РазноеГазогенератор что такое – Газогенератор — Энциклопедия журнала «За рулем»

Газогенератор что такое – Газогенератор — Энциклопедия журнала «За рулем»

Содержание

Газогенератор — Энциклопедия журнала «За рулем»


Газогенератор

Газогенератор – это установка для получения горючего газа из твердого топлива. В качестве твердого топлива, как правило, применяются местные ресурсы: уголь, торф, древесина, солома, а так же отходы деревообрабатывающих производств. Превращение твердого топлива в газообразное называется «газификацией» и заключается в сжигании топлива с поступлением количества кислорода воздуха или водяного пара, недостаточном для полного сгорания.
Сегодня газогенераторные установки используют для получения пара, или горячего воздуха для различных технологических процессов, а так же в составе отопительных систем. Однако в 30-е – 40–е годы прошлого века газогенераторы с успехом применяли на транспорте: массовая эксплуатация автомобилей на древесных чурках обещала сберечь жидкое топливо для более важных нужд — тонны сэкономленного бензина можно было направить в вооруженные силы или авиацию.

В 1923 году профессором Наумовым была разработана газогенераторная установка для 3-тонного грузовика, способная работать на древесном угле или на антраците. Установка была испытана в стационарных условиях совместно с 4-цилиндровым бензиновым двигателем Berliet L 14 мощностью 35 л.с. В 1928 году FIAT-15Ter с газогенератором Наумова совершил пробег по маршруту Ленинград – Москва – Ленинград. Первая половина 30-х годов отмечена многочисленными исследованиями, направленными на выявление оптимальной конструкции газогенераторной установки. Статьи об испытательных автопробегах и новых разработках постоянно появлялись в прессе, в том числе и в журнале «За Рулем».

В подавляющем большинстве это были установки для грузового транспорта, что не удивительно – ведь основной транспортной единицей народного хозяйства в период индустриализации являлся грузовик, а не легковой автомобиль. Тем не менее, следует упомянуть созданный в 1935 году ГАЗ-А с газогенераторной установкой Автодор – III, а также ГАЗ-М1 с газогенератором НАТИ-Г12, на котором в сентябре 1938 года был установлен рекорд скорости для газогенераторного автомобиля 60,96 км/ч. Первым серийным газогенераторным автомобилем являлся ЗИС-13, но подлинно массовыми «газгенами» стали ГАЗ-42, ЗИС-21 и УралЗИС-352.
Горение углерода топлива можно описать следующим образом:
С + О2 = СО2 — это полное сгорание топлива, которое сопровождается выделением углекислого газа СО2;
и С + (1/2)О2 = СО — это неполное сгорание, в результате которого образуется горючий газ – оксид углерода СО.
Оба этих процесса происходят в так называемой «зоне горения» газогенератора.
Оксид углерода СО образуется также при прохождении углекислого газа СО2 сквозь слой раскаленного топлива:
С + СО2 = 2СО
В процессе участвует часть влаги топлива (или влага, подведенная извне) с образованием углекислого газа СО2, водорода Н2, и горючего оксида углерода СО.
С + Н2О = СО + Н2
СО + Н
2
О = СО2 + Н2
Зону, в которой протекают три описанных выше реакции называют «зоной восстановления» газогенератора. Обе зоны – горения и восстановления – несут общее название «активная зона газификации».
Примерный состав газа, полученного в газогенераторе обращенного процесса газификации при работе на древесных чурках абсолютной влажностью 20%, следующий (в % от объема):
— водород Н2 16,1%;
— углекислый газ СО2 9,2%;
— оксид углерода СО 20,9%;
— метан СН4 2,3%;
— непредельные углеводороды СnHm (без смол) 0,2%;
— кислород О2 1,6%;
— азот N2 49,7%
Итак, генераторный газ состоит из горючих компонентов (СО, Н
2
, СН4, СnHm) и балласта (СО2, О2, N2, Н2О)

Топливо для газогенераторов
В качестве твердого топлива в газогенераторных установках могут быть использованы древесные чурки, древесный уголь, торф, бурый уголь, каменный уголь.
На территории СССР наиболее распространенным и доступным твердым топливом была древесина, по этому большую часть газогенераторного транспорта составляли автомобили с установками, работающими на древесных чурках.
Главные критериями качества топлива являлись порода древесины, абсолютная влажность и размеры чурок. Приоритет был отдан древесине твердых пород: березе, буку, грабу, ясеню, клену, вязу, лиственнице. Древесину мягких пород допускалось использовать лишь совместно с твердыми в соотношении 50/50. Сосновые чурки использовались без добавления древесины мягких пород.
Для газификации в автомобильных газогенераторах древесину распиливали на чурки длиной от 4 до 7 см, и шириной и высотой от 3 до 6 см. Абсолютная влажность готового твердого топлива не более 22%.

Менее распространены были древесно-угольные газогенераторные установки. Для их эксплуатации рекомендовалось использовать угли древесины твердых пород. Угли древесины мягких пород, склонные к крошению, допускалось применять с добавлением не менее 50% углей древесины твердых пород. Размер кусков древесного угля для газогенераторов поперечного процесса — от 6 до 20 мм, для других типов генераторов – от 20 до 40 мм.
В зависимости от содержания смол и золы твердые сорта топлив для газогенераторов разделяли на смолистые (битуминозные) малозольные (золы до 4%) и многозольные (золы более 4%), а также на безсмольные, или тощие (небитуминозные) малозольные (золы до 4%) и многозольные (золы более 4%). Для разных видов топлива были разработаны газогенераторы соответствующих типов:
— газогенераторы прямого процесса газификации;
— газогенераторы обращенного (обратного, или «опрокинутого») процесса газификации;
— газогенераторы поперечного (горизонтального) процесса газификации.

Типы газогенераторов

Газогенераторы прямого процесса газификации
Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.
В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.
Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.
Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С.

В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя.
Подача водяного пара в газогенератор должна производиться пропорционально количеству сжигаемого в газогенераторе топлива. Существовало несколько способов регулировки подачи пара в камеру газификации:
— механический способ, когда вода подавалась в испаритель газогенератора с помощью насоса, приводимого в действие от двигателя и имевшего перепускной кран, который был связан с дроссельной заслонкой. Таким образом, количество воды, подаваемой в газогенератор, изменялось в зависимости от числа оборотов и нагрузки двигателя;
— термический способ, когда в испарителе, расположенном вблизи зоны горения, поддерживался с помощью поплавкового устройства необходимый уровень воды, а количество образующегося пара изменялось в зависимости от нагрева испарителя, то есть в зависимости от температуры в зоне горения;
— гидравлический способ, когда расход воды регулировался иглой, перекрывавшей сечение жиклера, и связанной с мембраной, на которую действовала разность давлений до и после диафрагмы, установленной в газопроводе, соединявшим газогенераторную установку с двигателем;
— пневматический способ, при котором вода подавалась в испаритель газогенератора вместе с воздухом, засасываемым через обычный карбюратор.

В конструкции газогенератора ЦНИИАТ-АГ-2 был использован принцип центрального подвода воздуха и центрального отбора газа. Газогенератор состоял из корпуса, конической камеры газификации и зольника. Верхняя часть корпуса служила бункером для топлива и имела цилиндрический бак для воды. Трубка для подачи воды располагалась внутри газогенератора, бак подогревался теплом сгорающего топлива. Это обеспечивало надежную работу установки в зимнее время. Камера газификации представляла собой горловину конической формы, которая снизу была окружена рубашкой, заполненной водой для образования водяного пара. Необходимый уровень воды в рубашке поддерживался при помощи поплавкового устройства. Количество образовавшегося пара изменялось в зависимости от теплового режима газогенератора.

Воздух, засасываемый в газогенератор через подогреватель, смешивался с паром и поступал в камеру газификации через щель, образованную рубашкой и поворотной плитой. При вращении плиты рукояткой, расположенной снаружи под днищем газогенератора, ребра, имеющиеся на плите, срезали шлак и сбрасывали его в зольник.

