РазноеМотор тестер самодельный – Несложные приспособления своими руками | CHIPTUNER.RU

Мотор тестер самодельный – Несложные приспособления своими руками | CHIPTUNER.RU

Несложные приспособления своими руками | CHIPTUNER.RU

Несложные приспособления
для облегчения жизни, которые, при определенных
навыках, легко сделать в домашних условиях
ТЕСТЕР ДЛЯ ПРОВЕРКИ ФОРСУНОK
©  Tom, Miha

Несложные приспособления своими руками

Спецификация: C1-15пФ, C2‑8–30пФ, C3‑0,1мкФ, C4‑0,047мкФ, C5-470ґ25В, C6‑0,1мкФ, C7-2200×25В, R1‑4,7–6,8МОм, R2-130кОм, R3-100кОм, R4-10кОм, R5-10кОм, R6-1МОм, R7‑1,2кОм, R8-130Ом, R9-220Ом, R10‑0,2–0,25Ом, R11-470Омб L1-200мкГн, Z1-400кГц (50–800кГц)

DD1,DD2-К561ИЕ16, DD3-К561ТМ2, DD4-К561ЛЕ5, VD2-КД212, VD1-КД521, VD3-КД213, VT1-КТ3117, VT2-КТ817, VT3-КТ3102

YA1-Форсунка
SA1-Выбор длительности импульса
SA2-Выбор числа импульсов
SA3-Включение непрерывного режима
SB1-«Пуск»

Краткое описание: DD4.1 – задающий генератор, для стабильности применён кварц. На счётчике DD1 выполнен формирователь длительности импульсов отпирания форсунки. Длительность импульса можно выбирать 2,5 или 5 мс переключателем SA1. На счётчике DD2 выполнен дозатор числа импульсов. Количество импульсов выбирается переключателем SA2. Выключателем SA3 (фиксируемым) можно включить непрерывный режим. Это необходимо при промывке форсунок, в том числе ультразвуком. SB1 – кнопка «Пуск», при нажатии на нее начинает работать дозатор. С3,R3 – служит для установки в ноль DD2,DD3.1 при включении питания. VD1,R6,R5,C4 – подавляет дребезг SB1. Можно обойтись и без него, но при длительном нажатии на SB1 может произойти повторное включение дозатора. VT3 – пародия на защиту от КЗ, с ней VT2 (KT817) может выдержать пару циклов работы дозатора. Вместо VT1, VT2 можно поставить составной КТ972 или КТ829, но тогда теряем еще 1 вольт на Uнас.кэ. При питании устройства от аккумуляторной батареи автомобиля стабилизации питания микросхем не нужно. Если от другого источника, то последовательно с L1 нужно поставить резистор и стабилитрон на 10–15В. На рис.1 изображен сигнал на выходе DD4.4. Скважность приближена к рабочим условиям сигнала на форсунках. Гонки можно зафиксировать только хорошим осциллографом и на работу устройства они не влияют. Коэффициенты деления счетчиков можно изменять по необходимости – данные счетчики позволяют это делать в широких пределах, но кратно двум.

ТЕСТЕР ФОРСУНОК НА КР1006ВИ1
©  UKR-VLAD 

Несложные приспособления своими руками

Еще один вариант, присланный Владимиром, aka UKR-VLAD, из-за рубежа, с Украины.
D1,D2-КР1006 ВИ1. D1-ФОРМИРОВАТЕЛЬ длительности пачки (регулируется R1) D2-длительность импульса на форсунке (примерно 5ms. регулируется R2). П1‑я сделал из 4‑х мп (удобно – можно задать любую комбинацию)

Для запуска необходимо:
1.Соединить разъем форсунок с тестером
2.Подать питание на тестер
3.Выбрать номер форсунки или несколько

4.Нажать и отпустить кнопку (не более 1 сек.)

Тестер выполнен по минимуму. но все необходимое выполняет и достаточно стабилен.

