РазноеИндикатор тока на светодиодах: ⚡️Экономичные светодиодные индикаторы тока | radiochipi.ru

Индикатор тока на светодиодах: ⚡️Экономичные светодиодные индикаторы тока | radiochipi.ru

⚡️Экономичные светодиодные индикаторы тока | radiochipi.ru

Для сигнализации и контроля в современной аппаратуре широко используются световые индикаторы, излучающими элементами в которых служат светодиоды различного цвета свечения. Такие устройства выполняют в основном по схеме индикаторов напряжения, хотя во многих случаях индикаторы тока (далее для краткости — ИТ) более информативны.

svetodiodnye-indikatory-tokaШирокому распространению светодиодных ИТ (рис. 1) препятствует необходимость обеспечения падения напряжения на датчике тока — резисторе R1, превышающего напряжение свечения светодиода, т. е, в среднем около 1,8 В для светодиодов красного и зелёного свечения и примерно 2,9 В синего, вследствие чего такие ИТ имеют низкую экономичность. Для снижения падения напряжения на датчике тока, необходимого для работы светодиодного ИТ, применяют различные усилители постоянного тока или (в целях переменного тока) трансформаторы тока.

Применение усилителей усложняет устройство и требует их подключения трехполюсником, трансформаторы тока весьма громоздки. Известен способ питания светодиода от источника с низким напряжением, заключающийся в использовании преобразователя напряжения. Такие устройства различной степени сложности применяют профессионалы и радиолюбители, конструирующие малогабаритные фонари, в которых осветительный светодиод белого свечения питается от одного гальванического элемента или аккумулятора. Преобразователи сохраняют работоспособность при напряжении питания ниже 1 В. Это сравнительно мощные устройства, обеспечивающие ток через светодиод в несколько десятков миллиампер.

Если для питания светодиода применить преобразователь напряжения, а в качестве источника питания для него использовать падение напряжения на датчике тока (рис. 2,а), то потери мощности можно существенно снизить. Современные сверхъяркие индикаторные светодиоды различного свечения светят достаточно ярко при токе около 200 мкА, и мощность преобразователей, применяемых в фонариках, оказывается излишней.

preobrazovatel-toka-na-odnom-tranzistore-mp20aПри проведении экспериментов по снижению выходной мощности простейшего преобразователя — блокинг генератора — выяснилось, что этот преобразователь, выполненный на маломощном германиевом транзисторе, развивает выходную мощность, достаточную для свечения сверхъяркого светодиода, при напряжении питания всего 0,1…0,2 В, что сопоставимо с падением напряжения на шунте стрелочного электроизмерительного прибора.

В устройстве по схеме на рис. 2,6 отсутствует защита от перегрузки по току. Поэтому это устройство можно применять в цепях, в которых отсутствуют броски тока.

На рис. 2,б изображена схема наиболее экономичного светодиодного индикатора тока для устройств, потребляющих сравнительно стабильный ток. При применении транзистора МП20А со статическим коэффициентом передачи тока базы не менее 100 светодиод HL1 светит достаточно ярко при падении напряжения на датчике тока резисторе R1 не более 0,1 В.

Трансформатор Т1 намотан на кольцевом ферритовом магнитопроводе с наружным диаметром 10 мм от ЭПРА неисправной КЛЛ. Обе обмотки содержат по 24 витка эмалированного провода диаметром 0,18 мм. Этот ИТ применим в цепях как постоянного, так и переменного тока: при положительной полуволне питающего напряжения работает преобразователь и светит светодиод HL1, при отрицательной транзистор закрыт небольшим обратным напряжением. Ток через светодиод имеет вид пачек импульсов, следующих с частотой 50 Гц, но изза инерционности зрения его свечение воспринимается непрерывным.

Если ИТ будет эксплуатироваться совместно с устройством, чувствительным к пульсациям питающего напряжения, то датчик тока следует шунтировать керамическим конденсатором ёмкостью 0,5… 1 мкФ(С1). Сопротивление датчика тока подбирают таким, чтобы при максимальном токе нагрузки яркость свечения светодиода была комфортной. Потребляемый преобразователем ток при этом обычно не превышает 2 мА.

Если ток, потребляемый нагрузкой, может изменяться в широких пределах, в таких устройствах в качестве датчика тока для ИТ следует применять диод Шотки (рис. 2,в). Его обратное напряжение может быть не более 25 В, а вот предельно допустимое значение прямого тока должно быть больше максимального тока нагрузки в несколько раз (например, для диода КД269А ток нагрузки не должен превышать 2 А, а для диода КД273А — 10 А).