Установки прямого процесса газификации не получили распространения, так как, во-первых, были непригодны для газификации самого распространенного твердого топлива — древесины, а во-вторых, потому что приспособления, необходимые для хранения, дозировки и испарения воды существенно усложняли конструкцию газогенератора.

Газогенераторы обращенного (опрокинутого) процесса газификации.
Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля.
В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.
Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.

Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы). Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7. Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора. Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10. Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки. На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.
Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации. Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.

Камера газогенератора НАТИ-Г-15), изготовленная из 12-миллиметровой листовой стали, имела вид усеченного конуса. В средней части газогенератора была смонтирована воздухоподводящая фурма. Она представляла собой чугунную отливку грушевидной формы. Внутри отливки – лабиринт для подвода воздуха в газогенератор. В нижней части камеры газификации располагалась колосниковая решетка, которую вынимали через зольниковый люк при чистке и разгрузке газогенератора. Образовавшийся в камере газификации газ проходил сквозь колосниковую решетку, поднимался вверх между корпусом газогенератора и камерой и отсасывался через газоотборный патрубок. Газогенератор был предназначен для работы на крупном древесном угле, с размером кусков 20 мм – 40 мм.
Газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках, получили наибольшее распространение.

Газогенераторы поперечного (горизонтального) процесса газификации.
В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива.
Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.

Газогенератор представлял собой цилиндрический бункер, нижняя часть которого, выполненная из листовой стали толщиной 6 – 8 мм, образовывала камеру газификации. В верхней части бункера был расположен люк для загрузки топлива.

Скорость дутья определялась проходным сечением воздухоподводящей фурмы. Фурма служила наиболее ответственной и сложной деталью газогенератора. Она была глубоко погружена в слой топлива и находилась в зоне высокой температуры – непосредственно около носка фурмы температура достигает 1200 – 1300 С. Высокие температурные нагрузки требовали применять водяное охлаждение фурмы. Конструктивно охлаждение фурмы являлось частью системы водяного охлаждения двигателя, или представляло собой самостоятельную систему, питаемую от отдельного бачка.

Воздухоподводящая фурма газогенератора НАТИ-Г-21 состояла из бронзового корпуса 1 и медных трубок 2 и 3 диаметром 20 и 40 мм, образующих водяную рубашку. Тыльная часть наружной трубки 3 была приварена к корпусу 1 фурмы, а носовая часть обварена медью и соединялась с внутренней трубкой 2, свободный конец которой при нагревании фурмы мог перемещаться в сальнике 4. Затяжкой накидной гайки 5 обеспечивалась герметичность водяной рубашки. Вода подавалась через нижний штуцер корпуса фурмы и после прохождения водяной рубашки отводилась через верхний штуцер. Для того чтобы поток воды достиг носка фурмы, к наружной поверхности внутренней трубки параллельно ее оси были приварены две перегородки, направлявшие поток воды к носу фурмы.

Другой важной деталью газогенераторов поперечного процесса газификации служила газоотборная решетка. Газоотборную решетку изготавливали из простой углеродистой или легированной стали толщиной 8 – 12 мм. Ее штамповали в виде изогнутого листа с отбортованными краями или изготавливали в виде плоской пластины. В последнем случае для монтажа решетки в газогенераторе предусматривали специальное гнездо. Отверстия в решетке для прохода газа делали круглыми, диаметром 10 – 12 мм, с раззенковкой со стороны выхода газа. Иногда отверстия делали овальными; в этом случае большая ось овала располагалась горизонтально, что позволяло увеличить проходное сечение без опасности проскакивания за решетку кусков угля (при наклонном расположении решетки).
Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.

Принцип работы автомобильной газогенераторной установки

Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.

Охлаждение и грубая очистка газа

На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.

Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.

В качестве простейшего очистителя использовался циклон. Газ поступал в очиститель через патрубок 1, распологавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3. Ударившись о стенки, частицы падали в пылесборник 6. Отражатель 4 препятствовал возвращению частиц в газовый поток. Очищенный газ выходил из циклона через газоотборный патрубок 2. Удаление осадка осуществлялось через люк 5.

Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя. Грубый очиститель-охладитель состоял из металлического кожуха 1, снабженного съемной крышкой 2. Внутри кожуха были установлены пластины 3 с большим количеством мелких отверстий, расположенных в шахматном порядке. Газ, проходя через отверстия пластин, менял скорость и направление, а частицы, ударяясь о стенки, оседали на них или падали вниз.

Грубые охладители-очистители последовательно соединяли в батареи из нескольких секций, причем каждая последующая секция имела большее количество пластин. Диаметр отверстий в пластинах от секции к секции уменьшался (РИСУНОК 5Г).

Фильтры тонкой очистки

Для тонкой очистки газа чаще всего применяли очистители с кольцами. Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали. Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц. Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя. Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса. Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.

Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.

Вентилятор розжига

В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод.
Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.

Смеситель

Образование горючей смеси из генераторного газа и воздуха происходило в смесителе. Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха. Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха. Эжекционные смесители б и в различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.
Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.

Методы уменьшения потерь мощности двигателей газогенераторных автомобилей

Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки.
Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.

Эксплуатация автомобилей с газогенераторными установками

Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях.
Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке.
Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель.
При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» — стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель. Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя. При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя.
В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок.
Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра.
Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.

Дополнительные материалы:

За Рулем 1931 № 20 Автомобили на дровах
За Рулем 1933 № 16 Автомобили на дровах
За Рулем 1934 № 17 Газогенератор профессора Карпова
За Рулем 1935 № 1 Пробег газогенераторных автомашин
За Рулем 1935 № 2 Новый четырехосный газогенераторный автобус
За Рулем 1935 № 3 Первый автодоровский газогенератор
За Рулем 1935 № 14 Новый газогенератор для автомобиля ГАЗ-АА

wiki.zr.ru

Газогенератор — это… Что такое Газогенератор?

        аппарат для термической переработки твёрдых и жидких топлив в горючие газы, осуществляемой в присутствии воздуха, свободного или связанного кислорода (водяных паров). Получаемые в Г. газы называются генераторными. Горение твёрдого топлива в Г. в отличие от любой топки осуществляется в большом слое и характеризуется поступлением количества воздуха, недостаточного для полного сжигания топлива (например, при работе на паровоздушном дутье в Г. подаётся 33—35% воздуха от теоретически необходимого). Образующиеся в Г. газы содержат продукты полного горения топлива (углекислый газ, вода) и продукты их восстановления, неполного горения и пирогенетического разложения топлива (угарный газ, водород, метан, углерод). В генераторные газы переходит также азот воздуха. Процесс, происходящий в Г., называется газификацией топлива (См. Газификация топлив).

         Г. обычно представляет собой шахту, внутренние стенки которой выложены огнеупорным материалом. Сверху этой шахты загружается топливо, а снизу подаётся дутьё. Слой топлива поддерживается колосниковой решёткой. Процессы образования газов в слое топлива Г. показаны на рис. 1. Подаваемое в Г. дутьё вначале проходит через зону золы и шлака 0, где оно немного подогревается, а далее поступает в раскалённый слой топлива (окислительная зона, или зона горения 1), где кислород дутья вступает в реакцию с горючими элементами топлива. Образовавшиеся продукты горения, поднимаясь вверх по Г. и встречаясь с раскалённым топливом (зона газификации II), восстанавливаются до окиси углерода и водорода. При дальнейшем движении вверх сильно нагретых продуктов восстановления происходит термическое разложение топлива (зона разложения топлива III) и продукты восстановления обогащаются продуктами разложения (газами, смоляными и водяными парами). В результате разложения топлива образуются вначале полукокс, а затем и кокс, на поверхности которых при их опускании вниз происходит восстановление продуктов горения (зона II). При опускании ещё ниже происходит горение кокса (зона 1). В верхней части Г. происходит сушка топлива теплом поднимающихся газов и паров.