 

Прибор для имитации сигналов ДПКВ
© Михаил Уханов. Ростов

Несложные приспособления своими руками

Краткое описание схемы: На элементах D1.1 ‚D1.2 собран генератор с изменяемой частотой, так как выход с генератора имеет несимметричный меандр, далее стоит элемент D2.1 который делит частоту на 2 и формирует правильный сигнал. Сигнал поступает на счётчик D3, счётчик имеет набранный коэффициент деления 60 , выходной импульс со счётчика поступает на триггер защёлку D2.2 и сбрасывает его выход, чем запрещает счёт на элементе D1.3. Так как длительность импульса на выходе счётчика равна одному такту, мы имеем сброшенный выход триггера на два такта. И при следующем положительном фронте устанавливаем выход триггера в единицу, тем самым разрешаем счёт на выходе D1.3. Далее сигнал поступает на транзистор, и формируется неполярный сигнал со счётом 58 импульсов 2 пропуска.

Схема проверена на ЯНВАРЕ 5.1.1. Количество оборотов имитированных схемой от 240 до 10200 об/мин. При этом без ошибок по датчику коленчатого вала.
Рекомендации: резистор регулировки частоты желательно ставить логарифмический, счётчик К564 ИЕ15 можно заменить на два счётчика К561ИЕ8 немного подправив схему.

 

Программа тестер МЗ для систем Bosch M1.5.4
© Mobil (Юрий)

Программа предназначена для тестирования модулей зажигания. Программа зашивается в ПЗУ, ПЗУ устанавливается на время тестирования в ЭБУ на место штатной. На высоковольтные провода устанавливаются заземленные разрядники. Не забывайте соблюдать осторожность при работе с высоким напряжением! После включения зажигания лампочка СЕ начинает мигать, при нажатии на педаль газа, ЭБУ начинает формировать управляющие сигналы на модуль зажигания длительностью 2.8 мС, на разрядниках должна появится искра. Частота искрообразования зависит от степени нажатия педали газа, чем сильнее нажата педаль тем выше частота.

chiptuner.ru

Мотортестер, ваш помощник. Часть 1 —

Мотортестер – один из трех основных диагностических приборов, на которых базируется вся процедура современной моторной диагностики. Он является инструментом, позволяющим снимать информацию непосредственно с двигателя. Если сканер образно можно назвать «глазами блока управления», то мотортестер – это «глаза диагноста».

Какого рода информацию позволяет получать мотортестер?

Это формы напряжений и токов различных устройств, в том числе системы зажигания. Это осциллограммы давлений в цилиндре, во впускном коллекторе, в картере двигателя. Кроме того, возможна оценка состояния механической части двигателя путем выполнения тестов неравномерности вращения и относительной компрессии.

Методик применения этого прибора очень много, мотортестер не есть нечто незыблемое, нечто консервативное в плане применения,  как сканер. Мотортестер — это универсальный инструмент, который можно применить где угодно и как угодно. В этом цикле статей будут показаны некоторые аспекты применения прибора, во всяком случае, известные автору аспекты, описаны методики применения, в том числе и нестандартные.

История создания мотортестера

Некие прообразы мотортестеров, которые можно сравнить с современными приборами лишь с большой натяжкой, появились достаточно давно. Конечно, по нынешним меркам они выглядят весьма комично, но, тем не менее, эти приборы позволяли измерить ток, напряжение, угол замкнутого состояния контактов в распределителе зажигания.

Позднее к этому набору добавился электронно-лучевой осциллограф, позволяющий визуально оценить процесс высоковольтного пробоя. Такой прообраз современного мотортестера достаточно успешно применялся на станциях для диагностики двигателей. Насколько полноценно выполнялась диагностика с применением подобных приборов – сказать сложно; возможно, для двигателей тех лет выполняемых ими функций было достаточно.

Мотортестер, ваш помощник. Часть 1

Настоящая революция в мире мотортестеров произошла, конечно же, с появлением компьютера. Современный мотортестер чаще всего представляет собой приставку к компьютеру и работает с ним в паре: можно выделить аппаратную часть (адаптер) и программную часть прибора. Существуют и портативные версии мотортестеров, они бесспорно имеют свои плюсы вроде компактности и мобильности. Но огромный минус заключается в графических возможностях их дисплеев. Как правило, они монохромные, с низкой четкостью отображения по сравнению с монитором компьютера. Поэтому следует отдавать предпочтение приборам, построенным по схеме «компьютер + приставка».

Принципы работы мотортестера

Чтобы понять, как формируется изображение на экране современного мотортестера, а фактически на мониторе компьютера, нужно вспомнить, как устроена электронно-лучевая трубка и как работает осциллограф. В основном этот прибор используется для работы с электронными устройствами.

Основой осциллографа является электронно-лучевая трубка (ЭЛТ). Она представляет собой запаянную стеклянную колбу, из которой удален воздух, с установленной в ее горловине электронной пушкой. Дно колбы покрыто люминофором – веществом, которое светится при бомбардировке его электронами. Электронная пушка формирует узкий пучок электронов, так называемый электронный луч, и направляет его на экран. Люминофор под воздействием пучка электронов начинает светиться, и в итоге на экране возникает яркая точка.

Мотортестер, ваш помощник. Часть 1

Трубка снабжена отклоняющей системой, которая способна изменять направление движения луча, тем самым перемещая его по экрану. На горизонтальные отклоняющие пластины Х1 и Х2 подается пилообразное напряжение, иначе называемое напряжением развертки, в результате чего луч совершает относительно медленное перемещение от левого края экрана к правому, затем быстрое перемещение обратно. Поэтому при отсутствии входного сигнала на экране осциллографа видна горизонтальная полоса.

На вертикальные отклоняющие пластины Y1 и Y2 после необходимой обработки подается исследуемый сигнал. Теперь при движении луча по горизонтали он будет отклоняться вверх или вниз, формируя картинку, представляющую собой визуальный аналог этого сигнала, называемый осциллограммой.

Что является очень важным моментом в рассмотренной схеме работы?

Важным является тот факт, что частота сигнала должна совпадать с частотой пилообразного напряжения, только в этом случае «картинка» на экране ЭЛТ будет стабильной. В противном случае увидим просто светящийся экран. Поэтому частота «пилы» постоянно подстраивается под частоту сигнала с помощью синхронизирующей схемы. Она, основываясь на входном сигнале, вырабатывает опорные импульсы для генератора пилообразного напряжения.  Генератор в свою очередь формирует пилообразное напряжение, подаваемое на горизонтальные отклоняющие пластины. В результате на экране осциллографа наблюдается стабильное изображение. Отсюда вытекает понятие синхронизации осциллографа.

Синхронизация – это привязка частоты горизонтальной развертки к частоте исследуемого сигнала.

Само слово «синхронизация» происходит от греческого «хронос» (время). Синхронно – это одинаково во времени, в один момент времени. Понятие синхронизации – очень важное понятие, необходимо до конца осознать его, потому что в мотортестерах выбор типа синхронизации и работа с ней являются одной из важнейших составляющих работы с прибором.

Говоря о синхронизации, следует классифицировать ее по признаку происхождения. Если источником синхронизации является сам исследуемый сигнал, то такая синхронизация называется внутренней. В этом случае синхронизирующая схема вырабатывает опорные импульсы для генератора пилообразного напряжения, основываясь на периоде исходного сигнала. Если же оператор подает на соответствующий вход прибора некий опорный сигнал извне, то синхронизирующая схема работает на его основе. Такая синхронизация называется внешней и применяется при исследовательских и конструкторских работах, в основном с радиоэлектронной аппаратурой.

Синхронизация мотортестера осуществляется аналогично осциллографу. В различных приборах она реализована по-разному, но общая идея остается неизменной: синхронизация может быть либо внутренняя, от исследуемого сигнала, либо внешняя, путем подачи в прибор синхронизирующих импульсов. Ими могут служить, например, высоковольтные импульсы в системе зажигания.

Для дальнейшего разговора нужно ввести понятие канала осциллографа.

Канал – это совокупность цепей усиления и обработки сигнала, от входа осциллографа до вертикальных отклоняющих пластин. Она включает в себя входные цепи, усилители, фильтры, через которые проходит исследуемый сигнал от входа до вывода его на экран. Количество каналов – один из важных параметров осциллографа. Попросту говоря, от количества каналов зависит, сколько сигналов одновременно будет возможно наблюдать на экране.

Каков основной недостаток электронно-лучевого осциллографа? К сожалению, большинство таких приборов имеют всего один канал. Связано это в основном со сложностью реализации нескольких лучей в электронно-лучевой трубке. Существуют осциллографы с двумя каналами обработки сигнала и с отображением одновременно двух сигналов на экране, но нужно понимать, что эти сигналы прорисовываются одним электронным лучом по очереди.

Два сигнала – это уже хорошо, но на практике при диагностике двигателя требуется увидеть одновременно три, четыре, пять и даже более сигналов. Сложность в реализации многоканальности является большим недостатком классических осциллографов и ограничивает их применение в качестве мотортестеров.

Что же принципиально представляет собой современный компьютерный мотортестер?

Фактически это некая виртуальная модель электронно-лучевого осциллографа. Конечно, там нет ЭЛТ, а информация выводится на монитор компьютера. Реализация многоканальности в этом случае не представляет собой больших трудностей: количество каналов ограничено только наличием соответствующих цепей обработки сигнала  в адаптере и разумной необходимостью. Обычно количество каналов мотортестера не превышает 4-8.

Подавляющее большинство современных мотортестеров представляют собой комплекс из подключаемой к автомобилю аппаратной части (адаптера) и компьютерной программы. Связь между компьютером и адаптером осуществляется разными способами: через USB-порт, посредством сетевого кабеля либо с применением беспроводной связи Wi-Fi.

Тот факт, что мотортестер представляет собой виртуальную модель осциллографа, наложил отпечаток на вид окна программы. Такое окно содержит поле осциллограмм, представляющее собой фактически экран ЭЛТ и имеющее зачастую те же атрибуты в виде измерительной сетки и различных шкал, кнопки включения каналов, кнопки выбора типа синхронизации, полозок уровня синхронизации, кнопки включения фильтров. Конечно, есть и специфические элементы типа выпадающих меню или  измерительных линеек, но, в общем и целом, экран монитора отображает виртуальную модель осциллографа.

Мотортестер, ваш помощник: итоги 1 части

Современный мотортестер представляет собой виртуальную модель электронно-лучевого осциллографа и состоит из компьютерной программы и адаптера для подключения к автомобилю. Как и при работе с осциллографом, при использовании мотортестера необходимо применять тот или иной тип синхронизации. Многоканальность мотортестера обусловлена наличием нескольких цепей обработки сигнала и отсутствием сложностей с отображением осциллограмм сигналов на экране монитора.

Все материалы цикла «Мотортестер, ваш помощник»:

Мотортестер, ваш помощник. Часть 2

Мотортестер, ваш помощник. Часть 3

Мотортестер, ваш помощник. Часть 4

Мотортестер, ваш помощник. Часть 5

Мотортестер, ваш помощник. Часть 6

Мотортестер, ваш помощник. Часть 7

Мотортестер, ваш помощник. Часть 8

pakhomov-school.ru

Работаем мотор-тестером | дефект двигателя системы зажигания

Знаете ли вы, какой дефект двигателя самый сложный в диагностике?

Опытные мастера скажут не задумываясь. Да, все верно: спорадический. То есть любой, вызванный какой угодно причиной, но проявляющийся не постоянно, а случайно. Зачастую во время визита на СТО дефект себя не выдает. Какие шаги предпринять для поиска, что делать, какой элемент заменить – вопросы не самые простые.

Однако находить спорадические дефекты можно. Для этого лучше всего использовать самый интересный диагностический прибор мотор-тестер. К интересующим нас датчикам либо электрическим цепям системы управления двигателем подключаем щупы мотортестера, запускаем съем и ждем, когда дефект проявит себя «во всей красе». После чего останавливаем съем и анализируем полученную осциллограмму.

Именно таким образом была обнаружена неисправность на автомобиле ВАЗ 2110 с двигателем 21114, объемом 1.6 л, 8 клапанов, оснащенным системой управления Январь 7. Проблема заключалась в том, что двигатель мог в любой момент заглохнуть. После остановки легко запускался вновь и работал, как ни в чем не бывало. Ладно, если это происходит на месте, а в движении управлять таким автомобилем не только некомфортно, но и просто опасно. Забегая вперед, скажем, что неисправность была откровенно банальной, но найти ее оказалось не так-то просто.

Ну что ж, автомобиль на посту диагностики, начинаем. Совершенно очевидно, что для нормальной работы двигателю необходимы топливо, надежное искрообразование и компрессия в цилиндрах. Последняя никак не может спорадически пропадать, поэтому будем исследовать системы подачи топлива и зажигания.

Так как обе эти системы получают управляющие сигналы от блока управления двигателем, самое первое, что приходит в голову, это подключить сканер и оценить параметры потока данных. Подключаем Сканматик. В первую очередь нас интересуют частота вращения и время впрыска. Если в момент проявления дефекта они есть, то блок управления «видит прокрутку» и пытается открыть форсунки. Откроются они или нет – второй вопрос, но главное – пытается ли это сделать блок. Быстро выяснилось, что в момент остановки двигателя до самого конца сканер отображает частоту вращения, УОЗ и время впрыска. Ага, взять крепость с налета не удалось. Переходим к осаде.

Будем использовать мотор-тестер USB Autoscope III, больше известный как осциллограф Постоловского. Для начала исследуем систему зажигания. Как известно, на этом двигателе имеет место система зажигания типа DIS с двумя катушками, конструктивно расположенными в одном корпусе. Ключи управления катушками и цепи контроля тока находятся внутри ЭБУ. Разъем блока катушек имеет три вывода: на один из них подается +12 В из бортовой сети при включении зажигания, еще два – это выводы первичных катушек, коммутируемые на «массу» внутри ЭБУ. Подключив щупы мотортестера к этим трем выводам, мы сможем контролировать питание катушек и первичное напряжение. Тем самым выясним, не в системе ли зажигания кроется дефект, приводящий к внезапной остановке мотора.

Итак,  канал 4 осциллографа (осциллограмма зеленого цвета) подключаем к выводу питания, канал 5 (красный) – к первичной цепи цилиндров 1-4, канал 6 (фиолетовый) – к первичной цепи цилиндров 2-3. Запускаем двигатель и ждем. Ура, заглох! Теперь нужно внимательно рассмотреть полученную осциллограмму и выяснить, виновна ли в остановке двигателя система зажигания.

motor-tester.ru

Что такое мотор-тестер? — Motor-Tester.ru

Диагностика современного автомобильного двигателя подразумевает комплексное исследование его работы. Для ее проведения используются три основных типа диагностических приборов.

  1. Для контроля работы электронной системы управления двигателем (ЭСУД) применяется автосканер. Он «общается» с электронным блоком управления (ЭБУ) двигателя. Другими словами, отображаемые сканером параметры отнюдь не являются истинными, это то, что «видит» при своей работе ЭБУ.
  2. Четырехкомпонентный газоанализатор. Используется для извлечения диагностической информации из состава выхлопных газов.
  3. Для непосредственного измерения параметров различных узлов двигателя, системы зажигания и элементов ЭСУД используется мотор тестер. Иначе говоря, при помощи мотортестера диагност производит реальные измерения тех или иных параметров работы мотора. К ним можно отнести напряжения, токи, а также осциллограммы различных электрических сигналов, в том числе системы зажигания. Кроме того, можно оценить баланс цилиндров, состояние механической части и многое другое.

Следует отметить, что в отличие от сканеров, привязанных к той или иной ЭСУД, мотор-тестер одинаково успешно применяется на любых двигателях, начиная от карбюраторных и заканчивая новейшими, с непосредственным впрыском топлива и электронным управлением. Фактически мотортестер представляет собой мощный универсальный измерительный инструмент, научившись пользоваться которым, можно работать с любыми двигателями и даже с электронными устройствами.

Прообразы нынешних мотортестеров появились довольно давно. В основном они представляли собой комплексы электроизмерительных приборов для измерения тока, напряжения, угла замкнутого состояния контактов, оборотов двигателя и т.п. В их состав мог входить и осциллограф, позволяющий наблюдать быстротекущие электрические процессы, например, в системе зажигания. К сожалению, с помощью такого комплекса было невозможно оценить состояние механических узлов двигателя.

Бурное развитие микроэлектроники и компьютерной техники произвели революцию в мире мотортестеров. Современный мотортестер представляет собой ни что иное, как приспособленный для работы с автомобильным двигателем многоканальный цифровой осциллограф, как на базе персонального компьютера, так и портативный.

Смысл работы осциллографа очень простой: он отображает изменение амплитуды (уровня) сигнала во времени. Основным компонентом любого цифрового осциллографа является аналого-цифровой преобразователь (АЦП). Напряжение с датчиков или щупов поступает на вход АЦП, преобразуется в цифровой код, запоминается и выводится на экран в виде картинки (осциллограммы). Этот процесс происходит с очень большой частотой, поэтому любой кратковременный всплеск будет замечен и запомнен. К сожалению, человеческий глаз не всегда способен уловить очень короткие всплески сигнала, и в этом случае цифровой осциллограф просто незаменим, потому что он запоминает все изменения сигнала. В дальнейшем, после получения осциллограммы, диагност может спокойно ее рассмотреть и проанализировать.

Здесь нужно обратить внимание на один очень важный момент. Размер экрана ограничен, поэтому одна картинка будет сменяться другой по мере заполнения экрана. Частота смены картинок называется частотой развертки. Если эта частота не будет совпадать с частотой сигнала, то изображение на экране осциллографа будет «плыть». И картинка станет стабильной только тогда, когда частота развёртки будет кратна частоте исследуемого сигнала. Отсюда возникает важное понятие – синхронизация.

Итак, синхронизация – это привязка частоты развертки к частоте исследуемого сигнала с целью получения стабильного изображения на экране. В осциллографах синхронизация осуществляется двумя способами. Во-первых, осциллографы имеют встроенную схему синхронизации, использующую исследуемый сигнал и осуществляющую привязку непосредственно к нему. Во-вторых, сигнал синхронизации можно подать извне. Для этого существует специальный вход, и такая синхронизация называется внешней.

Поясним сказанное на простом примере. Допустим, нам необходимо снять мотортестером осциллограмму высокого напряжения. Но ведь двигатель работает, и частота его вращения постоянно меняется. Следовательно, нам необходимо взять в качестве привязки к оборотам двигателя какой-либо сигнал, по «команде» которого будет двигаться наш виртуальный электронный луч на экране компьютера. Забегая вперед, скажу, что чаще всего в качестве такого сигнала используется импульс высокого напряжения первого цилиндра.

Осознание роли синхронизации очень важно, потому что в мотортестерах она используется точно так же, как и в осциллографах. Более того, мотортестер в отличие от осциллографа дает несравненно большие возможности для синхронизации, выбор ее типа – очень важный и творческий момент, и мы поговорим об этом отдельно.

Рисуя осциллограммы на экране, мотортестер предоставляет диагносту возможность увидеть изменение напряжения, тока или давления во времени. Зная работу системы управления двигателем, диагност может определить, в каком состоянии находится система. В отличие от сканера, мотортестер позволяет диагностировать силовые узлы (высоковольтные цепи зажигания), механические дефекты системы газораспределения, и получить реальные данные, которые выдают датчики автомобиля.

Подводя итог, ответим на поставленный в заголовке вопрос. Мотортестер – один из трех основных типов автодиагностических приборов, представляющий собой многоканальный цифровой осциллограф и позволяющий производить непосредственные измерения тех или иных параметров двигателя.

motor-tester.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о