При выполнении этих условий и изменении тока нагрузки от 5 мА до максимального падение напряжения на диоде будет изменяться в пределах 0,2…0,35 В. Это позволяет использовать в преобразователе более распространённые низкочастотные германиевые транзисторы серий МП39—МП42 (минимальное напряжение питания преобразователя — 0,14…0,16 В) или высокочастотные серий ГТ308—ГТ310 (минимальное напряжение питания преобразователя — 0,2 В). Статический коэффициент передачи тока базы h3)3 транзистора в таком применении должен быть не менее 15.

Трансформатор для этого ИТ намотан на таком же, что и предыдущем случае магнитопроводе, обе обмотки содержат по десять витков эмалированного провода диаметром 0,1 мм.
Резистор R1 подбирают по оптимальной яркости свечения светодиода HL1 при максимальном токе нагрузки. Если встречнопараллельно VD1 подключить такой же диод VD2 (показано на рис. 2,в штриховыми линиями), то получится экономичный светодиодный индикатор переменного тока, который можно применить в цепях переменного тока напряжением от нескольких вольт до нескольких сотен вольт.

indikator-toka-na-svetodiode-v-evrovilke

Весьма удобно использовать его в качестве индикатора сетевого тока. При мощности нагрузки до 400 Вт диоды КД269А нагреваются незначительно, поэтому индикатор можно смонтировать навесным монтажом в евровилке. Если мощность нагрузки не превышает 100 Вт, то при использовании малогабаритных деталей (диодов Шотки 1N5818, сверхьяркого светодиода и транзистора серии ГТ310) индикатор сетевого тока можно собрать и в обычной вилке (рис. 3).

Магнитопровод трансформатора этого ИТ — ферритовая трубка с наружным диаметром 5 и длиной 6 мм (такие трубки надевают на выводы некоторых деталей в импульсных блоках питания). При необходимости трубку можно разрезать пополам, получив сразу два кольцевых магнитопровода. Перед намоткой острые кромки колец необходимо скруглить мелкозернистой наждачной бумагой.

Обе обмотки содержат по десять витков эмалированного провода диаметром 0,1 мм. Наматывать их рекомендуется одновременно двумя проводами, продев их в ушко тонкой швейной иглы, а после намотки соединить начало одной обмотки с концом второй. Для светодиода в корпусе вилки нужно просверлить отверстие. После монтажа детали фиксируют в корпусе вилки несколькими каплями термоклея. Предлагаемые светодиодные ИТ просты, дёшевы, экономичны, легко встраиваются в любую аппаратуру и способствуют повышению её потребительских свойств, расширяя область применения светодиодных индикаторов.

Простой индикатор протекающего переменного тока

Нередки задачи — определить наличие протекающего в цепи переменного тока сетевого напряжения. Индикаторы напряжения – лампочки или светодиоды, подключенные параллельно нагрузке могут указать только на приложенное напряжение, но не на протекание тока. Они просты, дешевы и компактны но малоинформативны. Такой индикатор тока может быть применен для дистанционного определения невыключенных приборов в удаленных помещениях, для индикации работоспособности особо ответственных электрических цепей.

Естественной и логичной идеей будет установить в разрыв цепи резистор и использовать падение напряжения на нем для свечения маломощного индикатора, лампочки или светодиода. Однако расчеты показывают, что резистор придется взять изрядной мощности, он будет сильно греться, падение напряжения на нем – практически бесполезная трата энергии. Например. Имеем три независимых проволочных нагревателя (3 фазы), каждый мощностью 500 Вт. Нужно во время работы печи иметь представление о целостности каждого. Вспомнив, что I=P/U выясним, что в цепи каждого нагревателя протекает ток 2.3 А. Чтобы получить падение напряжения на резисторе 5 вольт (для зажигания светодиода), придется рассеять на этом резисторе более 10 Вт. Т.е. мощность резистора должна быть несколько выше расчетной (габариты, масса), нагрев элемента предполагает его специальную установку – неплавящуюся изоляцию, вентиляцию и.т.д. Кроме того, как уже говорилось – теряем 5 вольт от, хорошо если 220.

Итак, последовательно включенный резистор применять неудобно. Существующие схемы индикаторов тока с цепочкой мощных диодов ничем не лучше, кроме прочего, придется учитывать и допустимые токи через диоды.