         В зависимости от того, в каком виде подаётся в Г. кислород дутья, состав генераторных газов изменяется. При подаче в Г. одного воздушного дутья получается воздушный газ, теплота горения которого в зависимости от перерабатываемого топлива колеблется от 3,8 до 4,5 Мдж/м3 (900—1080 ккал/м3). Применяя дутьё, обогащенное кислородом, получают т. н. парокислородный газ (содержащий меньшее количество азота, чем воздушный газ), теплота горения которого может быть доведена до 5—8,8 Мдж {м3(1200—2100 ккал/м3).

         При работе Г. на воздухе с умеренной добавкой к нему водяных паров получается смешанный газ, теплота сгорания которого (в зависимости от исходного топлива) колеблется от 5 до 6,7 Мдж/м3(1200—1600 ккал/м3). И, наконец, при подаче в раскалённый слой топлива Г. водяного пара получают водяной газ с теплотой сгорания от 10 до 13,4 Мдж/м3(2400—3200 ккал/м3.

         Несмотря на то, что идея Г. была выдвинута в конце 30-х гг. 19 в. в Германии (Бишофом в 1839 и Эбельманом в 1840), их промышленное применение началось после того, как Ф. Сименсом (1861) был предложен регенеративный принцип отопления заводских печей, позволивший эффективно применять генераторный газ. Изобретателями первого промышленного Г. были братья Ф. и В. Сименс. Их конструкция Г. получила повсеместное распространение и просуществовала в течение 40—50 лет. Только в начале 20 в. появились более совершенные конструкции.

         В зависимости от вида перерабатываемого твёрдого топлива различают типы Г.: для тощего топлива — с незначительным выходом летучих веществ (кокс, антрацит, тощие угли), для битуминозного топлива — со значительным выходом летучих веществ (газовые и бурые угли), для древесного и торфяного топлива и для отбросов минерального топлива (коксовая и угольная мелочь, остатки обогатительных производств). Различают Г. с жидким и твёрдым шлакоудалением. Битуминозные топлива обычно газифицируются в Г. с вращающимся водяным поддоном, а древесина и торф — в Г. большого внутреннего объёма, т. к. перерабатываемое топливо имеет незначительную плотность. Мелкое топливо перерабатывается в Г. высокого давления и во взвешенном или кипящем слое.

         По назначению Г. можно разделить на стационарные и транспортные, а по месту подвода воздуха и отбора газа на Г. прямого, обращенного и горизонтального процесса. В Г. прямого процесса (рис. 2) движение носителя кислорода и образующихся газов происходит снизу вверх. В Г. с обращенным процессом (рис. 3) носитель кислорода и образующийся газ движутся сверху вниз. Для обеспечения обращенного потока средняя часть таких Г. снабжается фурмами, через которые вводится дутьё. Так как отсасывание образовавшихся газов осуществляется снизу Г., то зона горения 1 (окислительная) находится сразу же под фурмами, ниже этой зоны следует зона восстановления II, над зоной горения 1 располагается зона III — пирогенетического разложения топлива, происходящего за счёт тепла раскалённого горящего кокса зоны 1. Сушка самого верхнего слоя топлива в Г. происходит за счёт передачи тепла от зоны III. В Г. с горизонтальным процессом носитель кислорода и образующийся газ движутся в горизонтальном направлении.

         При эксплуатации Г. соблюдается режим давления и температуры, величина которых зависит от перерабатываемого топлива, назначения процесса газификации и конструкции Г.

         Бурное развитие газовой промышленности в СССР привело к почти полной замене генераторных газов природными и попутными, т. к. себестоимость последних значительно ниже. В зарубежных странах, где мало природного газа, Г. широко применяются в различных отраслях промышленности (ФРГ, Великобритания).

         Лит.: Михеев В. П., Газовое топливо и его сжигание, Л., 1966.

         Н. И. Рябцев

        

        Рис. 1. Схема прямого процесса образования газа в газогенераторе.

        Рис. 1. Схема прямого процесса образования газа в газогенераторе.

        Рис. 2. Газогенератор прямого процесса для получения смешанного газа: 1 — загрузочное устройство; 2 — шахта; 3 — водяная рубашка; 4 — колосниковая решётка; 5 — фартук; 6 — чаша с водой, образующая гидравлический затвор; 7 — выгребной нож; 8 — конвейер для удаления золы; 9 — дутьевая коробка.

        Рис. 2. Газогенератор прямого процесса для получения смешанного газа: 1 — загрузочное устройство; 2 — шахта; 3 — водяная рубашка; 4 — колосниковая решётка; 5 — фартук; 6 — чаша с водой, образующая гидравлический затвор; 7 — выгребной нож; 8 — конвейер для удаления золы; 9 — дутьевая коробка.

        Рис. 3. Схема газогенератора с обращённым процессом газификации топлива.

        Рис. 3. Схема газогенератора с обращённым процессом газификации топлива.

dic.academic.ru

Принцип работы газового генератора | Строительный портал

В поисках альтернативного источника энергии пришло понимание, что не обязательно добывать газ в шахтах, чтобы затем сжигать его в котлах и двигателях внутреннего сгорания, горючий газ можно добывать из отходов производства и древесины. Газогенератор или как его еще называют генератор газов путем сжигания местного топлива – дров, торфа, древесного угля, опилок и других отходов древесины, а также иногда других органических остатков способны выделять/генерировать горючие газы, такие как СО, СН4, Н2 и другие. Вариантов использования полученного газа несколько, но в любом случае в основу каждого устройства положен принцип газогенератора. О том, как работает газогенератор, из каких элементов он состоит, а также какие процессы проходят внутри него, мы расскажем в данной статье. Также рассмотрим варианты дальнейшего использования полученного газа и места, где можно устанавливать подобные агрегаты.

  1. Преимущества и недостатки генераторов газа
  2. Принцип работы газового генератора – газогенератора
  3. Типы газогенераторов
  4. Место установки газового генератора
  5. Дровяной газовый генератор своими руками

Итак, какие же существуют варианты использования газа, полученного в газогенераторе?

Первый – горючий газ направляется к газовой плите на кухне и используется для приготовления пищи. Второй – горючий газ сжигается сразу же в пиролизном котле отопления с газогенератором, соответственно, используется для отопления дома или теплиц. Кстати, подобные котлы могут называться газовым котлом на дровах, твердотопливным пиролизным котлом, газогенераторным котлом на дровах. Все они могут использоваться как для бытовых нужд, так и для отопления огромных производств и цехов или предприятий. Третий – горючий газ может направляться в двигатель внутреннего сгорания, который служит приводом насосной станции или генератора электроэнергии. Газовый генератор на дровах позволяет получать электроэнергию в тех регионах, где нет возможности провести линии электропередач, выполнить прокладку газопровода и затруднен подвоз газа в баллонах. Помимо автономности у газогенераторов есть и другие преимущества, которые мы раскроем ниже.

 

Преимущества и недостатки генераторов газа

В качестве примера рассмотрим преимущества и недостатки газогенераторных котлов отопления. Пиролизные котлы относятся к категории твердотопливных, но существенно отличаются от обычных печей на дровах или угле, где происходит обычный процесс сгорания топлива.

Преимущества газогенераторных котлов:

  • КПД газогенераторных котлов находится в диапазоне 80 – 95 %, в то время как КПД обычного твердотопливного котла редко превышает 60 %.
  • Регулируемый процесс горения в газогенераторном котле – одна закладка дров может гореть от 8 до 12 часов, для сравнения в обычном котле горение длится 3 – 5 часов. В газогенераторных котлах с верхним горением сгорание дров длится до 25 часов, а уголь может гореть 5 – 8 дней.
  • Топливо сгорает полностью, поэтому чистить зольник и газоход приходится не часто.
  • Благодаря тому, что процесс горения можно регулировать (мощность регулируется в диапазоне 30 – 100 %), работу котла можно автоматизировать, как например, газового или жидкотопливного.
  • Выброс вредных веществ в атмосферу из газогенератора минимален.
  • Газогенераторные котлы экономнее обычных.
  • Топливо для газогенераторов не обязательно должно быть подсушено до 20 % влажности, существуют модели котлов, в которых можно использовать древесину до 50 % влажности и даже свежесрубленную.
  • Возможность загрузки в котел неколотых поленьев до 1 м длиной и даже больше.

  • Помимо дров и отходов древесной промышленности в пиролизных котлах можно утилизировать резину, пластмассу и другие полимеры.
  • Высокая безопасность котла по сравнению с обычным твердотопливным котлом обеспечивается автоматикой и материалами, из которых изготовлен агрегат, а в особенности камеры сгорания.

Если говорить о газогенераторах, которые используются для производства электроэнергии, то они обладают точно такими же достоинствами, такими как экологичность, экономичность, высокий КПД, высокое октановое число 110 – 140, универсальность в плане используемого топлива и большая эффективность в зимнее время.

Недостатки газогенераторных котлов:

  • На газовый генератор цена в 1,5 – 2 раза выше, чем на обычный твердотопливный котел.
  • В большинстве своем газогенераторы энергозависимы, так как для подсоса воздуха используется вентилятор, но также существуют модели, которые могут работать и без электричества.
  • Если использовать газогенераторный котел на мощности ниже 50 %, то наблюдается нестабильное горение – как результат выпадение в осадок дёгтя, который скапливается в газоходе.
  • Температура обратки отопления не должна быть ниже 60 °С, иначе в газоходе будет выпадать конденсат.
  • Обычно газогенераторы требовательны к влажности топлива, но как уже писалось выше, есть модели, в которых можно сжигать даже свежесрубленную древесину.

Других существенных недостатков газогенераторов не выявлено.

Кстати, газогенераторы – не такое уж и новое изобретение. Еще в середине прошлого века, когда большая часть нефтяных ресурсов Германии шла на вооружение, в качестве топлива для автомобилей использовались дрова. Даже на грузовые автомобили устанавливались газогенераторы. Современные агрегаты не слишком далеко ушли в своей конструкции, но, тем не менее, основательно усовершенствованы.


 

Принцип работы газового генератора – газогенератора

 

В генераторе газов или газогенераторе из твердого топлива добывается горючий газ. Основной секрет заключается в том, что в камеру сгорания подается воздух, объема которого недостаточно для полного сгорания топлива, при этом соблюдается высокая температура порядка 1100 – 1400 °С. Полученный газ охлаждается и направляется к потребителю или двигателю внутреннего сгорания, если, например, планируется добывать электричество. Более детально принцип работы газогенератора рассмотрим ниже, уточнив какой процесс в каком элементе агрегата происходит.

 

Устройство газового генератора на древесине

 

Рассмотрим устройство газогенератора бытового назначения. Сразу хотелось бы отметить, что пиролизные котлы с газогенератором отличаются от предложенной схемы, так как сгорание газа происходит внутри котла во второй камере сгорания. Мы же рассмотрим лишь сам газогенератор, на выходе из которого получается горючий газ.

Схема газогенератора:

Корпус газогенератора изготовлен из листовой стали и имеет сварные швы. Самая распространенная форма корпуса – цилиндрическая, но она вполне может быть и прямоугольной. К нижней части корпуса приварено днище и ножки, на которых будет стоять газогенератор.

Бункер или камера заполнения служит для загрузки внутрь газогенератора топлива. Он также имеет цилиндрическую форму и изготовлен из малоуглеродистой стали. Бункер установлен внутри корпуса газогенератора и закреплен болтами. На крышке люка, ведущего в бункер, на кромках использован асбестовый уплотнитель или прокладка. Так как асбест запрещен для использования в жилых помещениях, то существуют модели газогенераторов, уплотнители крышки которой изготовлены из другого материала.

Камера сгорания находится в нижней части бункера и изготовлена из жаропрочной стали, иногда внутренняя поверхность камеры сгорания отделывается керамикой. В камере сгорания происходит горение топлива. В нижней ее части происходит крекинг смол, для чего там установлена горловина, изготовленная из жаропрочной хромистой стали. Между корпусом и горловиной находится прокладка – уплотнительный асбестовый шнур. В средней части камеры сгорания находятся фурмы для подачи воздуха. Фурмы представляют собой калиброванные отверстия, которые соединяются с воздухораспределительной коробкой, связанной с атмосферой. Фурмы и распределительная коробка также изготавливаются из жаропрочной стали. На выходе из воздухораспределительной коробки установлен обратный клапан, который препятствует выходу горючего газа из газогенератора. Чтобы повысить мощность двигателя или иметь возможность использовать дрова повышенной влажности (более 50 %), перед воздухораспределительной коробкой можно установить вентилятор, который будет нагнетать внутрь воздух.

Колосниковая решетка служит для того, чтобы поддерживать раскаленные угли. Она располагается в нижней части газогенератора. Через отверстия решетки зола от сгоревших углей проваливается в зольник. Чтобы колосниковую решетку можно было очищать от шлака, ее средняя часть сделана подвижной. Для поворота чугунных колосников предусмотрен специальный рычаг.

Загрузочные люки оснащены герметично закрывающимися крышками. Например, верхний загрузочный люк откидывается горизонтально и уплотнен асбестовым шнуром. В креплении крышки есть специальный амортизатор – рессора, которая приподнимает крышку в случае избыточного давления внутри камеры. Сбоку корпуса есть также два загрузочных люка: один сверху – для добавления топлива в зону восстановления, второй снизу – для удаления золы. Отбор газа производится в зоне восстановления, поэтому чаще всего в верхней части газогенератора, но также возможно отведение газа и из нижней части агрегата. Отбор газа производится через патрубок, к которому приварены трубы газопровода. Не обязательно сразу же выводить газ за пределы корпуса газогенератора, пока он горячий, его можно использовать для подогрева и подсушивания дров или другого топлива в камере загрузки. Для этого отводящий газопровод проводится по кольцевой вокруг камеры, между корпусом газогенератора и бункером.

Фильтр «Циклон» и фильтр тонкой очистки располагаются за корпусом газогенератора. Они изготовлены из труб, наполненных фильтрующими элементами.

Прежде чем поступить в фильтр тонкой очистки, газ проходит через охладитель. А после фильтра тонкой очистки очищенный газ поступает в смеситель, где смешивается с воздухом. И только затем газо-воздушная смесь поступает в двигатель внутреннего сгорания.

Более наглядно последовательность движения горючего газа, после того как он вышел из газогенератора, показана на схеме ниже.

Дрова или другое топливо горит в камере сгорания, окисляясь воздухом, поступающим в камеру сгорания через фурмы из воздухораспределительной коробки. Полученный горючий газ поступает в фильтр Циклон, где очищается. Затем охлаждается в фильтре грубой очистки. Затем уже охлажденный газ поступает в фильтр тонкой очистки, а затем в смеситель. Из смесителя полученная смесь поступает в двигатель.

 


Процесс превращения топлива в газ

 

И все же: как из твердого топлива получается газ? Внутри газогенератора происходит некий процесс превращения, который разбит на несколько этапов, происходящих в разных зонах:

Зона подсушки находится в верхней части бункера. Здесь температура порядка 150 – 200 °С. Топливо подсушивается горячим газом, который движется по кольцевому трубопроводу, как было описано выше.

Зона сухой перегонки расположена в средней части бункера. Здесь без доступа воздуха и при температуре 300 – 500 °С топливо обугливается. Из древесины выделяются кислоты, смолы и другие элементы сухой перегонки.

Зона горения находится внизу камеры сгорания в зоне, где расположены фурмы, через которые поступает воздух. Здесь при подаче воздуха и температуре 1100 – 1300 °С обугленное топливо и элементы сухой перегонки сгорают, в результате чего образуются газы СО и СО2.

Зона восстановления находится выше зоны горения между колосниковой решеткой и зоной горения. Здесь газ СО2 поднимается вверх, проходит через раскаленный уголь, взаимодействует с углеродом (С) угля и на выходе образуется газ СО – окись углерода. В данном процессе также участвует влага из топлива, поэтому помимо СО образуется СО2 и Н2.

Зоны горения и восстановления называются зоной активной газификации. В результате генераторный газ состоит из нескольких компонентов:

  • Горючие газы: СО (оксид углерода), Н2 (водород), СН4 (метан) и СnНm (непредельные углеводороды без смол).
  • Балласт: СО2 (углекислый газ), О2 (кислород), N2 (азот), Н2О (вода).

Полученный газ охлаждается до температуры окружающей среды, затем очищается от муравьиной и уксусной кислоты, золы, взвешенных частиц и смешивается с воздухом.

 

Типы газогенераторов

 

Различают три типа газогенераторов: прямого процесса газогенерации, обратного и горизонтального.

Газогенераторы прямого процесса могут сжигать уголь полукокс и антрацит – топливо небитуминозное. Конструктивное отличие данного типа агрегатов в том, что воздух поступает через колосниковую решетку снизу, а забор газа производится сверху. В газогенераторах прямого процесса влага из топлива не попадает в зону горения, поэтому ее подводят специально. Обогащение генераторного газа водородом из воды повышает мощность генератора.

Газогенераторы опрокинутого или обращенного процесса предназначены для сжигания смолистого топлива – дров, древесного угля и отходов. Их конструктивное отличие в том, что воздух подается в среднюю часть – в зону горения, а забор газа производится ниже зоны горения – в зольнике. Обычно в агрегатах такого типа отобранный горячий газ используется для подогрева топлива в бункере.

Газогенераторы горизонтального или поперечного процесса газификации отличаются тем, что воздух в них подводится сбоку – в нижней части корпуса, причем подается он с высокой скоростью дутья через фурмы. Отбор газа производится  напротив фурмы через газоотборную решетку. Активная зона газификации в газогенераторе горизонтального процесса очень мала и сосредоточена между концом фурмы и газоотборной решеткой. Время пуска такого генератора намного меньше, также он легко приспосабливается к смене режимов работы.

 

Место установки газового генератора

Газогенераторы и газогенераторные котлы отопления можно устанавливать как внутри жилых помещений, например, в подвалах и цокольных этажах, так и на улице.

Так называемые пеллетные котлы чаще всего устанавливают в доме, так как их загрузка не сопряжена с большим количеством мусора, а также мешки с пеллетами весят немного и могут храниться где-то рядом с котлом.

Газогенераторы на дровах, а в особенности на дровах большой длины, имеет смысл устанавливать на улице недалеко от места хранения дров. Так можно будет подвезти дрова на тачке непосредственно к котлу или газогенератору и не спускать их в подвал дома. Стоящий на улице котел избавляет от грязи и золы в подвале. Особенно это актуально для деревянных домов, где повышенные нормы пожаробезопасности. Внешний корпус котла изготавливается из нержавеющей стали, которая не подвержена коррозии. Также котлы теплоизолированы насыпной теплоизоляцией, чтобы температура окружающей среды минимально влияла на процесс газификации и скорость пуска котла. Система регулирования размещается в стальном кожухе под крышкой, чтобы на нее не попадали осадки. Дымовая труба имеет двойные стенки. Если вас интересует, как подключить газовый генератор, если он стоит на улице, то ответ прост – трубы прокладываются в земле, чтобы они минимально охлаждались, если это котел отопления. Трубы отопления подходят к котлу снизу, а сам котел устанавливается так, чтобы при длительных перерывах в использовании он не замерзал.

Кстати, как уже отмечалось, длительность процесса горения топлива в котле может быть от 12 часов и достигать 25 часов. В зависимости от мощности котла и площади отапливаемого помещения, его придется топить раз в два дня, а иногда и раз в неделю. Чтобы сохранить вырабатываемое котлом тепло на столь длительный период, используется теплоаккумулятор.

 

Дровяной газовый генератор своими руками

В том чтобы изготовить газогенератор своими руками, нет ничего сверхсложного. Многие используют такой агрегат для бытовых нужд или устанавливают на автомобиль. Перед тем как начать изготавливать газогенератор самостоятельно, необходимо ознакомиться с принципом его действия и выбрать подходящую для себя схему работы.

Понадобятся – бочка, трубы или старая батарея радиаторов, фильтры тонкой и грубой очистки газа, вентилятор. С другой стороны набор элементов может быть самым разным, все зависит от фантазии исполнителя.

Ниже посмотрите видео пример газогенератора самостоятельного изготовления.

Схема газогенратора:

В интернете можно найти как фото, так и чертежи по монтажу газовых генераторов и пиролизных котлов. Есть даже умельцы, которые берут за основу готовый проверенный котел и полностью повторяют его в домашних условиях. Получается дешевле намного.

Схема газогенераторного котла:

Отличие пиролизного котла от обычного газогенератора в том, что он состоит из двух камер сгорания: в одной сгорает топливо и образуется газ, а в другой – сгорает газ и находится теплообменник. Устройство и принцип работы газогенератора мы уже рассмотрели, добавьте в него только вторую камеру сгорания, которая должна располагаться вверху, и теплообменник сверху. Иногда теплообменник располагают сбоку. Также не забудьте о разных типах газогенераторов, так что вторая камера сгорания может находиться не только сверху.

При сборе дымохода постарайтесь собирать его в последовательности, обратной движению дыма, так на его стенках будет меньше оседать всякой гадости. Сам дымоход лучше сделать легкоразбираемым, чтобы его можно было легко и быстро чистить. Пространство вокруг котла отопления должно быть свободным, так как он нагревается в процессе работы.  После монтажа котла придется изучить его «повадки» и подобрать оптимальный для себя режим работы, при котором сгорают все смолы.

Хотелось бы отметить, что газогенератор может рассматриваться не только как сжигатель полезной древесины, но и как утилизатор отходов. В нем можно сжигать остатки линолеума, пакетов, мешков, резины, пластиковых бутылок и другого бытового мусора.

strport.ru

Где и для чего может использоваться газогенератор, разбираем его устройство

Высокая стоимость энергоносителей, частые перебои в сети – все это толкает человека на поиски альтернативных источников электричества. Они могут быть промышленного производства или собранные самостоятельно, но в любом случае должны отличаться экономичностью. И если сравнивать все представленные на рынке силовые установки, то наиболее эффективным является газогенератор, предназначенный для преобразования древесных отходов в газ и получения из него электроэнергии.

Что представляет собой этот агрегат

Газогенератор может работать на твердом или жидком топливе. Его отличительной чертой является получение газа в процессе сжигания дров, кокса, мазута и других аналогичных составляющих. Поскольку устройство агрегата обеспечивает полное сгорание топлива, то выбросы в атмосферу практически равны нулю. Кроме того, в результате его работы твердые составляющие преобразуются в газ, делая использование устройства наиболее эффективным.

Виды силовых установок

В зависимости от протекающего внутри агрегата процесса различают три основных типа:

  • Для получения воздушного газа;
  • Водяного;
  • Смешанного.

Кроме того, газогенераторы различаются и по характеру слоя. Они могут быть с:

  • Плотным;
  • Взвешенным;
  • Кипящим.

Большинство выпускаемого оборудования сегодня относится к механизированному, однако, можно встретить в продаже полу- и даже не механизированные агрегаты. Естественно, что последние будут одними из самых дешевых, но при эксплуатации требуют постоянного контроля со стороны человека.

Каждый тип газогенераторов имеет свои особенности и эксплуатационные характеристики. Так прямоточные агрегаты имеют большие габариты, не позволяющие осуществлять транспортировку. Поэтому такие устройства обычно собирают непосредственно на месте установки. Преимущество таких газогенераторов заключается в том, что для их работы можно использовать поленья до 1,5 метров в длину и любой влажности.

Но есть и компактные агрегаты, например, вихревые силовые установки. Они отличаются небольшим весом, размерами и умеренной стоимостью. В качестве топлива для газогенератора бытового подходят опилки и стружка, а также отходы сельхозпродукции. Однако такие установки довольно требовательны к размерам фракций и влажности сжигаемых продуктов. Хотя и топливо с высоким содержанием влаги допускается использовать в таких газогенераторах, поскольку оно успеет просохнуть пока будет перемещаться транспортеров вглубь камеры сжигания.

Факельные генераторы предназначены для работы на измельченной сухой массе. Они обычно устанавливаются на деревообрабатывающих предприятиях, где постоянно присутствуют большие объемы сухих опилок и стружки. Их главным достоинством является самая низкая стоимость в сравнении с другими типами оборудования.

Народные умельцы разработали схему газового генератора, выполненного из газового баллона. Но вопрос выбора зависит от многих причин и в том числе желания делать оборудования самостоятельно.

Принцип работы

Агрегаты этого класса предназначены для термической обработки твердых и жидких видов топлива в горючий газ. Процесс происходит под воздействием кислорода, а получаемая газообразная смесь называется генераторной. В ее состав входят углекислый газ, вода и азот. Сжигание твердых отходов, приводящее к выработке горючей смеси, называется газификацией топлива. Выше мы рассмотрели, как функционирует газогенератор и в чем заключается его принцип работы.

Но чтобы понять, что позволило добиться таких результатов, стоит рассмотреть конструктивные особенности оборудования. Если взять общий случай, то устройство газогенератора представляет собой шахту, выложенную изнутри огнеупорным материалом. Дрова или уголь загружаются в нее сверху, а снизу поступает воздух. При этом топливо располагается на колосниковой решетке.

Воздух, подаваемый в агрегат, фильтруется через слой золы и поступает в зону горения. Здесь происходит смешивание кислорода с горючими компонентами. Получившаяся смесь поднимается вверх к раскаленному топливу, что приводит к образованию окиси углерода. Далее происходит термическое разложение топлива и образование кокса. Состав получаемых газов отличается в зависимости от способа подачи в газогенератор кислорода.

Но чтобы полученная смесь могла использоваться как топливо ее необходимо охладить и очистить от:

  • Взвешенных частиц;
  • Золы.

Затем газ подается в смеситель, где к нему добавляется воздух, что необходимо для его дальнейшего использования. Одной из разновидностей газогенераторов является пиролизная печь.

Достоинства и недостатки силовых установок

Но как бы не был хорош газогенератор у него также есть свои недостатки. Например, для большинства моделей – это необходимость использования вентилятора, который подключается к электросети. В этом случае установка не является автономной.

Еще один минус – это потеря стабильности горения на 50% при снижении мощности устройства. В этом случае наблюдается выделение дегтя, загрязняющего газоход. Кроме того, стоимость таких генераторов в несколько раз больше, чем у аналогичного котла.

Однако эти недостатки перекрываются большим числом положительных качеств. Одно из них – это высокий КПД, у некоторых моделей достигающий 95%. К достоинствам также относятся:

  • Длительный процесс горения;
  • Возможность автоматизации;
  • Экологическая чистота;
  • Снижение затрат на отопление;
  • Возможность использования свежесрубленной древесины;
  • Использование в качестве топлива отходов деревообработки.

Причем длина и размеры фракций для большинства моделей не ограничены и позволяют загружать в топку поленья длиной до 1 метра.

Вероятные поломки и способы их избежать

Неисправности и проблемы в работе газогенераторов могут возникать по следующим причинам:

  • Использовании топлива низкого качества;
  • Плохой работе топливозагрузочного устройства;
  • Неудовлетворительном обслуживании агрегата.

Основанием для ненормального функционирования газогенератора может послужить холодный и горячий ход устройства. Обычно он возникает в следствие значительного снижения зоны горения или укладке большого слоя топлива. Обнаружить эту неисправность можно по повышению уровня углекислого газа и увеличению влажности смеси на выходе. Но лучше не допускать таких ситуаций, чтобы не потребовался ремонт газового генератора.

Возможны проблемы и в работе дутья. Если его подача осуществляется на недостаточном уровне, то следует искать причину в неисправности дутьевого оборудования. Однако к этому может привести и большое количество мелкой фракции в топливной смеси, а также большой слой шлаковой подушки.

Производительность газогенератора снижается и в случае использования влажного топлива, так как в процессе его сжигания начинают выделяться смола и жидкость.

Однако к устранению этих неисправностей следует подходить очень внимательно. Ремонт газового агрегата стоит доверять только специалистам. Потому что при излишнем снижении уровня топлива возможно появление горячего хода, который также негативно влияет на работу устройства.

Возможно появление и других проблем при эксплуатации газогенератора. Избежать их можно придерживаясь рекомендаций от производителя, а также соблюдая правила эксплуатации таких устройств.

Где лучше всего устанавливать газогенератор

Поскольку работа этого устройства связана с процессом горения, то при установке его в закрытом и плохо вентилируемом помещение возможно отравление угарным газом. Избежать этого можно, если использовать оборудование на открытом воздухе.

Не стоит устанавливать газогенератор в жилых помещениях, даже если в них имеется система вентиляции.

Но поскольку оборудование предназначено для выработки электроэнергии, то оно должно эксплуатироваться только сухим. Поэтому установив его на открытом воздухе следует обустроить навес или другую защиту от возможного попадания влаги. Иначе вам может потребоваться ремонт газового генератора.

При необходимости подключения агрегата к внутренней электропроводке стоит обратиться к специалистам. Это поможет избежать возникновения аварийных ситуаций и обеспечит надежную работу оборудования.

Заправку или дозаправку газогенератора следует производить только разрешенным к использованию топливом, имеющим допустимую влажность.

generatorvolt.ru

Газогенератор (сублимация) — это… Что такое Газогенератор (сублимация)?

Газогенератор — устройство для преобразования твёрдого или жидкого топлива в газообразную форму. Наиболее распространены газогенераторы, работающие на дровах, древесном угле, каменном угле, буром угле, коксе и топливных пеллетах. Газогенераторы, использующие в качестве топлива мазут и другие виды жидкого топлива, применяются значительно реже.

Обеспечивая более полное сгорание отходов деревообработки и сельскохозяйственной продукции (опилки, лузга семечек и т. д.), использование газогенератора позволяет сократить выбросы в атмосферу.
Газогенератор позволяет газифицировать твёрдое топливо что делает его использование более удобным и эффективным, будь-то отопительный котёл, двигатель внутреннего сгорания, газовая турбина или химическая промышленность.

В газогенераторе протекает несколько основных химических реакций. При горении с обедненным количеством кислорода (пиролиз) протекают реакции окисления угля и углеводородов:

C+O2 → CO2
2H2+O2 → 2H2O
с выделением тепловой энергии

После чего реакции восстановления:

C+CO2 → 2CO
C+H2O → CO+H2
с потреблением тепловой энергии

Активная часть газогенератора состоит из трёх перетекающих участков: термического разложения топлива, окисления, восстановления. Кроме устройств с внешним подводом тепла, где зоны окисления нет.

Калорийность генераторного газа зависит от состава газа обдува[1]:

Воздух 3,8 — 4,5 Мдж/м3
Воздух + водяной пар5 — 6,7 Мдж/м3
Кислород + водяной пар5 — 8,8 Мдж/м3
Водяной пар10 — 13,4 Мдж/м3

Существуют три основных типа газогенераторного процесса: прямого, обращённого и горизонтального. Также известны и газогенераторы двухзонного процесса, которые представляют собой комбинацию прямого и обратного процессов.

Прямой процесс



Преимущество прямого процесса — простота исполнения. Недостаток — большое содержание влаги и смол. Данный недостаток можно устранить, используя очищенное топливо: древесный уголь или кокс.

Обращённый процесс



Обратный процесс имеет самое меньшее содержание смол потому, что газ разложения топлива проходит самую высокотемпературную зону «окисления», что приводит его к практически полному разложению. На практике исполняется немного сложнее, чем прямой.

Горизонтальный процесс



Горизонтальный процесс имеет умеренное количество смол. Газ разложения проходит зону восстановления, но часть его не полностью разлагается, Преимущество — простая конструкция.

Водяной пар подается отдельно от газа обдува, предварительно разогретым, в зону восстановления. Генераторный газ при этом имеет большую калорийность но общая тепловая мощность установки падает, поэтому в тепловых котлах подача пара не используется.

Газогенераторы различаются системой загрузки топлива и отбора золы. Беспрерывная система подачи и отбора более технологична, часто используется в промышленности (в основном на лесопилках).

Ошибочно, газогенераторами также называют, по аналогии с дизельгенераторами и бензогенераторами, электростанции работающие на газе (метане, сжиженном газе).

См. также

Ссылки

Примечания

  1. Газогенератор — Большая Советская энциклопедия — Энциклопедии & Словари

Ошибка в сносках?: Тег <ref> с именем «autogenerated1», определённый в <references>, не используется в предшествующем тексте.

dic.academic.ru

Автомобиль на дровах: как он работает?

 Это похоже на анекдот. Но тем, кто работал на лесоповале в тайге в 30-х, было не до смеха. Нет бензина — ехали на дровах. Да и по сей день эта технология до сих пор используется. Как устроены такие авто? Разбираем в деталях.

Оговоримся сразу: если автомобиль ездит на дровах, это не значит, что он — паровоз без рельсов. Низкий КПД паровой машины с ее отдельной топкой, котлом и цилиндрами двойного-тройного расширения оставил паровые автомобили в числе забытой экзотики. А сегодня мы поговорим о «дровяном» транспорте с привычными нам ДВС, моторами, сжигающими топливо внутри себя.

Разумеется, затолкать дрова (или нечто подобное) в карбюратор вместо бензина пока еще никому не удавалось, а вот идея прямо на борту авто получать из древесины горючий газ и подавать его в цилиндры как топливо прижилась на долгие годы. Речь идет о газогенераторных автомобилях, машинах, чей классический ДВС работает на генераторном газе, который получают из древесины, органических брикетов, или угля. От привычного жидкого топлива, кстати, такие машины тоже не отказываются — они способны работать и на бензине.

Bundesarchiv_Bild_183-V00670A,_Berlin,_Auto_mit_Holzgasantrieb.jpg

Автомобиль с газогенераторной установкой. Фото wikipedia.org


Святая простота

Генераторный газ — это смесь газов, состоящая в основном из окиси углерода СО и водорода Н2. Получить такой газ можно, сжигая размещенную толстым слоем древесину в условиях ограниченного количества воздуха. На этом несложном принципе работает и автомобильный газогенератор, простой по сути агрегат, но громоздкий и конструктивно осложненный дополнительными системами.

Также, помимо собственно производства генераторного газа, автомобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Соответственно, конструктивно классическая установка включает в себя сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения процесса розжига и трубопроводы.


gazgenn.jpg

НПЗ вожу с собой

Простейший газогенератор имеет вид вертикального цилиндра, в который почти доверху загружается топливо — дрова, уголь, торф, прессованные пеллеты и т.п. Зона горения расположена внизу, именно здесь, в нижнем слое горящего топлива создается высокая температура (до 1 500 градусов по Цельсию), необходимая для выделения из более верхних слоев будущих компонентов топливной смеси — окиси углерода СО и водорода Н2. Далее горячая смесь этих газов поступает в охладитель, который снижает температуру, повышая таким образом удельную калорийность газа. Этот довольно крупный узел обычно приходилось помещать под кузовом машины. Расположенный следом по ходу газа фильтр-очиститель избавляет будущую топливную смесь от примесей и золы. Далее газ направляется в смеситель, где соединяется с воздухом, и окончательно приготовленная смесь направляется в камеру сгорания двигателя автомобиля.


zis_gazgen Схема автомобиля ЗИС-21 с газогенератором1.jpg

Схема автомобиля ЗИС-21 с газогенератором


Как видите, система производства топлива прямо на борту грузовика или легковушки занимала довольно много места и немало весила. Но игра стоила свеч. Благодаря собственному — и к тому же дармовому — топливу свой автономный транспорт могли себе позволить предприятия, расположенные за сотни и тысячи километров от баз снабжения ГСМ. Это достоинство долго не могло затмить все недостатки газогенераторных автомобилей, а их было немало:

— существенное сокращение пробега на одной заправке;
— снижение грузоподъемности автомобиля на 150-400 кг;
— уменьшение полезного объема кузова;
— хлопотный процесс «дозаправки» газового генератора;
— дополнительный комплекс регламентных сервисных работ;
— запуск генератора занимает от 10-15 минут;
— существенное снижение мощности двигателя.


autowp.ru_zis_150um_1.jpg

ЗиС 150УМ, опытная модель с газогенераторной установкой НАМИ 015УМ


В тайге заправок нет

Древесина всегда являлась основным топливом для газогенераторных автомобилей. В первую очередь, конечно, там, где дров в избытке, — на лесозаготовках, в мебельном и строительном производстве. Традиционные технологии лесопереработки при промышленном использовании древесины в эпоху расцвета «газгенов» около 30% от массы леса отпускали в отходы. Их и использовали как автомобильное топливо. Интересно, что правилами эксплуатации отечественных «газгенов» строжайше запрещалось использование деловой древесины, так как и отходов лесной промышленности было с избытком. Для газогенераторов годились как мягкие, так и твердые породы дерева.

Единственное требование — отсутствие на чурках гнили. Как показали многочисленные исследования, проведенные в 30-е годы в Научном автотракторном институте СССР, лучше всего в качестве топлива подходят дуб, бук, ясень и береза. Чурки, которыми заправлялись котлы газогенераторов, чаще всего имели прямоугольную форму со стороной 5-6 сантиметров. Сельскохозяйственные отходы (солома, лузга, опилки, кора, шишки и пр.) прессовали в специальные брикеты и также «заправляли» ими газогенераторы.



Главным недостатком «газгенов», как мы уже говорили, можно считать малый пробег на одной заправке. Так, одной загрузки древесными чурками советским грузовикам (см. ниже) хватало не более чем на 80-85 км пробега. Учитывая, что «заправляться» руководство по эксплуатации рекомендует при опустошении бака на 50-60%, то и вовсе пробег между заправками сокращается до 40-50 км. Во-вторых, сама установка, вырабатывающая генераторный газ, весит несколько сотен килограммов. К тому же двигатели, работающие на таком газе, выдают на 30-35% меньше мощности, чем их бензиновые аналоги.

Доработка автомобилей под дрова

Для работы на генератором газе автомобили приходилось приспосабливать, но изменения не были серьезными и порой были доступны даже вне заводских условий. Во-первых, в моторах повышали степень сжатия, чтобы не так существенна была потеря мощности. В некоторых случаях для улучшения наполнения цилиндров двигателя применялся даже турбонаддув. На многие «газифицированные» авто устанавливался генератор электрооборудования с повышенной отдачей, поскольку для вдувания воздуха в топку использовался достаточно мощный электровентилятор.


zis_13_1.jpg

ЗИС-13


Для сохранения тяговых характеристик, в особенности это касалось грузовиков, при снизившейся мощности двигателя передаточные числа трансмиссии делали более высокими. Скорость движения падала, но для автомобилей, использующихся в лесной глуши и прочих пустынных и отдаленных районах это не имело решающего значения. Чтобы компенсировать изменившуюся из-за тяжелого газогенератора развесовку, в некоторых машинах усиливали подвеску.

Помимо того, из-за громоздкости «газового» оборудования отчасти приходилось перекомпоновывать автомобиль: менять, сдвигать грузовую платформу или урезать кабину грузовика, отказываться от багажника, переносить выхлопную систему.

Золотая эра «газгена» в СССР и за границей

Эра расцвета газогенераторных автомобилей пришлась на 30-40-е года прошлого века. Одновременно в нескольких странах с большими потребностями в автомобилях и малыми разведанными запасами нефти (СССР, Германия, Швеция) инженеры крупных предприятий и научных институтов взялись за разработку автотранспорта на дровах. Советские специалисты больше преуспели в создании грузовых автомобилей.


gaz_42_31.jpg

ГАЗ-42


С 1935 года и до самого начала Великой Отечественной войны на разных предприятиях Министерства лесной промышленности и ГУЛАГа (Главное Управление ЛАГерей, увы, реалии той поры) «полуторки» ГАЗ-АА и «трехтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими заводами-изготовителями машин. Например, советские автоисторики приводят цифру 33 840 — столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве выпущено более 16 тыс. единиц.


zis_21_1.jpg

ЗИС-21


За довоенное время советскими инженерами было создано более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны серийными заводами были подготовлены чертежи упрощенных установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 70-х годов ХХ века.

В Германии во время Второй Мировой войны наблюдался острый дефицит бензина. КБ двух компаний (Volkswagen и Mercedes-Benz) получили задание разработать газогенераторные версии своих популярных компактных машин. Обе фирмы в довольно сжатые сроки справились с поставленной задачей. На конвейер встали Volkswagen Beetle и Mercedes-Benz 230. Интересно, что у серийных авто дополнительное оборудование даже не выступало за стандартные габариты «легковушек». В Volkswagen пошли еще дальше и создали опытный образец «дровяного» армейского Volkswagen Тур 82 («кюбельваген»).


volkswagen_typ_82_1.jpg

Volkswagen Тур 82


Дровяные машины сегодня

К счастью, главное достоинство газогенераторных автомобилей — независимость от сети АЗС, сегодня стало малоактуальным. Однако в свете современных экологических веяний на первый план вышло другое достоинство автомобилей на дровах — работа на возобновляемом топливе без какой-либо его химической подготовки, без дополнительной траты энергии на производство топлива. Как показывают теоретические расчеты и практические испытания, мотор на дровах меньше вредит атмосфере своими выбросами, чем аналогичных двигатель, но уже работающий на бензине или солярке. Содержание выхлопных газов очень схоже с выбросами ДВС, работающих на природном газе.

И тем не менее тема с автомобилями на дровах утратила свою былую популярность. Забыть о газогенераторах не дают в основном инженеры-энтузиасты, которые ради экономии на топливе или в качестве эксперимента переоборудуют свои личные машины для работы на генераторном газе. На постсоветском пространстве есть удачные примеры «газгенов» на базе легковушек АЗЛК-2141 и ГАЗ-24, грузовика ГАЗ-52, микроавтобуса РАФ-2203 и пр. По словам конструкторов, их творения могут проезжать на одной заправке до 120 км со скоростью 80-90 км/ч.


295741 соврем.jpg

ГАЗ-52


К примеру, переведенный житомирскими инженерами в 2009 году на дрова ГАЗ-52 расходует около 50 кг древесных чурок на 100 км пробега. По словам конструкторов, подкидывать дровишки нужно каждые 75-80 км. Газогенераторная установка традиционно для грузовиков расположилась между кабиной и кузовом. После розжига топки должно пройти около 20 минут, прежде чем ГАЗ-52 сможет начинать движение (в первые минуты работы генератора выработанный им газ не имеет нужных горючих свойств). По расчетам разработчиков, 1 км на дровах обходится в 3-4 раза дешевле, чем на дизельном топливе или бензине.


295697.jpg 22.jpg

Газогенераторная установка ГАЗ-52


Единственная на сегодняшний день страна, в которой массово используются автомобили на дровах, — это Северная Корея. В связи с тотальной мировой изоляцией там наблюдается определенный дефицит жидкого топлива. И дрова снова приходят на выручку тем, кто оказался в нелегком положении.


Читайте также:


www.kolesa.ru

ГАЗОГЕНЕРАТОР — это… Что такое ГАЗОГЕНЕРАТОР?


ГАЗОГЕНЕРАТОР

(от газ и лат. generator — производитель) — аппарат для термич. переработки твёрдых и жидких топлив в горючие газы, осуществляемой в присутствии воздуха, свободного или связанного кислорода, водяных паров, углекислого газа. Получаемые в Г. газы наз. генераторными. Стационарные Г. служат для получения газов, используемых как топливо в пром. печах, стационарных газовых двигателях. В хим. пром-сти их используют для получения технологич. газа (в производстве синтетич. аммиака), жидкого топлива и др. продуктов. Трансп. Г. вырабатывают топливо для автомоб., тракторных и др. двигателей внутр. сгорания. Этот тип Г. применяется редко в связи с громоздкостью оборудования и малой эффективностью генераторного газа как горючего для двигателей автомобилей, тракторов и т. п. машин.

Г. газотурбинного двигателя — последовательно расположенные компрессор, камера сгорания и турбина, служащая для привода компрессора. На базе одного Г. может быть создано семейство унифициров. двигателей разл. мощности и разл. типа, например турбореактивные, турбовинтовые, турбореактивные двухконтурные (в последних вентилятор и приводящая его турбина к Г. не относятся).

Г. жидкостного ракетного двигателя — агрегат, в к-ром при сгорании или разложении (термич., каталитич. и др.) топлива или его компонентов вырабатывается горячий газ, служащий рабочим телом для привода турбонасосного агрегата, наддува топливных баков, работы системы управления и т. д.

Большой энциклопедический политехнический словарь. 2004.

Синонимы:
  • ГАЗОВЫЙ ФАКТОР
  • ГАЗОГЕНЕРАТОРНЫЙ АВТОМОБИЛЬ

Смотреть что такое «ГАЗОГЕНЕРАТОР» в других словарях:

  • газогенератор — газогенератор …   Орфографический словарь-справочник

  • Газогенератор — устройство для преобразования твёрдого или жидкого топлива в газообразную форму. Газогенератор газотурбинного двигателя турбокомпрессор в совокупности с камерой сгорания, расположенной между турбиной и компрессором …   Википедия

  • Газогенератор — Газогенератор: комплекс компонентов газотурбинного двигателя, которые производят горячий газ под давлением для совершения какого либо процесса или для привода силовой турбины. Примечание Газогенератор состоит из одного или нескольких компрессоров …   Официальная терминология

  • ГАЗОГЕНЕРАТОР — (от газ и лат. generator производитель) аппарат для газификации топлива, а также для получения газа с температурой 500 1200 .К из жидкого ракетного топлива или его компонентов (рабочего тела для привода турбонасосного агрегата и наддува топливных …   Большой Энциклопедический словарь

  • ГАЗОГЕНЕРАТОР — ГАЗОГЕНЕРАТОР, газогенератора, муж. (тех.). Особая печь для производства генераторного газа. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ГАЗОГЕНЕРАТОР — ГАЗОГЕНЕРАТОР, а, муж. Аппарат для термической переработки твёрдого и жидкого топлива в горючий газ. | прил. газогенераторный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Газогенератор — 1) часть газотурбинного двигателя, состоящая из последовательно расположенных осевого или центробежного компрессора, камеры сгорания и газовой турбины, приводящей компрессор. Термин «Г.» появился в связи с внедрением в авиастроение… …   Энциклопедия техники

  • газогенератор — сущ., кол во синонимов: 1 • генератор (63) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • газогенератор — Комплекс компонентов газотурбинного двигателя, которые производят горячий газ под давлением для совершения какого либо процесса или для привода силовой турбины. Примечание Генератор газа состоит из одного или более компрессоров, устройств(а) для… …   Справочник технического переводчика

  • газогенератор — 3.5 газогенератор: Комплекс компонентов газотурбинного двигателя, которые производят горячий газ под давлением для совершения какого либо процесса или для привода силовой турбины. Примечание Газогенератор состоит из одного или нескольких… …   Словарь-справочник терминов нормативно-технической документации

  • Газогенератор — I Газогенератор         аппарат для термической переработки твёрдых и жидких топлив в горючие газы, осуществляемой в присутствии воздуха, свободного или связанного кислорода (водяных паров). Получаемые в Г. газы называются генераторными. Горение… …   Большая советская энциклопедия

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *