РазноеГидравлическая тормозная система автомобиля – Гидравлическая тормозная система автомобиля — классика и современность

Гидравлическая тормозная система автомобиля – Гидравлическая тормозная система автомобиля — классика и современность

Содержание

☰ Как работает гидравлическая тормозная система автомобиля

Гидравлический тип тормозной системы используют на легковых автомобилях, внедорожниках, микроавтобусах, малогабаритных грузовиках и спецтехнике. Рабочая среда — тормозная жидкость, 93-98% которой составляют полигликоли и эфиры этих веществ. Остальные 2-7% — присадки, которые защищают жидкости от окисления, а детали и узлы от коррозии.

Устройство тормозной системы

Схема гидравлической тормозной системы

Составные элементы гидравлической тормозной системы:

  • 1 — педаль тормоза;
  • 2 — центральный тормозной цилиндр;
  • 3 — резервуар с жидкостью;
  • 4 — вакуумный усилитель;
  • 5, 6 — транспортный трубопровод;
  • 7 — суппорт с рабочим гидроцилиндром;
  • 8 — тормозной барабан;
  • 9 — регулятор давления;
  • 10 — рычаг ручного тормоза;
  • 11 — центральный трос ручного тормоза;
  • 12 — боковые тросы ручного тормоза.

Чтобы понять работу тормозов, рассмотрим подробнее функционал каждого элемента.

Педаль тормоза

Это рычаг, задача которого — передача усилия от водителя на поршни главного цилиндра. Сила нажатия влияет на давление в системе и скорость остановки автомобиля. Чтобы уменьшить требуемое усилие, на современных автомобилях есть усилители тормозов.

Главный цилиндр и резервуар с жидкостью

Центральный тормозной цилиндр — узел гидравлического типа, состоящий из корпуса и четырех камер с поршнями. Камеры заполнены тормозной жидкостью. При нажатии на педаль, поршни увеличивают давление в камерах и усилие передается по трубопроводу на суппорты.

Над главным тормозным цилиндром расположен бачок с запасом “тормозухи”. Если тормозная система протекает, уровень жидкости в цилиндре уменьшается и в него начинает поступать жидкость из резервуара. Если уровень “тормозухи” упадет ниже критической отметки, на приборной панели начнет мигать индикатор ручного тормоза. Критический уровень жидкости чреват отказом тормозов.

Вакуумный усилитель

Тормозной усилитель стал популярный благодаря внедрению гидравлики в тормозные системы. Причина — чтобы остановить автомобиль с гидравлическими тормозами нужно больше усилий, чем в случае с пневматикой.

Вакуумный усилитель создает вакуум с помощью впускного коллектора. Полученная среда давит на вспомогательный поршень и в разы увеличивает давление. Усилитель облегчает торможение, делает вождение комфортным и легким.

Трубопровод

В гидравлических тормозах четыре магистрали — по одной на каждый суппорт. По трубопроводу жидкость из главного цилиндра попадает в усилитель, увеличивающий давление, а затем по отдельным контурам поставляется в суппорты. Металлические трубки с суппортами соединяют гибкие резиновые шланги, которые нужны, чтобы связать подвижные и неподвижные узлы.

Тормозной суппорт

Узел состоит из:

  • корпуса;
  • рабочего цилиндра с одним или несколькими поршнями;
  • штуцера прокачки;
  • посадочных мест колодок;
  • креплений.

Если узел подвижный, то поршни расположены с одной стороны от диска, а вторую колодку прижимает подвижная скоба, которая движется на направляющих. У неподвижного тормозного суппорта поршни расположены по обе стороны диска в цельном корпусе. Суппорта крепят к ступице или к поворотному кулаку.

Тормозной суппорт с ручником

Задний тормозной суппорт с системой ручного тормоза

Жидкость поступает в рабочий цилиндр суппорта и выдавливает поршни, прижимая колодки к диску и останавливая колесо. Если отпустить педаль, жидкость возвращается, а так как система герметичная, подтягивает и возвращает на место поршни с колодками.

Тормозные диски с колодками

Диск — элемент тормозного узла, которые крепится между ступицей и колесом. Диск отвечает за остановку колеса. Колодки — плоские детали, которые находятся на посадочных местах в суппорте по обе стороны диска. Колодки останавливают диск и колесо с помощью силы трения.

Регулятор давления

Регулятор давления или, как его называют в народе, “колдун” — это страхующий и регулирующий элемент, который стабилизирует автомобиль во время торможения. Принцип работы — когда водитель резко нажимает на педаль тормоза, регулятор давления не дает всем колесам автомобиля тормозить одновременно. Элемент передает усилие от главного тормозного цилиндра на задние тормозные узлы с небольшим опозданием.

Такой принцип торможения обеспечивает лучшую стабилизацию автомобиля. Если все четыре колеса затормозят одновременно, автомобиль с большой долей вероятности занесет. Регулятор давления не дает уйти в неконтролируемый занос даже при резкой остановке.

Ручной или стояночный тормоз

Ручной тормоз удерживает автомобиль во время остановки на неровной поверхности, например, если водитель остановился на склоне. Механизм ручника состоит из ручки, центрального, правого и левого тросиков, правого и левого рычагов ручного тормоза. Ручной тормоз обычно соединяют с задними тормозными узлами.

Когда водитель тянет за рычаг ручника, центральный тросик натягивает правый и левый тросики, которые крепятся к тормозным узлам. Если задние тормоза барабанные, то каждый тросик крепится к рычагу внутри барабана и придавливает колодки. Если тормоза дисковые, то рычаг крепится к валу ручного тормоза внутри поршня суппорта. Когда рычаг ручника в рабочем положении, вал выдвигается, нажимает на подвижную часть поршня и прижимает колодки к диску, блокируя задние колеса.

Это основные моменты, которые стоит знать о принципе работы гидравлической тормозной системы. Остальные нюансы и особенности функционирования гидравлических тормозов зависят от марки, модели и модификации автомобиля.

Гидравлическая тормозная система автомобиля: жидкость не воздух

Гидравлическая тормозная система автомобиля – кто такая и с чем едят? Сейчас мы познакомимся с наиболее популярной схемой, встречающейся на легковушках, попытаемся разобраться с её устройством и принципом работы.

И так! Вряд ли вы будете спорить, что тормоза нужны любому транспорту, даже велосипеду, иначе он превращается из средства передвижения в неуправляемое нечто. Поэтому нам с вами нужно контролируемое движение любого транспорта, а значит иметь надёжные тормоза.