Значительно лучшими эксплуатационными показателями обладает трансформаторный датчик. Сопротивление его измерительной обмотки ничтожно, никакого нагрева, потери минимальны. Да, он дороже стоит (как все моточные изделия), больше весит. К счастью, кустарное техническое творчество не предполагает серийного производства с высокой окупаемостью. В качестве датчиков можно применить доработанные маломощные сетевые трансформаторы из старой износившейся или морально устаревшей бытовой техники. Здесь были применены трансформаторы питания от импортных пластиковых переносных кассетных магнитофонов с FM радио. Небольших размеров, моно, невысокого класса. Подобрал три почти одинаковых трансформатора. Еще один источник миниатюрных сетевых трансформаторов – старые сетевые «адаптеры» в небольшом корпусе-вилке. Старые их модели часто были с низкочастотным трансформатором.

Что понадобилось для изготовления.

Набор инструмента для электромонтажа, паяльник с принадлежностями, мультиметр, фен технический для работы с термотрубками. Набор инструментов для мелкой слесарной работы, измерительный инструмент, ножницы по металлу, дрель электрическая или шуруповерт со сверлами, пара струбцин для гнутья, мелочи.


Материалы – прежде всего сами подлежащие переделке трансформаторы малой мощности (из соображения компактности и веса), подходящий мягкий провод с хорошей изоляцией, индикаторные лампочки. При отсутствии хорошего крепления – тонкий листовой металл для обойм.

Доработка облегчилась благодаря удачной конструкции трансформаторов – в них обмотки расположены рядом, на сборном пластиковом каркасе (технологичность изготовления), а не поверх друг друга (выше эл. параметры). Доработка свелась к перемотке вторичной, низковольтной обмотки. Из-за особенности конструкции трансформаторов удалось сделать это без муторной сборки-разборки проклеенного сердечника из Ш-пластин.

Удалив внешнюю изоляцию вторичной обмотки, выяснил направление намотки провода. Отметил его спиртовым фломастером на магнитопроводе трансформатора.

Спилив выступающие части катушки ножовкой по металлу, вытолкнул, выбил внутренние ее части, удалил остатки изоляции, острым ножом срезал пластиковые заусенцы.


Намотал (продел в окно) провод новой вторичной обмотки. Для потребляемой мощности 500 Вт (2.3 А) применил гибкий монтажный провод сечением 0,5 мм2 в хорошей силиконовой изоляции. Без особенного труда влезло 3.5 витка.

При протекании указанного тока через измерительную обмотку, на высоковольтной обмотке получается около 90 вольт. Для индикации применил маленькую неоновую лампочку импортного производства, последовательно с токоограничивающим резистором. Резистор подобрал по яркости (не максимальной, но удобной) свечения. Получилось около 500 кОм.


В своем родном применении трансформаторы удерживались только специальным пластиковым крепежом — элементами корпуса. Этаким специальным гнездом. Здесь, для надежного крепления пришлось сделать хрестоматийные металлические обоймы. Для их изготовления применил оцинкованную сталь толщиной 0,45 мм.

Вычертил эскиз с размерами, с учетом поправок на сгибы. Перенес разметку на подходящий кусок листового материала. В углах сгибов накернил и просверлил тонким сверлом отверстия (не будет складки), зенковал отверстия крупным сверлом. Вырезал развертку ножницами по металлу.

Для сгибания развертки зажал ее на краю ровной железки – станины самодельного токарного станка по дереву. Прижал подходящей деревяшкой, то, что должно быть отогнуто выступает. Легкими ударами резиновой киянки отогнул лепестки, перевернул заготовку, отогнул лепестки на второй стороне. Остальное легко и точно сгибается руками.

Сердечник трансформатора набирается из отдельных изолированных друг от друга пластин, чтобы поумерить вредный его нагрев из-за вихревых токов (тов. Фуко), замыкать их нельзя. Для изоляции жестяной обоймы от магнитопровода потребуется еще одна аналогичная деталь из плотной бумаги. Применил ватманскую. Линии сгиба предварительно частично прорезаются или лучше – проминаются тупым ножом или чем-то подобным.

Датчик тока в сборе.

Два из трех датчиков тока в блоке управления трехфазным нагревателем печи. Индикаторные лампочки вынесены на переднюю панель, токоограничивающие резисторы смонтированы вместе с отходящими проводами, затянуты в термотрубку и скреплены вместе с остальным монтажом нейлоновыми ремешками и пластиковой спиралью.


Для размещения отдельного датчика тока вместе с индикатором, например, для сигнализации о невыключенном электроприборе в удаленном помещении удобно будет применить подходящую стандартную электрическую коробку.

Babay Mazay, март, 2020 г.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Схемы светодиодных индикаторов перегрузки по току

Превышение выходного тока в источниках питания свидетельствует об увеличении потребляемой мощности в устройстве нагрузки. Иногда потребляемый ток в нагрузке (из-за неисправности соединений или самого устройства нагрузки) может увеличиться вплоть до значения тока короткого замыкания (к/з), что неминуемо приведет к аварии (если источник питания не снабжен узлом защиты от перегрузки).

Последствия перегрузки могут оказаться более существенными и непоправимыми, если использовать источник питания без узла защиты (как сегодня часто делают радиолюбители, изготавливая простые источники и покупая недорогие адаптеры) — увеличится энергопотребление, выйдет из строя сетевой трансформатор, возможно возгорание отдельных элементов и неприятный запах.

Для того чтобы вовремя заметить выход источника питания в «заштатный” режим, устанавливают простые индикаторы перегрузки. Простые — потому, что они, как правило, содержат всего несколько элементов, недорогих и доступных, а установить эти индикаторы можно универсально практически в любой самодельный или промышленный источник питания.

Простая схема индикатора токовой перегрузки

Самая простая электронная схема индикатора токовой перегрузки показана нарис. 1

 

Схемы светодиодных индикаторов перегрузки по току

 

Рис. 1. Электрическая схема светового индикатора токовой перегрузки.

Работа ее элементов основана на том, что последовательно с нагрузкой в выходной цепи источника питания включают ограничивающий резистор малого сопротивления (R3 на схеме).

Данный узел можно применять универсально в источниках питания и стабилизаторах с разным выходным напряжение (испытано в условиях выходного напряжения 5— 20 В). Однако значения и номиналы элементов, указанных на схеме рис. 3.4, подобраны для источника питания с выходным напряжением 12 В.

Соответственно, для того чтобы расширить диапазон источников питания для данной конструкции, в выходном каскаде которых будет эффективно работать предлагаемый узел индикации, потребуется изменить параметры элементов R1— R3, VD1, VD2.

Пока перегрузки нет, источник питания и узел нагрузки работают в штатном режиме, через R3 протекает допустимый ток и падение напряжения на резисторе невелико (менее 1 В). Также невелико в этом случае и падение напряжения на диодах VD1, VD2, при этом светодиод HL1 едва светится.

При увеличении тока потребления в устройстве нагрузки или коротком замыкании между точками А и Б ток в цепи возрастает, падение напряжения на резисторе R3 может достигнуть максимального значения (выходного напряжения источника питания), вследствие чего светодиод HL1 загорится (будет мигать) в полную силу.

Для наглядного эффекта в схеме применен мигающий светодиод L36B. Вместо указанного светодиода можно применить аналогичные по электрическим характеристикам приборы, например, L56B, L456B (повышенной яркости), L816BRC-B, L769BGR, TLBR5410 или подобные им.

Мощность, рассеиваемая на резисторе R3 (при токе к/з) более 5 Вт, поэтому этот резистор изготавливается самостоятельно из медной проволоки типа ПЭЛ-1 (ПЭЛ-2) диаметром 0,8 мм.

Ее берут из ненужного трансформатора. На каркас из канцелярского карандаша наматывают 8 витков этого провода, концы ее облуживают, затем каркас вынимают. Проволочный резистор R3 готов.

Все постоянные резисторы типа МЛТ-0,25 или аналогичные. Вместо диодов VD1, VD2 можно установить КД503, КД509, КД521 с любым буквенным индексом. Эти диоды защищают светодиод в режиме перегрузки (гасят излишнее напряжение).

Индикатор перегрузки с звуковым сигнализатором

К сожалению, на практике нет возможности постоянно визуально следить за состоянием индикаторного светодиода в источнике питания, поэтому разумно дополнить схему электронным узлом звукового сопровождения. Такая схема представлена на рис. 2.

Как видно из схемы, она работает по тому же принципу, но в отличие от предыдущей, это устройство более чувствительно и характер его работы обусловлен открыванием транзистора VT1, при установлении в его базе потенциала более 0,3 В. На транзисторе VT1 реализован усилитель тока.

Транзистор выбран германиевым. Из старых запасов радиолюбителя. Его можно заменить на аналогичные по электрическим характеристикам приборы: МП 16, МП39—МП42 с любым буквенным индексом. В крайнем случае, можно установить кремниевый транзистор КТ361 или КТЗ107 с любым буквенным индексом, однако тогда порог включения индикации будет иным.

 

Схемы светодиодных индикаторов перегрузки по току

Рис. 2. Электрическая схема узла звукового и светового индикатора перегрузки

Порог включения транзистора VT1 зависит от сопротивления резисторов R1 и R2 и в данной схеме при напряжении источника питания 12,5 В индикация включится при токе нагрузки, превышающем 400 мА.

В коллекторной цепи транзистора включен мигающий светодиод и капсюль со встроенным генератором ЗЧ НА1. Когда на резисторе R1 падение напряжения достигнет 0,5…0,6 В, транзистор VT1 откроется, на светодиод HL1 и капсюль НА1 поступит напряжение питания.

Поскольку капсюль для светодиода является активным элементом, ограничивающим ток, режим работы светодиода в норме. Благодаря применению мигающего светодиода капсюль также будет звучать прерывисто — звук будет слышен во время паузы между вспышками светодиода.

В этой схеме можно достичь еще более интересный звуковой эффект, если вместо капсюля НА1 включить прибор КРІ-4332-12, который имеет встроенный генератор с прерыванием. Таким образом звук в случае перегрузки будет напоминать сирену (этому способствует сочетание прерываний вспышек светодиода и внутренних прерываний капсюля НА1).

Такой звук достаточно громкий (слышно в соседнем помещении при среднем уровне шума), обязательно будет привлекать внимание людей.

Индикатор перегорания плавкого предохранителя

Еще одна схема индикатора перегрузки представлена на рис. 3. В тех конструкциях, где установлен плавкий (или иной, например, самовосстанавливающийся) предохранитель, часто требуется визуально контролировать их работу.

Здесь применен двухцветный светодиод с общим катодом и соответственно тремя выводами. Кто на практике испытывал эти диоды с одним общим выводом, знают, что они функционируют несколько иначе, чем ожидается.

Шаблон мышления в том, что казалось бы, зеленый и красный цвета будут появляться у светодиода в общем корпусе соответственно при приложении (в нужной полярности) напряжения к соответственным выводам R или G. Однако, это не совсем так.

 

Схемы светодиодных индикаторов перегрузки по току

Рис. 3. Световой индикатор перегорания предохранителя.

Пока предохранитель FU1 исправен, к обоим анодам светодиода HL1 приложено напряжение. Порог свечения корректируется сопротивлением резистора R1. Если предохранитель обрывает цепь питания нагрузки, то зеленый светодиод гаснет, а красный остается светить (если напряжения питания совсем не пропало).

Поскольку допустимое обратное напряжение для светодиодов мало и ограничено, то для указанной конструкции в схему введены диоды с разными электрическими характеристиками VD1— VD4. То, что к зеленому светодиоду последовательно включен только один диод, а к красному три, объясняется особенностями светодиода AЛC331A, замеченными на практике.

При экспериментах оказалось, что порог напряжения включения красного светодиода меньше, чем у зеленого. Чтобы уравновесить эту разницу (заметную только на практике), количество диодов неодинаково.

При перегорании предохранителя к зеленому светодиоду (G) прикладывается напряжение в обратной полярности.

Номиналы элементов в схеме даны для контроля напряжения в цепи 12 В. Вместо светодиода AЛC331A допустимо применять другие аналогичные приборы, например, КИПД18В-М, L239EGW.

Литература: Андрей Кашкаров — Электронные самоделки.

Индикаторы сети 220В на светодиодах, замена индикаторным неонкам

Принципиальные схемы простых индикаторов наличия сети 220В на светодиодах, меняем старые неоновые индикаторные лампы на светодиоды. В электрооборудовании повсеместно применяются индикаторные неоновые лампы для индикации включения аппаратуры.

В большинстве случаев схема как на рисунке 1. То есть, неоновая лампа через резистор сопротивлением 150-200 киолом подключается к сети переменного тока. Порог пробоя неоновой лампы ниже 220V, потому она легко пробивается и светится. А резистор ограничивает ток через неё, чтобы она не взорвалась от превышения тока.

Бывают и неоновые лампы со встроенными токоограничительными резисторами, в таких схемах кажется как будто неоновая лампа включена в сеть без резистора. На самом деле резистор спрятан в её цоколе или в её проволочном выводе.

Недостаток неоновых индикаторных ламп в слабом свечении и только розовом цвете свечения, ну и еще в том что это стекло. Плюс, неоновые лампы сейчас в продаже встречаются реже светодиодов. Понятно, что есть соблазн сделать аналогичный индикатор включения, но на светодиоде, тем более светодиоды бывают разных цветов и значительно более яркие чем «неонки», ну и нет стекла.

Но, светодиод низковольтный прибор. Прямое напряжение обычно не более ЗV, да и обратное тоже весьма низкое. Даже если светодиодом заменить неоновую лампу, он выйдет из строя за счет превышения обратного напряжения при отрицательной полуволне сетевого напряжения.

Типовая схема подключения неоновой лампы к сети 220В

Рис. 1. Типовая схема подключения неоновой лампы к сети 220В.

Впрочем, есть двухцветные двухвыводные светодиоды. В корпусе такого светодиода есть два разноцветных светодиода, включенных встречно-параллельно. Такой светодиод можно подключить практически так же, как неоновую лампу (рис.2), только резистор взять сопротивлением поменьше, потому что для хорошей яркости через светодиод должен протекать ток больше чем через неоновую лампу.

Схема индикатора сети 220В на двухцветном светодиоде

Рис. 2. Схема индикатора сети 220В на двухцветном светодиоде.

В этой схеме одна половина двухцветного светодиода HL1 работает на одной полуволне, а вторая — на другой полуволне сетевого напряжения. В результате обратное напряжение на светодиоде не превышает прямого. Единственный недостаток — цвет. Он желтый. Потому что обычно два цвета — красный и зеленый, но горят они почти одновременно, потому зрительно выглядит как желтый цвет.

Резистор R1 в схеме на рисунке 2 сопротивлением ниже, чем с неоновой лампой, и на нем выделяется больше тепловой мощности. Полностью избавится от паразитной тепловой мощности можно, если заменить резистор конденсатором (рис. 3). Прямой ток через светодиод ограничивается реактивным емкостным сопротивлением конденсатора, а на нем тепло не выделяется.

Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе

Рис. 3. Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе.

На рисунках 4 и 5 показана схема индикатора включения на двух светодиодах, включенных встречно-параллельно. Это почти то же, что на рис. 3 и 4, но светодиоды отдельные для каждого полупериода сетевого напряжения. Светодиоды могут быть как одного цвета, так и разного.

Схема индикатора сети 220В с двумя светодиодами

Рис. 4. Схема индикатора сети 220В с двумя светодиодами.

Схема индикатора сети 220В с двумя светодиодами и конденсатором

Рис. 5. Схема индикатора сети 220В с двумя светодиодами и конденсатором.

Но, если нужен только один светодиод, -второй можно заменить обычным диодом, например, 1N4148 (рис.6 и 7). И нет ничего страшного в том, что этот светодиод не рассчитан на напряжение электросети. Потому что обратное напряжение на нем не превысит прямого напряжения светодиода.

Схема индикатора сети 220В со светодиодом и диодом

Рис. 6. Схема индикатора сети 220В со светодиодом и диодом.

Схема индикатора сети 220В с одним светодиодом и конденсатором

Рис. 2. Схема индикатора сети 220В с одним светодиодом и конденсатором.

В схемах испытывались светодиоды, двухцветные типа L-53SRGW и одно-цветные типа АЛ307. Конечно же можно применить и любые другие аналогичные индикаторные светодиоды. Резисторы и конденсаторы так же могут быть других величин, — все зависит от того, какую силу тока нужно пустить через светодиод.

Андронов В. РК-2017-02.

Индикатор потребляемого тока или мощности

Предлагаемое устройство предназначено для световой индикации потребляемого тока (и соответственно мощности) нагрузкой, подключённой к осветительной сети 220 В. Его включают в разрыв одного из сетевых проводов. Особенности устройства — отсутствие какого-либо дополнительного источника питания и гальваническая развязка от сети. Этого удалось добиться применением светодиодов повышенной яркости свечения и трансформатора тока.

Рис. 1

Схема индикатора приведена на рис. 1. В его состав входят трансформатор тока Т1, два однополупериодных выпрямителя на диодах VD1 и VD2 со сглаживающими конденсаторами С1 и С2. К первому выпрямителю подключены последовательно соединённые светодиоды HL1 и HL4, ко второму — HL2 и HL3. Параллельно светодиодам HL2- HL4 установлены подстроечные резисторы R1-R3. С помощью этих резисторов можно установить выходной ток выпрямителя, при котором соответствующие светодиоды начинают светить.

Когда ток нагрузки протекает через первичную обмотку трансформатора Т1,во вторичной возникает переменное напряжение, которое выпрямляют оба выпрямителя. Индикатор настроен так, что при токе нагрузки менее 0,5 А напряжения на выходах выпрямителей недостаточно для свечения светодиодов. Когда ток превысит это значение, начнётся слабое, но заметное свечение светодиода HL1 (красного цвета). По мере роста тока нагрузки выходной ток выпрямителя также возрастает. Если ток нагрузки достигнет 2 А, включится светодиод HL2 (зелёного цвета), при токе более 3 А светится HL3 (синего), а когда ток превысит 4 А, начнёт светить белый светодиод HL4. Эксперименты показали, что индикатор работоспособен до тока нагрузки 12 А, для бытовых условий этого вполне достаточно, при этом ток через светодиоды не превышает 15…18 мА.

Рис. 2

Все элементы индикатора, кроме трансформатора, установлены на печатной плате из фольгированного с одной стороны стеклотекстолита, чертёж которой показан на рис. 2. В устройстве применены подстроечные резисторы СП3-19, конденсаторы — оксидные импортные, диоды можно использовать любые маломощные выпрямительные, светодиоды — обязательно повышенной яркости свечения.

Трансформатор тока изготовлен из понижающего трансформатора малогабаритного блока питания (120/12 В, 200 мА). Активное сопротивление первичной обмотки — 200 Ом. Обмотки этого трансформатора намотаны в отдельных секциях, что упрощает доработку. Его первичная обмотка станет вторичной обмоткой трансформатора тока Т1, а вторичную удаляют и взамен неё наматывают провод первичной обмотки. Для указанных выше параметров индикатора число витков первичной обмотки — три, провод должен быть в надёжной изоляции и рассчитан на сетевое напряжение и ток, потребляемый нагрузкой. Для изготовления трансформатора также подойдёт любой маломощный серийный понижающий трансформатор, например, из серий ТП-121, ТП-112.

Для градуировки шкалы индикатора можно применить амперметр переменного тока и понижающий трансформатор с напряжением вторичной обмотки 5.6 В и током до нескольких ампер. К этой обмотке последовательно подключают налаживаемое устройство, амперметр и нагрузку — переменный резистор сопротивлением 10.15 Ом и мощностью 25 Вт. Изменяя сопротивление нагрузочного резистора, устанавливают требуемый ток и подстроечными резисторами добиваются зажигания соответствующего этому току светодиода.

Рис. 3

Внешний вид смонтированной платы показан на рис. 3. Трансформатор и плату допустимо размещать на большом удалении друг от друга. Изменяя число витков первичной обмотки трансформатора тока, можно перестроить индикатор на другой интервал индикации тока. Это устройство позволяет также индицировать потребляемую нагрузкой мощность в интервале от 100 Вт до нескольких киловатт, для этого светодиодную шкалу следует проградуировать в единицах мощности.

Автор: И. Нечаев, г. Москва

Светодиодный индикатор тока Светодиодный индикатор тока Датчик тока для цепи переменного тока AC12V AC24V AC220V AC380V индикатор тока | |

Больше количества, свяжитесь с нами для получения лучшей скидки и почтовых расходов

Светодиодный индикатор тока Светодиодный индикатор тока Датчик тока для цепи переменного тока AC12V AC24V AC220V AC380V Индикатор тока

(Поддержка оптовых заказов и заказов на индивидуальное обслуживание )

Пассивная технология, не требуется источник питания, чем больше ток, тем ярче светодиоды, удобная проверка, сравните линейный ток

Оплата и касса

Мы принимаем Alipay, West Union , ТТ.Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.

ESCROW будет удерживать платеж, пока вы не получите свой заказ с удовлетворением.

Доставка


1. Мы отправляем ваши заказы в течение 2-7 рабочих дней после подтверждения оплаты.


2.В большинстве случаев товар доставляется в большинство стран в течение 8-15 рабочих дней. В некоторые отдаленные районы может потребоваться более 20 рабочих дней.


3. Если вы не получили товар в течение 30 дней, свяжитесь с нами, мы рассмотрим и решим проблему доставки.

Экономика EMS Да
Способ доставки Перевозчик Отслеживание Ориентировочная доставка Примечание
7 7 Сингапур Доставка 9007 7 Почта Да 8 ~ 20 рабочих дней Иногда доставка может занять больше дней по неясной причине.
Ускоренная доставка DHL, FedEx, UPS, TNT … Да 3 ~ 5 рабочих дней
5 ~ 10 рабочих дней Иногда доставка может занять больше дней по неясной причине.

Custom

1. Цена, которую вы заплатили за товар, не включает таможенные пошлины. Наш магазин не несет никаких обязательств в стране назначения.


2. Обычно мы отмечаем товары как ваши потребности в профессиональных / коммерческих счетах-фактурах и стараемся помочь минимизировать или избежать любых GST или V.A.T или другие налоги на импорт, но мы не можем гарантировать отсутствие налоговых сборов, поскольку это зависит от импортной политики вашей страны.


3. Если ваш подробный адрес относится к удаленному региону, стоимость экспресс-доставки будет выше стандартной.

4. Может взиматься плата, если доставка отклонена и отправлена ​​обратно в наш офис.

Возврат и возврат


1.Будет предложен обмен только на дефектный товар.

2. Неисправные продукты должны быть возвращены в течение 30 дней с даты размещения заказа.

3. Обработка вашего возврата может занять до 7 рабочих дней после того, как мы получим ваш продукт. Обратная доставка будет оплачена Покупателем. Все возвращенные товары ДОЛЖНЫ БЫТЬ в оригинальной упаковке, и вы ДОЛЖНЫ ПРЕДОСТАВИТЬ нам номер отслеживания доставки, конкретная причина возврата

4.Мы вернем ВАШУ ПОЛНУЮ СУММУ ВЫИГРЫШНОЙ СТАВКИ после получения товара в его первоначальном состоянии и в упаковке со всеми включенными компонентами и аксессуарами ПОСЛЕ того, как Покупатель и Продавец отменят транзакцию с aliexpress. ИЛИ вы можете выбрать замену.

5. Мы берем на себя всю стоимость доставки, если товар (ы) не соответствует рекламе.


Обратная связь


1.Мы оставим положительный отзыв после получения оплаты, пожалуйста, не забудьте дать нам и ПЯТЬ ЗВЕЗД на всех подробных рейтингах продавца

2. Если вы не удовлетворены своим опытом покупок, пожалуйста Свяжитесь с нами, чтобы получить решение, прежде чем вы решите оставить нейтральный или отрицательный отзыв, мы постараемся сделать все возможное, чтобы решить любые проблемы для вас как можно скорее, спасибо.


3. Мы будем предоставлять вам услуги как можно лучше, потому что обратная связь ПЯТЬ ЗВЕЗД — это то, к чему мы стремимся. Пожалуйста, напишите мне через «Мои сообщения» или «Почта», если у вас есть какие-либо вопросы о наших объявлениях или вашей покупке

Свяжитесь с нами

Мы приветствуем все сообщения в любое время и с радостью отвечаем на каждое сообщение мы получаем, как правило, в течение 24 часов.

Спасибо за вашу поддержку, желаю вам хорошего дня!

.

Светодиодный цифровой дисплей Индикатор измерителя напряжения Световой индикатор напряжения переменного тока Индикатор измерителя тока 22 мм 60 500V 0 100A | |

Светодиодный цифровой дисплей измеритель напряжения переменного тока Индикатор 22 мм 60-500В 0-100А

Характеристики:

  • Это цифровой индикатор сигнала тестера напряжения и тока.
  • Светодиодный дисплей высокой яркости для удобного чтения.
  • Индикатор можно использовать для измерения электроэнергии переменного тока.
  • Небольшие размеры, простая конструкция, простота установки и использования.
  • Его можно использовать как сигнальную индикацию, предупреждающий сигнал, сигнал аварии и другие сигналы в электрических линиях станков, кораблей, текстиля, полиграфического и горнодобывающего оборудования.

Спецификация:

Диапазон измерения напряжения: 60-500 В

Диапазон измерения тока: 0-100 А

Точность измерения: +/- 2%

Температура окружающей среды: 0-50 ℃

Вес: прибл.50г

Список пакетов:

1 х индикатор

,
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *