходу поршня, вследствие этого рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала.

Впуск

Во время впуска поршень двигается вниз, втягивая свежую порцию воздушно-топливной смеси через впускной клапан. Отличительной особенностью рассматриваемого двигателя являтся то, что впускной клапан открывается за счет вакуума, образовавшегося в результате движения поршня вниз.

Сжатие

Крутящий момент подымает поршень, а тот в свою очередь сжимает воздушно-топливную смесь. Впускной клапан закрывается возрастающей силой давления, возникшей в результате поднятия поршня.

Рабочий ход

В верхней точке такта сжатия искра воспламеняет сжатое топливо. При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз.

Выпуск

Когда поршень достигает свою нижнюю точку, выпускной клапан открывается и выхлопные газы выгоняются из цилиндра движущимся наверх поршнем.

В двухтактном двигателе рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки, с помощью вспомогательного агрегата — продувочного насоса. Wiki

Так как в двухтактном двигателе на каждое движение коленчатого вала приходится один рабочий ход — двухтактные двигатели всегда мощнее четырехтактных (если брать двигатели одинакового объема). Важным фактором в пользу первых является их более простая и легкая конструкция. Эти двигатели получили распространение в бензо-пилах, лодочных моторах, снегоходах, легких мотоциклах и моделях самолетов.

Бесспорными минусами данного типа двигателей являются их неэкономичность, так как значительная доля топлива не выгорает и выбрасывается вместе с выхлопными газами.

Впуск

Воздушно-топливная смесь всасывается в кривошипную камеру благодаря ваккууму, который создается во время движения поршня вверх.

Сжатие в камере сгорания

Во время сжатия впусковой клапан закрывается давлением в кривошипной камере. Топливная смесь сжимается на последней стадии такта.

Движение топливной смеси/выпуск

Ближе к концу такта, поршень заставляет сжатую воздушно-топливную смесь двигаться по впускному каналу из кривошипной камеры в главный цилиндр. Воздушно-топливная смесь вытесняет выхлопные газы, которые покидают главный цилиндр через выпускной клапан. К сожалению, цилиндр также покидает некоторое количество невыгоревшего топлива, из-за чего конструкция двухтактного двигателя считается менее экономичной.

Сжатие

После чего поршень подымается, движимый крутящим моментом, и сжимает топливную смесь. (В этот момент под поршнем происходит следующий такт впуска).

Рабочий ход

На вершине такта свеча зажигания воспламеняет топливную смесь. Возникшая энергия заставляет поршень двигаться вниз до завершения цикла. (В этот момент внизу цилиндра топливо сжимается в кривошипной камере).

Особенностью дизельного двигателя является измененная система воспламенения топлива.

Создав свой тип двигателя в 1897 Рудольф Дизель заявил, что его двигатель является самым эффективным из когда-либо созданных. До сих пор его детище стоит в ряду самых экономичных двигателей.

Впуск

Впускной клапан открывается и свежий воздух (без топлива), засасывается в цилиндр.

Сжатие

Когда поршень подымается, воздух сжимается и температура в цилиндре возрастает. В конце такта воздух раскаляется настолько, что температуры становится достаточно дря воспламенения топлива

Впрыск

Возле вершины такта сжатия топливный инжектор впрыскивает топливо в цилиндр. При контакте с горячим воздухом топливо воспламеняется.

Рабочий ход

При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз.

Выпуск

Выпускной клапан открывается, заставляя выхлопные газы покинуть цилиндр.

Роторно-поршневой двигатель Ванкеля удивительное творение, предлагающее очень замысловатую перепланировку четырех тактов Отто-цикла. Был разработан Феликсом Ванкелем в 50-х годах прошлого века.

В двигателе Ванкеля трехгранный ротор с кольцевой шестернью вращается вокруг фиксированого зубчатого вала в продолговатой камере.

В наше время наибольшие усилия по разработке и популяризации данного типа двигателя прилагает Mazda, но все же четерыхтактный двигатель остается наиболее популярным. Также АвтоВАЗ использует данный тип двигателя в автожирах.

  • Преимущества перед обычными бензиновыми двигателями:
  • низкий уровень вибраций. Роторно-поршневой двигатель полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров
  • главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного поршневого двигателя внутреннего сгорания.
  • Высокая удельная мощность(л.с./кг), причины:
  • меньшие в 1,5-2 раза габаритные размеры.
  • меньшее на 35-40 % число деталей

  • Недостатки:
  • Быстрый износ
  • Склонности к перегреву
  • Сложность в производстве
  • Меньшая экономичность при низких оборотах

Впуск

Воздушно-топливная смесь попадает через впускной клапан на этом этапе вращения.

Сжатие

Топливная смесь сжимается здесь.

Рабочий ход

Рабочий ход, топливная смесь воспламеняется здесь, вращая ротор по кругу.

Выпуск

Выхлопные газы выходят здесь

Этот типа двигателя может приводится в действие паром, но чаще его можно встретить в маленьких моделях самолетов, где он работает на сжатом воздухе или углекислом газу.

На этой анимации отображен резервуар с CO2. Сжатый CO2 — это жидкость, которая освобождаясь переходит в газообразное состояние или же другими словами — при нормальных атмосферной температуре и давлении жидкий углекислый газ кипит, следовательно мы не ошибемся если скажем, что данный тип двигателя работает на пару CO2.

Впуск

На вершине цикла поршневой палец давит на шариковый клапан впуская находящийся под большим давлением газ в цилиндр.

Рабочий ход

Газ расширяется двигая поршень вниз

Выпуск

Когда поршень открывается выпускной клапан, находящийся под давлением газ покидает цилиндр.

Окончание

Крутящий момент возвращается поршень наверх, чтобы завершить цикл.

Ракетные и турбореактивные двигатели, по словам автора, поразительны по своей конструкции, но анимация их работы по его мнению слишком скучна.

Ракетный двигатель

Ракетный двигатель — простейшие из своего семейства, поэтому начнем с него.

Для того, что функционировать в открытом космосе ракетные двигатели для своей работы требуют запас кислорода, ровно как и топлива. Кислородно-топливная смесь впрыскивается в камеру сгорания где она беспрерывно сгорает. Газ под большим давлением выходит через сопла, вызывая тягу в обратном направлении.

Чтобы опробовать этот принцип самому, надуйте игрушечный шарик и выпустите его из рук — ракетный двигатель работает почти так-же 😉

Турбореактивный двигатель

Турбореактивный двигатель работает по тому-же принципу что и ракетный, с той лишь особенностью, что необходимый для горения кислород он берет из атмосферы. По своей конструкции он наиболее эффективен на больших высотах с разряженным воздухом.

Момент схожести: топливо беспрерывно сгорает в камере сгорания как и в ракетном. Расширевшийся газ покидает камеру сгорания через сопла, образуя тягу в обратном направлении.

Отличия: На своем пути из сопла некоторое количество давления газа ипользуется, чтобы раскрутить турбину. Турбина — это серия винтов, соединенныходним валом. Между каждой парой винтов находится статор (направляющий аппарат компрессора). Этот аппарат помогает газу проходить через лопасти винтов более эффективно.

Перед двигателем турбинный вал раскручивает компрессор. Компрессор работает схоже с турбиной, только в обратную сторону. Его функцией является повышение давления воздуха, попадающего в двигатель. Турбина выталкивает воздух, а компрессор засасывает.

Турбовинтовой двигатель

Турбовинтовой двигатель схож турбореактивным, с той лишь особенностью, что газ покидающий камеру сгорания вращает в большей степени турбину, которая в свою очередь вращает винт преед двигателем. Он и создает тягу. Эффективен на малых высотах.

Турбовентиляторный двигатель

Турбовентиляторный двигатель — это что вроде компромисса между турбореактивным и турбовинтовым. Он работает как турбореактивный, но есть одна особенность: турбинный вал вращает внешний вентялятор, который имеет больше лопастей и крутится быстрее пропеллера. Это помогает данному двигателю оставаться эффективным на больших высотах, где воздух рязряжен.

Источники:
www.animatedengines.com

  • Ultimate Visual Dictionary, DK Publishing Inc., 1999
  • Building the Atkinson Cycle Engine, Vincent Gingery, David J Gingery Publishing, 1996
  • The Stirling Engine Manual, James G. Rizzo, Camden Miniature Steam Services, 1995
  • Modern Locomotive Construction, J. G. A. Meyer, 1892, reprinted by Lindsay Publications Inc., 1994
  • Five Hundred and Seven Mechanical Movements, Henry T. Brown, 1896, reprinted by The Astragal Press, 1995
  • Model Machines/Replica Steam Models, Marlyn Hadley, Model Machine Co., 1999
  • Air Board Technical Notes, RAF Air Board, 1917, reprinted by Camden Miniature Steam Services, 1997
  • Internal Fire, Lyle Cummins, Carnot Press, 1976
  • Toyota Web site Prius specifications
  • Steam and Stirling Engines you can build, book 2, various authors, Village Press, 1994
  • Knight’s New American Mechanical Dictionary, Supplement Edward H. Knight, A.M., LL. D., Houghton, Mifflin and Company, 1884
  • Thomas Newcomen, The Prehistory of the Steam Engine L. T. C. Rolt, David and Charles Limited, 1963
  • An Introduction to Low Temperature Differential Stirling Engines James R. Senft, Moriya Press, 1996
  • An Introduction to Stirling Engines James R. Senft, Moriya Press, 1993

UPD: Добавил двигатели Ванкеля и CO2, они мне показались наиболее интересными и практически полезными.
UPD2: Добавил описание целого семейства реактивных двигателей: ракетный, турбореактивный, турбовинтовой, турбовентиляторный.

Принцип работы и рабочие циклы двигателя автомобиля (ДВС)

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.


Принцип работы ДВС (для просмотра нажмите на иконку «Play» на иллюстрации)

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).



Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь. Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.


Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.


Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Открытый урок на тему «Фазы газораспределения»

Утверждаю.

Зам. директора

Майсурадзе Г.Ш.

___ ______2016

_______________

План открытого урока

теоретического обучения.

(методическая разработка открытого урока)

Тема урока: Понятие о фазах газораспределения двигателя внутреннего сгорания.

Задачи урока:

  1. Образовательная: сформировать понятия у обучающихся о фазах газораспределения двигателя внутреннего сгорания.

  2. Развивающая: способствовать развитию у обучающихся навыков по выставлению фаз газораспределения самостоятельно, внимание и координации движений, логическое мышления.

  3. Воспитательная: воспитать аккуратность, трудолюбие, любовь к выбранной профессии и бережное отношение к оборудованию и приспособлениям.

Цель занятия: сформировать у обучающихся основные понятия о фазах газораспределения и порядке работы двигателя.


Тип занятия: урок изложения нового материала.

1. Организационный момент.

Цель – подготовка обучающихся к работе на уроке – 3 мин.

2. Проверка домашнего задания — 5 мин.

Цель – установить уровень выполнения домашнего задания.

  1. механизмы двигателя внутреннего сгорания,

  2. системы двигателя внутреннего сгорания,

  3. такты двигателя внутреннего сгорания.

3. Обобщение ответов.

4. Изложение новой темы — 20 мин.

Ход урока. 
Работа двигателя зависит от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов.

Что такое фазы газораспределения спросите вы? Фаза газораспределения — это период от момента открытия клапанов до момента их закрытия, выраженные в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов. Задача механизма газораспределения — обеспечить наивысшую эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность мотора, мощность и развиваемый момент тяги. В большинстве двигателей фазы меняться не могут, и работа таких двигателей не отличается высокой эффективностью. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.

Перед рассмотрением фаз газораспределения мы должны вспомнить геометрию, и то-что круг имеет 360 градусов, пол круга 180 градусов и четверть круга 90 градусов, а два круга 720 градусов. При рассмотрении рабочих циклов двигателей условно было принято, что открытие и закрытие клапанов происхо­дит в момент нахождения поршня со­ответственно в ВМТ или в НМТ (показать на макете).

hello_html_m4b7a8dee.jpg

В дей­ствительности моменты открытия и закрытия клапанов не совпадают с по­ложением поршней в мертвых точках. Клапаны открываются и закрываются с некоторым, иногда очень значи­тельным, опережением или запаздыва­нием, что необходимо для улучшения наполнения цилиндров чистым возду­хом (дизели) или горючей смесью (кар­бюраторные двигатели) и лучшей очист­ки их от отработавших газов.
hello_html_82c7aae.png
Рассмотрим общую диаграмму фаз газораспределения четырехтактного двигателя. Впускной клапан открывается с опережением, т. е. до прихода кривошипа ко­ленчатого вала и поршня в ВМТ. Вслед­ствие этого в начале движения поршня вниз впускной клапан будет уже открыт на значительную величину, и наполне­ние цилиндра воздухом или горючей смесью улуч­шается. Закрывается впускной клапан с запаздыванием, т. е. поршень проходят НМТ, поднимаются вверх, совершая такт сжатия, а клапан в это время еще открыт, и горючая смесь или воздух по инерции заполняют цилиндр.
Выпускной клапан открывается до прихода поршня в НМТ, т. е. с опереже­нием. Поршень движется вниз, а отработавшие газы уже начинают вы­ходить из цилиндра, так как давление в нем больше атмосферного. Поэтому при движении поршня вверх, во время такта выпуска, меньше затрачивается работы на удаление отработавших га­зов из цилиндра двигателя. Закрытие выпускного клапана происхо­дит с запаздыванием — после перехода поршнем ВМТ. В этом случае используется от­сасывающее действие потока газов в выпускном трубопроводе.
Таким образом, в результате откры­тия выпускного клапана с опережением и закрытия его с запаздыванием улуч­шается очистка цилиндра от отработав­ших газов. Анализируя диаграмму, ви­дим, что в течение некоторого времени, за которое коленчатый вал поворачи­вается на угол, равный сумме углов запаздывания и опережения, открыты оба клапана — впускной и выпускной — этот период называют перекрытием клапанов.
Для правильной установки фаз газо­распределения распределительные зуб­чатые колеса двигателя необходимо точно соединять по меткам.

С увеличением частоты вращения ко­ленчатого вала (быстроходные двигате­ли) фазы газораспределения расши­ряются, так как поршни перемещаются быстрее и остается меньше времени на наполнение цилиндров чистым возду­хом или горючей смесью.

4. Изложение видеоматериала – «Газораспределение» — 3 мин.

Последовательность чередования одноименных тактов в различных цилиндрах многоцилиндрового двигателя называется порядком работы цилиндров двигателя, который зависит от расположения цилиндров и конструктивного исполнения коленчатого и распределительного валов. У четырехцилиндровых однорядных двигателей такты чередуются через 180° и порядок работы цилиндров может быть следующим (пишем) порядок работы рядного четырех цилиндрового двигателя 1-3-4-2 (ВАЗ) или 1 — 2 — 4 — 3 (ГАЗ).
В V-образных восьмицилиндровых четырехтактных дви­гателях шатунные шейки коленчатого вала располагаются под углом 90°, и при угле развала двигателя 90° одноимен­ные такты будут перекрываться в левом ряду цилиндров по отношению к правому ряду на 90° или 1/4 оборота коленча­того вала. Эти двигатели имеют следую­щий порядок работы цилиндров: 1 – 5 – 3 – 6 – 2 – 4, и 1—5—4—2—6—3— 7 —8.

Знание порядка работы цилиндров необходимо для правильного подсоединения проводов к свечам зажигания бензиновых двигателей или трубопроводов высокого давле­ния дизельных двигателей, а также при регулировке тепло­вых зазоров клапанного механизма.

6. Тесты по теме – «Газораспределительный механизм двигателя внутреннего сгорания» — 3 мин.

1. Какое явление используется для работы ДВС?


а. нагревание при сгорании рабочей смеси.

б. химическая реакция при сгорании рабочей смеси.

в. расширение при сгорании рабочей смеси.

г. сужение при сгорании рабочей смеси.

2. Головки впускных клапанов имеют … диаметр, чем у выпускных.

а. больший.

б. меньший.

в. одинаковые.

3. Каким термином называют совокупность процессов, периодически повторяющихся в определенной последовательности в цилиндре двигателя?

а. тактом.

б. рабочим циклом.

в. рабочим процессом

4. Как называются точки, в которых скорость поршня равна нулю и он достигает крайних положений при своем движении?

а. мертвые точки.

б. крайние точки.

в. крайние положения.

5. За сколько оборотов коленчатого вала совершается рабочий цикл в четырехтактном двигателе:

а. За 1 оборот (360o).

б. За 2 оборота (720°).

в. За 4 оборота (1440°).

г. Среди ответов нет правильного.

6. Укажите правильную последовательность тактов ДВС:

а. рабочий ход, впуск, сжатие, выпуск.

б. впуск, сжатие, рабочий ход, выпуск.

в. сжатие, выпуск, рабочий ход, впуск.

г. выпуск, рабочий ход, впуск.

7. Поршень движется от НМТ к ВМТ, открыт выпускной клапан. Какой такт происходит в цилиндре двигателя?

а. Впуск.

б. Сжатие.

в. Рабочий ход.

г. Выпуск.

8. При движении поршня от НМТ к ВМТ в процессе такта «сжатие» в каком положении должны находиться клапана?

а. Оба клапана открыты.

б. Впускной открыт, выпускной закрыт.

в. Впускной закрыт, выпускной открыт.

г. Оба клапана закрыты.

9. Как отличить впускной клапан от выпускного одного двигателя?

а. по длине стержня клапана.

б. по диаметру тарелки клапана.

в. по маркировке.

10 Какова частота вращения распределительного вала по сравнению с коленчатым валом на четырехтактном двигателе?

а. вращается в 2 раза быстрее коленвала.

б. вращается с такой же скоростью как коленвал.

в. вращается в 2 раза медленнее коленвала.

г. вращается независимо от коленвала.

7. Закрепление новой темы

Контрольные вопросы: 
1. Показать и рассказать фазы газораспределения на макете ДВС.

2. Как изображаются фазы газораспределения.

3. Разъясните диаграмму фаз газораспределения ДВС.

4. Дать определение порядка работы двигателя.

5. Какой порядок работы четырех, шести и восьми цилиндровых двигателей.


8. Выставление оценок.

9. Задание на дом: Фазы газораспределения. кн.-Устройство автомобилей

9) Опишите рабочий процесс (цикл) четырехтактных двигателей (бензиновый и дизельный двигатель)

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов: впуск, сжатие, рабочий ход (сгорание — расширение), выпуск.

Впуск. Поршень перемещается от в.м.т. к н.м.т., впускной клапан открыт, в цилиндре образуется разрежение, вследствие чего в него поступает горючая смесь, которая перемешивается с отработавшими газами, оставшимися в небольшом количестве в цилиндре от предыдущего цикла, и образует рабочую смесь. Температура смеси в конце впуска равна 100 — 130° С, а давление примерно 70 — 80 кн/м2 (0,7 — 0,8 кгс/см2). На индикаторной диаграмме процесс впуска изображен линией rа.

Сжатие. Поршень перемещается от н.м.т. к в.м.т. Оба клапана закрыты, рабочая смесь сжимается, и температура ее повышается, благодаря чему улучшается испарение и перемешивание бензина с воздухом. К концу такта сжатия давление в цилиндре повышается до 800 — 1200 кн/м2 (8 — 12 кгс/см2), температура смеси достигает 280 — 480°G. На индикаторной диаграмме процесс сжатия показан линией ас.

Рабочий ход (сгорание — расширение). Рабочая смесь в цилиндре воспламеняется электрической искрой и сгорает за 0,001 — 0,002 сек, выделяя при этом большое количество теплоты. Оба клапана закрыты. Температура в конце сгорания достигает свыше 2000° С, а давление — 3,5 — 4,0 Мн/м2 (35 — 40 кгс/см2). На индикаторной диаграмме процесс сгорания изображен линией cz. Под действием силы давления газов поршень перемещается к н.м.т., вращая через шатун коленчатый вал, В процессе расширения внутренняя энергия преобразуется в механическую работу. В конце расширения давление в цилиндре падает до 300 — 400 кн/м2 (3 — 4 кгс/см2), а температура снижается до 800 — 1100 °С. На индикаторной диаграмме процесс расширения газов характеризуется линией zb.

Выпуск. Открывается выпускной клапан. Поршень перемещается к в.м.т. и очищает цилиндр от отработавших газов, выталкивая их в атмосферу. Давление к концу такта выпуска снижается до 105 — 115 кн/м2 (1,05 — 1,15 кгс/см2), а температура — до 300 — 400 °С. На индикаторной диаграмме процесс выпуска отработавших газов изображен линией br.

Рабочий процесс четырехтактного двигателя протекает за четыре хода поршня, т. е. за два оборота коленчатого вала.

Из четырех тактов рабочий ход является основным, остальные три — вспомогательными. Поэтому одноцилиндровый двигатель работает неравномерно. Для обеспечения равномерности вращения коленчатого вала автомобильные двигатели изготовляют с несколькими цилиндрами

В цилиндрах четырехтактного дизеля происходят те же такты, что и в цилиндрах четырехтактного карбюраторного двигателя (впуск, сжатие, рабочий ход, выпуск).

Впуск. Поршень перемещается к н.м.т., и через открытый впускной клапан цилиндр заполняется воздухом.

Сжатие. Поршень перемещается от н.м.т. к в.м.т. и при закрытых клапанах сжимает находящийся в цилиндре воздух.

У дизеля более высокая, чем у карбюраторного двигателя, степень сжатия (ε = 15 — 20) и как следствие этого выше давление (3,0 — 3,5 Мн/м2, или 30 — 35 кгс/см2) и температура (600 — 700 °С) конца сжатия.

Рабочий ход. В конце такта сжатия в цилиндр через форсунку впрыскивается под высоким давлением (10 — 20 Мн/м2, или 100 — 200 кгс/см2) мелкораспыленное тяжелое жидкое топливо, образующее с воздухом смесь, которая самовоспламеняется под действием высокой температуры сжатого воздуха и быстро сгорает, выделяя много теплоты. В результате температура в цилиндре повышается до 1800 — 2000° С, а давление — до 5 — 6 Мн/м2 (50 — 60 кгс/см2). Под действием силы давления газов поршень движется к н.м.т., повертывая коленчатый вал.

Выпуск. Поршень перемещается к в.м.т., выталкивая через открытый выпускной клапан отработавшие газы в атмосферу.

Отправить ответ

avatar
  Подписаться  
Уведомление о