Гидравлические тормоза: хит, которому почти 100 лет

Тормоза с гидравлическим приводом (рабочим телом в данной системе является специальная жидкость, отсюда и название) без малейшей тени сомнения можно назвать классикой жанра.

Появились они на серийных моделях легковых авто в 20-х годах минувшего столетия и с тех пор плотно вошли в автопром, не оставив практически никаких шансов другим системам. Пионерами по внедрению гидротормозов стали американцы, задав на них моду на долгие десятилетия.

За почти сто лет существования, эта технология постоянно совершенствовалась, обрастая различными узлами и агрегатами, делающими её более надёжной и эффективной.

В дополнение ко всему, последние несколько десятков лет ознаменовались активным использованием электроники в автопроме, которая не обошла стороной и тормозные системы, благодаря чему они стали максимально безопасными. А ведь прогресс не остановить, то ли ещё будет…

Секреты гидравлики

Чем же так хороша конструкция гидравлической тормозной системы, если без неё не обходится ни один легковой автомобиль?

Чтобы ответить на этот вопрос, давайте посмотрим, как она устроена. Простейший гидропривод тормозов состоит из таких элементов:

  • педаль, на которую мы с Вами жмём;
  • вакуумный усилитель;
  • главный гидроцилиндр;
  • магистрали;
  • гидроцилиндры передних и задних колёс;
  • тормозные механизмы.

Пока авто движется, и останавливать его никто не планирует, давление в системе невелико и поддерживается на уровне атмосферного, тормозные колодки разжаты, колёса крутятся без малейшего сопротивления. Но как только Вы коснулись педали тормоза, начинается самое интересное.

Механическое движение от нажатия передаётся на вакуумный усилитель, который помогает нам не потеть, давя на педаль, хотя на выходе усилителя, шток которого связан с главным гидроцилиндром, давление достаточно ощутимое.

Так, например, невзирая на то, кто сидит за рулём, хрупкая девушка или брутальный мужик, нажимается тормоз легко и податливо, хотя в гидравлических магистралях давление рабочей жидкости в этот момент достигает уже 20-25 атмосфер.

Под напором жидкости в системе начинают работать исполнительные устройства – гидравлические цилиндры передних и задних колёс, которые и приводят в движение тормозные механизмы – колодки дисковых или барабанных тормозов. Автомобиль сбрасывает скорость и останавливается.

Так вкратце выглядит алгоритм работы простейшего гидравлического привода. Но в реальных конструкциях всё чуточку сложнее.

К примеру, для обеспечения должного уровня надёжности тормозной системы применяется многоконтурная схема (как правило, двухконтурная).

Что это значит?

Нагнетаемое главным гидроцилиндром давление попадает не в одну магистраль, а в две, которые не связаны друг с другом. Одни контур обслуживает только два колеса. Комбинации могут разные, например, отдельно передние и задние, или Х-образно – переднее левое и правое заднее колесо в одном контуре, а переднее правое и левое заднее колесо в другом.

При такой компоновке обеспечивается резервирование системы – если один из контуров вышел из строя по какой-либо причине, то автомобиль не лишится полностью тормозов — остановиться можно будет без особых усилий.

Эпилог: о плюсах и минусах

Ну что ж, друзья, и в завершение несколько выводов по нашей теме.

Как мы с Вами увидели, гидравлическая тормозная система оказалась на редкость простым и понятным устройством, что, в принципе, и определило её судьбу и массовое распространение. Но у неё есть и недостатки.

Одним из них является чувствительность к герметичности системы – при малейших утечках жидкости, торможение уже ощущается не столь отчётливым, а при попадании воздуха в магистрали, гидравлика и вовсе может отказать. Но не будем о плохом, до новых встреч на страницах блога!

Изучайте автомобили и будьте внимательны на дорогах!

Гидравлический привод тормозов автомобиля | Тормозная система

Гидравлический привод колесных тормозов состоит из главного цилиндра, цилиндров колесных тормозов и магистралей.

Главный цилиндр 4 отлит из чугуна вместе с резервуаром для тормозной жидкости и сообщается с ним через два отверстия: перепускное 7 и компенсационное 8. Через отверстия 6 в пробке 5 резервуар сообщается с атмосферой.

Поршень 21, изготовленный из алюминиевого сплава, уплотняется в главном цилиндре резиновыми манжетами 19 и 24. В передней части поршня имеются шесть отверстий 22, перекрываемых звездообразной пружинной пластинкой 20. Перемещение поршня вперед осуществляется педалью 26 ножного тормоза через шток 23. Перемещение поршня назад ограничивается упорной шайбой 3, которая удерживается в цилиндре замочным кольцом 2. В передней части цилиндра расположен и впускной клапан 17, в котором в свою очередь установлен выпускной клапан 15. Выпускной клапан удерживается в закрытом положении пружиной 16, а впускной — пружиной 18. Пружина впускного клапана одновременно удерживает поршень в исходном заднем положении.

Рис. Схема гидравлического привода колесных тормозов: 1 — защитный чехол; 2 — замочное кольцо; 3 — упорная шайба; 4 — главный цилиндр; 5 — пробка; 6 — отверстие для сообщения с атмосферой; 7 — перепускное отверстие; 3 — компенсационное отверстие; 9 — тормозной барабан; 10 — тормозная колодка; 11 — поршень цилиндра колесного тормоза; 12 — манжета; 13 — цилиндр колесного тормоза; 14 — шток поршня; 15 — выпускной клапан; 16 — пружина выпускного клапана; 17 — впускной клапан; 13 — пружина впускного клапана; 19 и 24 — манжеты поршня; 20 — пластина; 21 — поршень главного цилиндра; 22 — отверстие в поршне; 23 — шток поршня главного цилиндра; 25 — стяжная пружина колодок; 26 — педаль ножного тормоза; 27 — пружина педали

В цилиндре, 13 колесного тормоза находятся два поршня 11, уплотняемые манжетами 12. Манжеты прижимаются к поршням разжимной пружиной. Поршни через штоки 14 воздействуют на колодки 10.

Главный цилиндр соединяется с цилиндрами колесных тормозов металлическими трубопроводами и резиновыми шлангами. Главный цилиндр, трубопроводы и цилиндры колесных тормозов заполнены специальной тормозной жидкостью. Заполнение системы тормозной жидкостью производится через горловину в главном цилиндре, закрытую пробкой 5.

Работает гидравлический привод тормозов следующим образом. При нажатии на тормозную педаль 26 поршень 21 главного цилиндра, перемещаясь вперед, перекрывает компенсационное отверстие 8. При дальнейшем перемещении поршня давление жидкости в цилиндре возрастает, выпускной клапан 15 открывается и тормозная жидкость поступает по трубопроводам в цилиндры 13 колесных тормозов. Под давлением тормозной жидкости поршни 11 раздвигаются и прижимают колодки. 10 к тормозному барабану 9. Происходит торможение колес.

Когда прекратится нажатие на педаль ножного тормоза, поршень в главном цилиндре под действием пружины 18 начнет возвращаться в исходное положение. При этом давление в системе привода упадет, пружина 25 возвратит колодки 10 в исходное положение и тормозная жидкость через впускной клапан 17 вытеснится обратно в главный цилиндр.

Для безотказной работы тормозов важно, чтобы в трубопроводах и шлангах не было воздуха, который легко сжимается, и поэтому в системе не создается достаточного давления для получения необходимого тормозного усилия.

Подсос воздуха в гидравлическую систему предупреждается тем, что при отпущенной педали в гидравлическом приводе поддерживается давление, немного превышающее атмосферное, благодаря упругости пружины 18, удерживающей впускной клапан 17 в закрытом положении.

При резком отпускании педали вследствие сопротивления, оказываемого движению тормозной жидкости в трубопроводах и клапане, жидкость не успевает сразу заполнить пространство цилиндра, освобождаемое поршнем, в полости цилиндра перед поршнем образуется разрежение. Тормозная жидкость, находящаяся за поршнем, отжимает усики звездообразной пружинной пластины 20 и через отверстия 22 заполняет полость перед поршнем. Когда поршень займет исходное положение, поступающая в главный цилиндр жидкость будет проходить в резервуар через компенсационное отверстие 8. Это отверстие называется компенсационным потому, что через него происходит компенсация объема тормозной жидкости в цилиндре при ее утечке через неплотности и изменение объема жидкости от температуры.

Для полного растормаживания колес при отпущенной тормозной педали необходимо, чтобы педаль имела небольшой свободный ход (10—15 мм), Свободный ход педали регулируется изменением длины штока, для чего он выполняется из двух частей, ввинчиваемых друг в друга и удерживаемых от произвольного отвинчивания контргайкой.

☰Принцип работы пневматической тормозной системы автомобиля

Пневматический тормозной привод — вид конструкции тормозной системы, которая использует в качестве энергоносителя сжатый воздух. Пневматические тормоза используют в разных видах транспорта:

  • пассажирские автобусы;
  • грузовые коммерческие автомобили;
  • специализированная техника — грейдеры, бульдозеры, погрузчики, автокраны, другие крупно- и малогабаритные спецсредства;
  • железнодорожный транспорт.

Грузовик DAF с пневматическими тормозами

Тягач DAF XF105 — пример грузовика с пневматическими тормозами

Нас интересует именно автомобильный вариант пневматического тормозного привода. В статье мы расскажем о:

  • видах пневматических тормозных систем;
  • конструкции и принципе работы пневмопривода;
  • основных преимуществах и недостатках пневматики в сравнении с гидравлическими тормозами;
  • неисправностях, которые возникают в работе пневмотормозов, признаках и последствиях поломок, а также дадим полезные советы как продлить срок службы тормозной системы.

Классификация пневматических тормозных систем

Пневматический тормозной привод используют отдельно или в комплексе с другими системами (примеры — комбинированные тормозные системы электропневматического или пневмогидравлического типа).

Пневматические тормозные системы также классифицируют по количеству рабочих контуров-магистралей. Встречаются 3 вида систем:

  • одноконтурные;
  • двухконтурные;
  • многоконтурные.

Одноконтурные системы. Особенность — магистрали на передние и задние колеса объединены в одну ветку, а интенсивность потока сжатого воздуха контролирует один тормозной кран. Одноконтурная модель пневматической тормозной системы — устаревший тип конструкции, который в большинстве случаев встречается только на старых моделях грузовых автомобилей и автобусов.

Двухконтурные системы. Отличия понятны из названия — магистрали тормозной системы автомобиля разделены на две ветки. Одна ветка передает сжатый воздух на передние колеса, вторая — на задние. Поток энергоносителя контролируют два тормозных крана — по одному на каждый контур магистралей. Двухконтурная конструкция надежнее, чем одноконтурная. Если вышла из строя ветка задней оси, передние тормозные узлы продолжают функционировать и наоборот.

Многоконтурные системы. Особенность — сложная, но эффективная и надежная конструкция. Многоконтурные пневматические системы встречаются в крупных грузовых автомобилях и состоят из трех и больше контуров. Многоконтурная тормозная пневмосистема увеличивает устойчивость, облегчает управление и остановку грузовика.

Конструкция пневматической тормозной системы

Конструкция пневматического тормозного привода примерно одинаковая для всех видов автомобилей. Отличаться могут отдельные узлы и элементы.

Строение пневматической тормозной системы

Общий вид пневматической тормозной системы: 1 — двухсекционный тормозной кран, 2, 6 — тормозные камеры (силовые цилиндры), 3 — предохранительный клапан, 4 — регулятор давления, 5 — компрессор, 7 — кран отбора воздуха, 8 и 9 — разобщительный кран с соединительной головкой, 10 — ресиверы (воздушные баллоны), 11, 12 — тормозные барабаны в сборе.

Компрессор. Нагнетает воздух в ресиверах (баллонах). Компрессор устанавливают в переднюю часть автомобиля возле блока двигателя. Агрегат работает от клиновидного ремня, который соединяет шкив компрессора и шкив радиаторного вентилятора.

Ресиверы или баллоны. В ресиверах хранится запас сжатого воздуха. Пневматические тормоза оборудованы двумя ресиверами. Первый баллон, который в народе называют “мокрым”, оборудован предохранительным клапаном и краном для слива конденсата. На втором ресивере есть только кран для слива конденсата. Предохранительный клапан, который контролирует давление во втором баллоне, установлен дальше по магистрали в тормозном кране.

Предохранительный клапан. Защищает систему от перегрузки и сбрасывает избыточное давление. Количество защитных клапанов зависит от типа конструкции и количество контуров магистралей.

Регулятор давления. Контролирует и поддерживает оптимальное давление в системе, а при необходимости впускает или выпускает воздух в устройство разгрузки компрессора.

Тормозной кран. Комбинированный поршневой узел, который распределяет потоки сжатого воздуха по системе, последовательно заполняет энергоносителем все контуры пневмосистемы и тормозные камеры. Тормозной кран — связующий узел между ресиверами и тормозными цилиндрами колес. Количество тормозных кранов в пневматической системе зависит от количество контуров.

Осушитель воздуха. Выделяет пары воды и другие примеси (например, пары масла) из всасываемого воздуха. В современных моделях автомобилей осушитель совмещен с регулятором давления, поэтому последний как отдельный узел отсутствует.

Тормозные узлы с силовыми цилиндрами (тормозными камерами). Установлены на колесах автомобиля, отвечают за остановку транспортного средства. Каждый узел оборудован тормозным цилиндром, в который по трубопроводу под давлением поступает воздух и который прижимает тормозные колодки к барабану.

Разобщительный кран. Элемент встречается только в тягачах с прицепами. Через кран пневматическую тормозную систему тягача соединяют с тормозной магистралью прицепа. Кран объединяет две системы, увеличивает устойчивость и управляемость автомобиля, уменьшает риск заноса прицепа при торможении.

Пневмоусилители. Агрегаты увеличивают показатели давления до необходимого уровня и уменьшают нагрузку на компрессор. Количество усилителей отличается в различных моделях автомобилей.

Трубопровод. Система труб и шлангов соединяет все узлы и элементы. Количество ответвлений трубопровода зависит от количества контуров пневматической тормозной системы.

Педаль тормоза. Элемент передает усилие на поршни тормозного крана и открывает каналы для сжатого воздуха от ресиверов на тормозные камеры колес.

Рычаг ручного тормоза.

Измерительные приборы и датчики. Контролирующие элементы, по которым водитель следит за состоянием и работоспособностью тормозной системы. К ним относятся датчики, которые находятся в ресиверах и тормозных камерах, и двухстрелочный манометр. Одна стрелка манометра показывает давление в баллонах, а вторая — в тормозных камерах. В старых моделях автомобилей манометров было два и каждый отвечал за свой узел.

Принцип работы и функционал пневматического тормозного привода

Главная и единственная функция любой тормозной системы — вовремя остановить автомобиль не зависимо от условий и внешних факторов. Неважно, нужно плавно остановить авто перед перекрестком или резко затормозить из-за неожиданно возникшей преграды — автомобиль должен остановится без ущерба для водителя, транспортного средства, других участников дорожного движения.

Рассмотрим основные этапы и процессы, которые происходят в пневматической тормозной системе.

Пневмокомпрессор МАЗ

Пневмокомпрессор для автомобилей МАЗ с двигателем OM 906 LA

Компрессор тормозной системы — приводной агрегат, который работает только когда запущен двигатель. Через воздушный фильтр в компрессор поступает воздух, который агрегат через регулятор давления закачивает в ресиверы.

Регулятор давления, который расположен либо как отдельный узел, либо встроен в осушитель, контролирует и оптимизирует давление воздуха, а когда ресиверы заполнены полностью, обеспечивает холостой ход компрессора. Если регулятор давления не работает, его подменяет предохранительный клапан.

Ресиверы системы соединены последовательно. В нижней части первого баллона находится спускной кран, через который из энергоносителя выводится конденсат и пары масла. Второй баллон соединен с краном, который оборудован регулятором давления и предохранительным клапаном. Последние сбрасывают лишний воздух и нормализуют давление в системе, если оно превышает допустимое.

Тормозной кран контролирует и перенаправляет поток сжатого воздуха в камеры силовых цилиндров, которые находятся в тормозных узлах колес. В одноконтурной системе за передние колеса автомобиля отвечает нижний цилиндр крана, а за задние колеса тягача и колеса прицепа (если есть) — верхний цилиндр. Пневматические тормоза прицепа присоединяют к автомобилю через разобщительный кран и соединительную головку.

Когда водитель нажимает педаль тормоза, тормозной кран открывает доступ для сжатого воздуха, который из ресиверов поступает в тормозные камеры колес. В цилиндрах увеличивается давление, разжимные кулаки прижимают колодки к тормозным барабанам колес и останавливают автомобиль. Когда водитель отпускает педаль, клапаны тормозных камер колес выводя воздух и колодки возвращаются в исходное положение.

Пневматический барабанный тормоз

Пневматический барабанный тормозной узел в сборе на автомобиле

Водитель может следить за состоянием пневматической тормозной системы по манометру, который показывают давление сжатого воздуха в ресиверах и тормозных камерах. Манометр соединен с датчиками давления, которые передают данные на приборную панель в кабину водителя.

Преимущества и недостатки пневматики

Пневматическая и гидравлические тормозные системы — это два аналоговых тормозных привода, каждый из которых обладает своими преимуществами и недостатками. Первый тип привода используют в основном в тяжелых автомобилях, а второй чаще встречается на транспортных средствах повседневного использования.

Чем пневматические тормоза лучше гидравлических:

  • когда водитель отпускает педаль тормоза, сжатый воздух не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу;
  • пневматическая система экономичнее, так как использует сжатый воздух, который компрессор забирает из атмосферы;
  • воздух меньше изнашивает систему, чем жидкостный наполнитель;
  • сжатый воздух — нейтральная среда, поэтому вероятность того, что энергоноситель потеряет свойства, гораздо меньше. Гидравлические смеси для тормозных систем сильно отличаются друг от друга по составу, смешивать их нельзя, а вывести из строя систему может любая посторонняя примесь;
  • пневматическая тормозная система легче переносит температурные перепады как окружающей среды, так и внутри системы. Гидравлический энергоноситель может закипеть или замерзнуть от резкого скачка температуры, в результате тормоза ломаются;
  • пневматика меньше боится мелких утечек, так как компрессор работает все время и в случае утечки рабочего газа быстро восполнит недостачу.

Однако и у гидравлики есть свои преимущества:

  • гидротормоз срабатывает быстрее за счет того, что энергоноситель обладает высокой плотностью и не сжимается, как воздух;
  • у гидравлического привода конструкция значительно проще, чем у пневматической тормозной системы
  • гидравлический привод функционирует как отдельная система в отличие от пневматического, в котором работа компрессора зависит от работы двигателя;
  • несмотря на то, что пневматические тормоза срабатывают быстрее, КПД гидравлических тормозов выше за счет меньшей потери энергии при перемещении энергоносителя по трубопроводу.

Ну и самое главное отличие между гидравликой и пневматикой — цена на запчасти и агрегаты. Хотя тяжело сравнивать, например, стоимость тормозного суппорта легкового автомобиля и барабанный тормоз тяжелого тягача, как минимум из-за большой разницы в габаритах и конструкции.

Именно благодаря отличиям между двумя видами тормозных приводов каждый из типов занимает свою нишу и практически не конкурирует с аналогом.

Неисправности пневматической тормозной системы. Причины и признаки поломок. Как продлить срок службы тормозов

Основные неисправности пневматической тормозной системе:

  • тормоза автомобиля не реагируют на нажим педали или реагируют с большим опозданием. Причины — сжатый воздух выходит через трещину в трубопроводе или ресивере, вышел из строя компрессор. Неисправности возникают в результате резкого удара, который повредил пневмосистему, постепенного износа привода, разрыва приводного ремня, который запускает компрессор. Выход — обратиться на диагностику  на станции техобслуживания;
  • увеличился тормозной путь автомобиля. Причины также могут быть разные. Например, разболталась педаль тормоза, износились тормозные колодки или барабаны, поврежден один из контуров магистрали. Неисправности возникают в результате естественного износа, резкого перепада давления или неправильной работы перепускных клапанов и тормозных кранов. Решение — посетите автосервис и пройдите диагностику пневмотормозов;
  • занос прицепа во время торможения. Проблема говорит о неисправности разобщительного клапана, который соединяет пневмосистему тягача и тормозные камеры прицепа. В результате, когда водитель тормозит, воздух поступает только в тормозные камеры, а прицеп продолжает движение. Выходит, что прицеп и тягач начинают двигаться навстречу друг другу, в результате чего прицеп как более длинный и менее устойчивый объект ведет в сторону. Чтобы устранить поломку, достаточно заменить разобщительный кран;
  • автомобиль ведет в сторону при торможении. Причина — тормоза работают несинхронно, колеса тормозят в разное время, и автомобиль может занести. Проблема возникает, когда неравномерно изнашиваются тормозные колодки и барабаны или одна из тормозных камер пропускает воздух.

Своевременный ремонт пневматических тормозов

Своевременный ремонт — залог безопасности и комфорта

Чтобы не допустить неисправности, достаточно регулярно проверять состояние тормозной системы автомобиля, следить за показатели манометров и датчиков, вовремя проходить ТО, использовать качественные и подходящие по допускам запчасти, комплектующие и сменные узлы. Именно от отношения водителя к автомобилю зависит срок службы транспортного средства. Это правило, которые должен знать и соблюдать каждый водитель независимо от того, на чем ездит человек — на легковушке или тягаче с прицепом.

Гидравлическая тормозная система автомобиля — классика и современность

Дорогие друзья, коли вы на страницах нашего блога, то вам архиважно знать про тормоза! Я с трудом представляю, как можно управлять автомобилем без тормозов. Такой поступок впору сравнить, пожалуй, с камикадзе, желавшего умереть ради великого императора. Нам это не к чему, а вот знать как устроена гидравлическая тормозная система автомобиля очень полезно.

А узнав, будет приятно давить на педальку тормоза, представляя как там все движется и перетекает, проскальзывает и шоркает попискивая… Ведь мы же не согласны с утверждением — «тормоза придумали трусы»

Приступим. Для оптимального управления любым транспортным средством нужна соответствующая классу автомобиля тормозная система.
Для чего она нужна? Тут предельно понятно — для снижения скорости, для замедления, остановки и выполнения любого маневра.

А вот в случае продолжительной стоянки, особенно на склоне, для предотвращения самопроизвольного движения нужен стояночный тормоз.

Есть и другие тормозные системы. Ознакомимся с ними, с их классификацией, типами, принципом работы и конструктивными особенностями.

Классификация тормозных систем

Современные автомобили оснащены следующими видами тормозных систем:

● рабочей системой;
● стояночной;
● вспомогательной системой ;
● запасной.

Рабочая тормозная система

Рабочая тормозная система является основной и, соответственно, наиболее эффективной. Служит для снижения скорости и остановки. Приводится в действие при нажатии водителем правой ногой на педаль тормоза, далее приводится механизм сжатия (тормоза дискового типа) или разжатия (тормоза барабнного типа) тормозных колодок тормозных механизмов всех колес одновременно.

Стояночный тормоз

Стояночная тормозная система служит для обеспечения неподвижного состояния автомобиля при длительной стоянке. Многие водители фиксируют машину, включив первую или заднюю передачу. Правда на крутом склоне этой меры может не хватить.

Стояночный тормоз также используют для трогания с места на участке дороги с уклоном. В этом случае правая нога находится на педали газа, а левая на педали сцепления. Плавно отпуская ручник, включают сцепление и одновременно прибавляют газ, это исключает скатывание под уклон.

Запасная тормозная система

Запасную тормозную систему разработали для подстраховки основной рабочей, на случай отказа. Она может быть выполнена как автономное устройство, но чаще всего выполняется как один из контуров основной системы.

Вспомогательная система

Вспомогательной тормозной системой в основном оснащают большегрузные автомобили, такие как КамАЗ, МАЗ, и естественно все грузовики иностранного производства. Вспомогательные системы снижают нагрузку с основной при длительном торможении, например, в горной и холмистой местности.

К примеру так называемый, горный тормоз. Торможение происходит двигателем, при движении автомобиля на передаче. Принцип его заключается в том, что кратковременно, специальными заслонками перекрываются впускные и выпускные патрубки, а так же прекращается топливо для работы двигателя. В цилиндрах создается вакуум и двигатель начинает затруднять движение автомобиля, тем самым его замедляя.

Принцип работы и конструкция тормозов

//www.youtube.com/watch?v=Av-jj8NNrv8

Проследим принцип работы на гидравлических тормозах:

  1. Водитель жмет на педаль, чем приводит в движение поршень в главном тормозном цилиндре. Автоматически подключается усилитель тормоза, снижая нагрузку на педаль тормоза;
  2. Жидкость через трубопроводы передает давление в тормозные механизмы, которые создают сопротивление вращению колес — происходит торможение;
  3. При снятии ноги с педали, возвратная пружина тянет поршень назад, вследствие чего снижается давление, освободившаяся жидкость направляется обратно к главному цилиндру – колеса растормаживаются.

Гидравлическая тормозная система

Тормозные механизмы и приводы гидравлической системы:

  • тормозные шланги высокого давления;
  • педаль тормоза;
  • рабочие тормозные цилиндры передних и задних колес;
  • вакуумный усилитель тормозов;
  • трубопроводы;
  • главный тормозной цилиндр с бачком.

 

Примечание: Отечественные заднеприводные автомобили имеют схему с раздельной подачей жидкости из главного цилиндра к передним и задним колесам.Некоторые иномарки и переднеприводные ВАЗы имеют схему контура «левое переднее и правое заднее», плюс «правое переднее и левое заднее».

 

  1. контур, правый задний — левый передний тормозные механизмы;
  2. сигнальный датчик
  3. контур левый задний — правый передний  тормозные механизмы;
  4. бачок тормозной жидкости главного тормозного цилиндра;
  5. главный тормозной цилиндр
  6. усилитель тормозов вакуумный
  7. педаль тормоза
  8. регулятор давления между контиурами
  9. трос тормоза, стояночного
  10. тормозной механизм — заднее колесо
  11. регулировочный наконечник стояночного тормоза
  12. рычаг привода тормоза стояночного
  13. тормозной механизм колеса переднего

Механическая система тормоза

Механический – в стояночной тормозной системе. Хотя в последних моделях используют и электропривод, тогда его называют электромеханическим ручником.

Для слаженной и безопасной работы тормозов, современные авто оснащены всевозможными электронными блоками, улучшающими их работу: АБС, усилитель экстренного торможения, блок распределения тормозных усилий.

Пневматическая система тормозов

Пневматический привод применяется в основном на большегрузных автомобилях.

Отличие этой системы от гидравлической в том, что вместо тормозной жидкости в системе работает воздух. Давлением воздуха разжимаются тормозные колодки, а давление воздуха в системе обеспечивает специальный компрессор, работающи от двигателя через ременную передачу.

Комбинированный привод

Комбинированный привод – это комбинация из нескольких типов тормозных систем. К примеру, совмещение гидравлического привода с воздушным, электрического и пневматического, есть и такие.

Типы тормозных механизмов

Большинство автомобилей оснащены механизмами фрикционного типа, в которых используется принцип сил трения. Расположены они в колесе и по конструкции делятся на барабанные и дисковые.

Раньше барабанные механизмы устанавливали на задних колесах, а дисковые на передних. Теперь могут ставить одинаковые типы на всех осях – как барабанные, так и дисковые.

Барабанные.

Барабанный тип или в обиходе – барабанный механизм представляет из себя две колодки, цилиндр и стяжную пружину, которые установлены на площадке в тормозном барабане.

На колодках приклеены фрикционные накладки (могу быть и наклепаны).

Колодки нижней частью закреплены шарнирно на опорах, а верхней – стяжной пружиной упираются в поршни колесных цилиндров.

В не заторможенном режиме между колодкой и барабаном есть зазор, который обеспечивает свободное вращение колес.

При поступлении жидкости в цилиндр, поршни расходятся и раздвигают колодки, которые соприкасаются с барабаном, и тормозят колеса.
Известно, что в такой конструкции передние и задние колодки изнашиваются неравномерно.

Дисковые.

Дисковый вариант включает:

● суппорт, закрепленный на подвеске, в его теле расположены внутренний и наружный тормозные цилиндры (есть вариант с одним цилиндром) и пара колодок;
● диск, закрепленный на ступице.

В случае торможения поршни прижимают колодки к вращающемуся диску, и останавливают его.

Сравнительные характеристики.

Барабанный вариант дешевле и проще в производстве. Он отличается эффектом механического самоусиления, который выражается в том, что при длительном давлении на педаль значительно увеличивается сила торможения. Это объясняется тем, что колодки внизу связаны одна с другой, и трение о барабан передней усиливает давление задней.

Но дисковый вариант меньше и легче, а его температурная стойкость лучше, из-за быстрого охлаждения. Также менять изношенные дисковые колодки проще, чем барабанные, что немаловажно, если вы производите ремонт сами.

Надеемся, что вам было интересно, но это не последняя беседа о тормозах. Подписывайтесь на рассылку новостей и делитесь знаниями.

До скорой встречи!

Статьи по теме

Вспомогательная тормозная система — Энциклопедия журнала «За рулем»

Вспомогательная тормозная система, ограничивающая скорость движения автомобиля на длительных спусках, выполняется не зависимой от других тормозных систем. Транспортное средство при движении под уклон начинает постепенно разгоняться, достигая скорости, опасной с точки зрения водителя для безопасного движения. Водитель притормаживает, используя рабочую тормозную систему, снижая скорость до безопасной. Через некоторое время автомобиль вновь разгоняется и цикл притормаживания повторяется. За путь движения с перевала длиной 5–20 км циклы притормаживания рабочей системой многократно повторяются. Это сопровождается износом шин, тормозных накладок и — самое главное — увеличением температуры тормозных механизмов, в первую очередь тормозных накладок. При разогреве накладок тормозных механизмов снижается коэффициент трения накладки о тормозной барабан, а следовательно, и тормозная эффективность тормозного механизма. В результате эффективность торможения автомобиля в начале спуска с горы и в конце, при прочих равных условиях, совершенно различная. Резкое ухудшение тормозных свойств автомобиля с горячими тормозными механизмами может привести к дорожно-транспортному происшествию с тяжелыми последствиями.
Поэтому была разработана для тяжелых автомобилей и автопоездов такая тормозная система, которая обеспечивает длительное движение на спуске с небольшой постоянной скоростью без использования (и разогрева) механизмов рабочей тормозной системы. Последние должны оставаться в холодном состоянии и готовности выполнить в любой момент торможение с максимальной эффективностью.
Такой системой является вспомогательная (второе название — износостойкая) тормозная система. Вспомогательная система не может снизить скорость автомобиля до нуля.
По нормативным документам эффективность вспомогательной тормозной системы считается достаточной, если на уклоне в 7 % длиной 7 км скорость автомобиля поддерживается на уровне (30±5) км/ч.
Конструктивно вспомогательная тормозная система выполняется сейчас тремя способами: моторный тормоз, гидравлический тормоз-замедлитель и электрический тормоз-замедлитель. Следует иметь в виду, что в качестве тормоза-замедлителя на каждом автомобиле можно использовать двигатель, работающий на режиме холостого хода (так называемое торможение двигателем). Тормозной момент, создаваемый в этом случае двигателем, увеличивается при включении низших передач в коробке. Однако тормозной момент, развиваемый двигателем, работающим на холостых оборотах, небольшой и не обеспечивает необходимого замедления автомобиля большой массы.
Более эффективный моторный тормоз (горный тормоз) представляет собой двигатель автомобиля, оборудованный дополнительными устройствами выключения подачи топлива и поворота заслонок в выпускном трубопроводе, создающих дополнительное сопротивление. При торможении водитель с помощью пневматического привода поворачивает заслонку в трубе глушителя в закрытое положение и перемещает рейку топливного насоса высокого давления в положение нулевой подачи топлива в двигатель. Вследствие этих действий двигатель автомобиля глушится (но вращение коленчатого вала не прекращается) и становится невозможным выпуск воздуха из цилиндров через выпускной тракт. В такте выпуска поршень стремится вытолкнуть воздух через выпускной трубопровод. При этом поршень испытывает сопротивление, многократно сжимая воздух. Следствием этого сопротивления перемещению поршня является замедление вращения коленчатого вала, и, следовательно,передача от него через трансмиссию тормозного момента к ведущим колесам автомобиля.

Гидравлический тормоз-замедлитель:
1— корпус;
2 — лопастное колесо

Гидравлический тормоз-замедлитель представляет собой устройство из двух лопастных колес, не связанных жестко друг с другом, но расположенных друг напротив друга на небольшом расстоянии. Лопастные колеса установлены в отдельном корпусе или встроены в гидромеханическую передачу (ГМП). Одно лопастное колесо установлено на вале трансмиссии, например на карданном, и вращается вместе с ним, а второе колесо неподвижно и соединено с корпусом тормоза. Для создания сопротивления вращению карданного вала корпус с помощью специального насоса наполняется маслом. Масло разгоняется лопастями вращающегося колеса, перетекает на лопасти неподвижного колеса, где его скорость резко замедляется и затем повторно поступает на лопатки вращающегося колеса. При попадании масла на лопатки быстро вращающегося лопастного колеса вращение последнего замедляется, а образующийся тормозной момент через трансмиссию подводится к ведущим колесам автомобиля. Нагреваемое в корпусе тормоза-замедлителя масло охлаждается в специальном радиаторе. Для выключения тормоза масло удаляют из корпуса. Гидрозамедлитель может обеспечить несколько ступеней интенсивности торможения, если устанавливается перед коробкой передач. Чем ниже передача, тем эффективнее происходит торможение.

Электрический тормоз-замедлитель:
1 — ротор;
2 — обмотки статора

По аналогичному принципу работает и электрический тормоз-замедлитель. На автомобилях с механической трансмиссией он выполняется в отдельном корпусе. С карданным валом или любым другим валом трансмиссии соединен вращающийся ротор замедлителя, а в корпусе закреплены неподвижные обмотки статора. При подаче напряжения на обмотки статора возникает магнитное силовое поле, препятствующее свободному вращению ротора. Образующийся тормозной момент через трансмиссию подводится к ведущим колесам автомобиля, аналогично гидравлическому тормозу-замедлителю.
Также следует отметить, что на прицепах и полуприцепах при необходимости также может устанавливаться тормоз-замедлитель. Он может быть электрического или гидравлического типа. Для этого одна из осей конструктивно должна быть выполнена с полуосями, между которыми устанавливается замедлитель. Включение и выключение замедлителя производится водителем из кабины тягача.

Как работает тормозная система автомобиля

В современных автомобилях тормоза с гидроприводом устанавливаются на всех четырех колесах. Тормоза бывают дисковыми и барабанными.

Передние тормоза играют большую роль с остановке автомобиля, чем задние, т.к. при торможении вес переносится на передние колеса.

Во многих автомобилях передние колеса оснащены дисковыми тормозами, которые считаются более эффективными, а задние — барабанными.

Тормозные системы, которые состоят только из дисков, устанавливаются на самых дорогих и высокопроизводительных автомобилях, а тормозные системы, которые состоят только из барабанов, характерны для старых автомобилей небольшого размера.

Двухконтурная тормозная система

В типичной двухконтурной тормозной системе каждая цепь работает для обоих передних колес и одного из задних колес. При нажатии на педаль тормоза жидкость из главного тормозного цилиндра проходит по тормозным трубкам во вспомогательные цилиндры, расположенные рядом с колесами. При этом главный тормозной цилиндр пополняется из специального резервуара.

Гидравлическая тормозная система

Гидравлическая тормозная цепь включает в себя главный тормозной цилиндр, заполненный жидкостью, и несколько вспомогательных цилиндров, соединенных между собой трубками.

Главный и вспомогательные цилиндры

При нажатии педали тормоза главный тормозной цилиндр выдавливает жидкость во вспомогательные цилиндры.

Педаль приводит в движение поршень в главном тормозном цилиндре, и жидкость перемещается по трубке.

Попав во вспомогательные цилиндры, расположенные рядом с колесами, жидкость приводит в движение цилиндры и провоцирует срабатывание тормозов.

Давление жидкости равномерно распределяется по системе.

Тем не менее, суммарная площадь давления поршней во вспомогательных цилиндрах больше, чем площадь давления поршня в главном тормозном цилиндре.

Таким образом, поршню в главном цилиндре необходимо пройти путь в несколько десятков сантиметров, чтобы сдвинуть поршни во вспомогательных цилиндрах на пару сантиметров, которые необходимы для срабатывания тормозов.

Такая конструкция позволяет прикладывать к тормозам огромную силу, подобно той, что возникает в рычаге с длинным плечом даже при небольшом нажатии.

В современных автомобилях используются гидравлические цепи с двумя цилиндрами, один из которых является запасным.

В некоторых случаях одна цепь работает для передних колес, а вторая — для задних. Иногда одна цепь объединяет колеса попарно (переднее и заднее). В отдельных системах одна цепь обеспечивает работу тормозов на всех колесах.

Зачастую сильное торможение переносит вес автомобиля на передние колеса. При этом задние колеса блокируются, что приводит к заносу.

Для решения этой проблемы задние тормоза намеренно делают более слабыми, чем передние.

В некоторых автомобилях также присутствует ограничители давления, чувствительные к нагрузке. Когда давление в тормозной системе поднимается до уровня, при котором блокируются задние колеса, ограничительный клапан закрывается, и жидкость больше не поступает в задние тормоза.

В более продвинутых моделях используется сложная система антиблокировки, которые учитывают резкие изменения в скорости.

Такие системы быстро включают и выключают тормоза, чтобы предотвратить блокировку.

Тормоза с усилителем

Во многих автомобилях предусмотрено усиление тормозной системы, благодаря которому водителю не требуется прикладывать много усилий, чтобы затормозить.

Как правило, источником усиления является перепад давления от частичного вакуума во впускном коллекторе и потока воздуха за пределами корпуса.

Исполнительный механизм, который отвечает за усиление, связан с впускным коллектором трубами.

Исполнительный механизм прямого действия находится между педалью тормоза и главным тормозным цилиндром. Педаль может воздействовать на цилиндр напрямую, если механизм отказал или двигатель отключен.

Исполнительный механизм прямого действия находится между педалью тормоза и главным тормозным цилиндром. Педаль тормоза воздействует на рычаг, который, в свою очередь, запускает поршень главного тормозного цилиндра.

Помимо этого, педаль также воздействует на несколько воздушных клапанов, а поршень главного тормозного цилиндра оснащен большой резиновой диафрагмой.

Когда тормоза отключены, диафрагма обеими сторонами примыкает к вакууму во впускном коллекторе.

При нажатии на педаль клапан, соединяющий заднюю сторону диафрагмы с коллектором, закрывается, открывая клапан, впускающий воздух извне.

Под давлением воздуха диафрагма перемещает поршень главного тормозного цилиндра, усиливая работу тормозов.

При удерживании педали воздушный клапан больше не пропускает воздух, и давление в тормозах остается постоянным.

Если педаль была отпущена, пространство за диафрагмой открывается, давление снова падает, и диафрагма возвращается в первоначальное положение.

Когда двигатель останавливается, вакуум исчезает, но тормоза продолжают работать, т.к. педаль соединена с главным тормозным цилиндром механически.  Тем не менее, для торможения в описанной ситуации потребуется гораздо больше усилий со стороны водителя.

Как работает усилитель тормоза

Тормоза не работают, обе стороны диафрагмы соприкасаются с вакуумом.

При нажатии на педаль на заднюю сторону диафрагмы воздействует воздух, и она двигается к цилиндру.

Некоторые автомобили снабжены механизмами непрямого действия, встроенными в линию гидравлической передачи между тормозами и главным тормозным цилиндром. Такой механизм не привязан к педали и может присутствовать в любом отделе моторного отсека.

Тем не менее, он тоже работает под действием вакуума из коллектора. При нажатии на педаль тормоза главный тормозной цилиндр обеспечивает гидравлическое давление на клапан, который запускает механизм.

Дисковые тормоза

Базовый тип дисковых тормозов с одной парой поршней. Для воздействия на колодки может использоваться один или несколько поршней. Суппорты могут быть качающимися или раздвижными.

Дисковый тормоз оборудован диском, который вращается вместе с колесом. Диск подпирается суппортом, в котором есть небольшие гидравлические поршни, работающие под управлением главного тормозного цилиндра.

Поршни давят на фрикционные накладки, которые прижимаются к диску, чтобы замедлить или остановить его. Эти накладки имеют изогнутую форму и покрывают большую часть диска.

В двухконтурных тормозных системах поршней может быть несколько.

Для торможения поршням необязательно проходить длинный путь, поэтому при отключении тормозов они не соприкасаются с диском и не имеют возвратных пружин.

При нажатии на педаль тормоза накладки прижимаются к диску под давлением жидкости.

Резиновые уплотнительные кольца, окружающие поршни, позволяют им постепенно продвигаться вперед по мере износа накладок, чтобы расстояние между диском и поршнем оставалось постоянным, и тормозная система не нуждалась в настройке.

В некоторых современных моделях накладки снабжены датчиками. При износе накладки контакты датчика обнажаются и замыкаются, зажигая аварийный сигнал на приборной панели.

Барабанные тормоза

Барабанный тормоз с первичной и вторичной колодками оснащен одним гидравлическим цилиндром. Тормоза с двумя первичными колодками имеют два цилиндра, которые устанавливаются на передних колесах.

Барабанный тормоз оборудован полым барабаном, который вращается вместе с колесом. Верх барабана покрыт неподвижной опорной плитой, на которой располагаются две изогнутые колодки с фрикционной обшивкой.

Под давлением жидкости поршни в цилиндрах раздвигаются, и обшивка колодок прижимается к барабану, замедляя или останавливая его.

При нажатии на педаль колодки прижимаются к барабану под действием поршней.

Каждая тормозная колодка соприкасается с рычагом и поршнем. Первичная колодка соприкасается с поршнем рабочей стороной, определяя направление вращения барабана.

При вращении барабан тянет колодку в противоположную сторону, обеспечивая эффект торможения.

В некоторых барабанах используются сдвоенные колодки, каждая из которых оснащена гидравлическим цилиндром. В других используется пара колодок (первичная и вторичная) с рычагами спереди.

Такая конструкция позволяет разводить колодки при наличии одного цилиндра с двумя поршнями.

Система с первичной и вторичной колодками является упрощенной и менее мощной, чем система с двумя ведущими колодками, поэтому она обычно устанавливается на задние колеса.

В любом случае, после отключения тормозов колодки принимают первоначальное положение благодаря пружинам возврата.

Перемещение колодок ограничивается регулятором. В старых системах используются механические регуляторы, которые требуют настройки по мере износа фрикционной обшивки. В современных системах регуляторы работают автоматически за счет храповых механизмов.

Барабанные тормоза могут отказывать при частом использовании, т.к. они перегреваются и не могут эффективно функционировать, пока не остынут. Диски обладают более открытой конструкцией и считаются более надежными.

Ручной тормоз

Механизм ручного тормоза

Ручной тормоз воздействует на колодки посредством механической системы, которая не задействует гидравлические цилиндры. Эта система состоит из рычагов, которые находятся в тормозном барабане и запускаются из салона вручную.

Помимо гидравлической тормозной системы все автомобили снабжены ручным тормозом, который действует на два колеса (как правило, задних).

Ручной тормоз дает возможность снизить скорость при отказе гидравлической системы, однако в основном используется на стоянках.

Рычаг ручного тормоза тянет трос или пару тросов, соединенных с тормозами совокупностью более мелких рычагов, шкивов и направляющих. Конкретные составляющие этой системы зависят от модели автомобиля.

Рычаги ручного тормоза удерживаются в нужном положении посредством храпового механизма. Механизм выключается по кнопку, освобождая рычаги.

В барабанных тормозах ручной тормоз воздействует на тормозную ленту, которая прижимается к барабанам.

В дисковых тормозах используется та же механика, однако суппорты обладают небольшими размерами, и на них сложно установить проводку, поэтому для каждого колеса предусматривается отдельный рычаг.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *