РазноеПринцип работы гидротрансформатора – Автоматическая коробка передач (АКПП) — устройство и принцип работы. Гидротрансформатор, планетарный редуктор

Принцип работы гидротрансформатора – Автоматическая коробка передач (АКПП) — устройство и принцип работы. Гидротрансформатор, планетарный редуктор

Гидротрансформатор — Википедия

Модель гидротрансформатора в разрезе

Гидротрансформа́тор (турботрансформатор (уст.), преобразователь крутящего момента) — гидравлическое устройство, служащее для преобразования (изменения) крутящего момента от двигателя к трансмиссии. В отличие от гидромуфты гидротрансформатор способен увеличивать момент на ведомом валу в зависимости от действующего на него сопротивления.

Является одним из элементов гидромеханических трансмиссий, в составе которых применяется на транспортных средствах с двигателем внутреннего сгорания от легковых машин до тепловозов. Гидротрансформаторы получили широкое распространение в автомобильной технике, обеспечивая плавное трогание автомобиля с места и уменьшая передачу ударных нагрузок от трансмиссии на вал двигателя. Чаще всего используется с АКП или вариаторами.

Принципиальная схема гидротрансформатора

Любой гидротрансформатор состоит из:

  • Осевого лопастного насоса, жестко связанного с корпусом гидротрансформатора. Насос обеспечивает движение жидкости.
  • Турбины, жестко соединенной с ведомым валом. Турбина вращается под действием потока жидкости от насоса.
  • Так называемого статора (реактора, направляющего аппарата) — специальной крыльчатки, установленной на пути жидкости непосредственно на выходе из турбины. Статор закреплен на обгонной муфте (муфте свободного хода), позволяющей ему свободно вращаться только в одну сторону (в ту же, в какую вращается турбина).

При работе гидротрансформатора жидкость разгоняется насосным колесом и движется по сложной траектории, которую можно разделить на две простые составляющие: относительную (скорость направлена радиально от оси к периферии насосного колеса и от периферии к оси турбинного колеса), переносную (вращение вместе с насосным и турбинным колёсами). В зависимости от соотношения этих составляющих гидротрансформатор может работать на разных режимах.

Различают три режима работы гидротрансформатора:

  • Режим трансформации крутящего момента. Соотношение переносной и относительной скоростей потока выходящего с турбинного колеса такое, что абсолютная скорость направлена на вогнутую поверхность лопаток реактора. На реакторе создаётся крутящий момент, стремящийся провернуть его в сторону заклинивания муфты свободного хода. Реактор оказывается неподвижным. При этом лопатки реактора разворачивают относительную составляющую потока с турбинного колеса так, что его кинетическая энергия добавляется к кинетической энергии переносного движения, что создаёт увеличенный крутящий момент на турбинном колесе. Частный случай — стоп-режим, когда неподвижно и турбинное колесо. При этом в потоке, выходящем с турбинного колеса практически отсутствует переносная составляющая. При увеличении частоты вращения турбинного колеса возрастает центробежная сила, препятствующая перемещению потока с периферии к оси турбинного колеса. Кинетическая энергия относительной составляющей потока, выходящего с турбинного колеса, уменьшается. При этом уменьшается коэффициент трансформации. Когда он становится близок к единице, гидротрансформатор переходит в режим гидромуфты.
  • Режим гидромуфты. Соотношение относительной и переносной составляющих становится таким, что абсолютная скорость потока, выходящего с турбинного колеса, направлена на выпуклую поверхность лопаток реактора. При этом создаётся крутящий момент, проворачивающий реактор в направлении расклинивания муфты свободного хода. Реактор вращается вместе с турбинным колесом и не изменяет направление относительной составляющей потока. Крутящий момент с насосного колеса на турбинное передаётся без изменения.
  • Режим блокировки. Система управления подаёт сигнал на блокировку фрикционной муфты гидротрансформатора. Насосное и турбинное колеса жёстко соединяются и вращаются как одно целое. У потока жидкости при этом отсутствует относительная составляющая.

Описание принципа работы гидротрансформатора можно посмотреть в этом видео Гидротрансформатор АКПП. Вся правда о принципе работы.

Гидротрансформатор в разрезе. Слева виден «бублик» насоса и турбины, между ними виден светло-серый реактор и его подшипник с обгонной муфтой. Справа сцепление блокиратора.

Все детали собраны в общем корпусе, расположенном, как правило, на маховике двигателя машины. Хотя, бывают и исключения. Например, в трансмиссиях автобуса ЛиАЗ-677 и трактора ДТ-175С передача крутящего момента от двигателя к гидротрансформатору происходит через карданный вал. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе.

Насосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создаёт внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину.

Конструктивным отличием гидротрансформатора от гидромуфты является наличие статора (реактора). Статор установлен на обгонной муфте. При значительной разнице оборотов насоса и турбины статор (реактор) автоматически блокируется и передаёт на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз[1] при старте с места.

Турбина жёстко связана с валом АКП.

Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жёсткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротрансформатора является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива.

Блокировка гидротрансформатора[править | править код]

Для повышения топливной экономичности в конструкцию современных гидротрансформаторов вводится механизм блокировки, позволяющий жёстко связать насос и турбину. При заблокированном гидротрансформаторе АКП работает в режиме жёсткой кинематической связи двигателя и трансмиссии аналогично МКП. В электронно-управляемых АКП момент включения блокировки определяет компьютер, поэтому она может быть включена практически в любой момент согласно управляющей программе.

АКП, произведённые в XX веке, включали блокировку гидротрансформатора только при достижении достаточно большой скорости (более 70 км/ч). Современные АКП включают блокировку гидротрансформатора с достаточно низких скоростей (от 20 км/ч), что позволяет экономить топливо не только при движении по шоссе, но и при городской эксплуатации автомобиля. Также блокировка гидротрансформатора применяется, подобно МКПП, для торможения двигателем. В этом случае подача топлива в двигатель прекращается на время блокировки, вал двигателя вращается за счёт движения автомобиля. На тракторах блокировка гидротрансформатора используется для запуска двигателя трактора «с толкача» либо когда трактор работает в стационарном режиме.

Необходимо отметить, что хотя блокировка гидротрансформатора приносит ощутимую экономию топлива, она имеет некоторые недостатки:

  • прямая кинематическая связь способствует передаче ударных нагрузок между двигателем и трансмиссией;
  • частое включение блокировки приводит к износу фрикционов АКП;
  • загрязнение масла АКП продуктами износа фрикционов блокировки;
  • ухудшение плавности хода при переключении передач АКП.

Гидротрансформаторы широко используются на транспорте: от легковых автомобилей и лёгких вилочных погрузчиков до сверхтяжёлых специальных грузовых шасси. Чаще всего работают с планетарными коробками передач, хотя встречаются и сочетания с обычными двух- и трёхвальными конструкциями. Популярность снабжённых гидротрансформатором машин в зависимости от региона может очень сильно различаться. Так, на конец XX века в Западной Европе около 20 % легковых автомобилей имели гидротрансформатор. Подавляющее большинство гидротрансмиссий средней и большой мощности в Европе разработано и строится фирмой Voith в Германии.

В то же время в США их доля составляла порядка 80 %. В последние годы из легкового автомобилестроения гидротрансформаторы вытесняются автоматизированными или «роботизированными» механическими коробками передач.

В СССР, а позднее в СНГ использовались в гидродинамических трансмиссиях автомобилей «Волга», «Чайка» и ЗИЛ, многоцелевых тягачах МЗКТ и КЗКТ, семействе БелАЗ, автобусах ЛАЗ-695Ж и ЛиАЗ-677, на тракторах ДТ-175С и Т-330 и на ряде маневровых тепловозов (ТГМ3, ТГМ6, ТГК2) и магистральных локомотивов — ТГ102, ТГ16, ТГ22. Кроме того, гидротрансформаторы используются в трансмиссиях некоторых типов подъёмных кранов и экскаваторов с канатным приводом рабочих органов, в приводах рудничных и карьерных ленточных конвейеров. Также гидротрансформаторы устанавливались в привод гребных винтов самого мощного в СССР речного буксира-толкача Маршал Блюхер, что позволяло двигателям теплохода-гиганта эффективно работать на малых скоростях без применения гребных винтов регулируемого шага (реализация которых на речных судах весьма затруднительна).

В системах объёмного гидропривода встречаются агрегаты, носящие название гидравлических трансформаторов, но не имеющие по конструкции ничего общего с гидродинамическими трансформаторами. Пример — агрегат НС53, стоящий на самолёте Ан-124 «Руслан» и некоторых других, состоит из двух одинаковых гидромашин (мотор-насосов) с общим валом, каждая из которых подключена к своей автономной гидросистеме. В какой из систем больше давление — машина той системы вращает вал и передаёт механическую энергию другой машине, которая создаёт давление в своей системе. Такая конструкция позволяет передавать энергию из системы в систему без обмена жидкостью, что при разгерметизации или загрязнении одной гидросистемы исключает отказ другой. На самолётах Airbus аналогичный агрегат называется

power transfer unit (PTU).

  • Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
  • Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учебник для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.
  • Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод. / под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 с.
  • Самолёт Ан-124-100: Руководство по технической эксплуатации. Книга 5, раздел 029 — гидравлический комплекс.

Гидротрансформатор подробно — Энциклопедия журнала «За рулем»

Гидротрансформатор — усовершенствованная гидромуфта, механизм увеличения крутящего момента в 2-3 раза, часть гидромеханической трансмиссии. В настоящее время применяется повсеместно на легковых, грузовых автомобилях, автобусах, тракторах и другой транспортной и специальной технике. Обычно работает в паре с планетарной автоматической коробкой передач, но иногда устанавливается на автомобили с бесступенчатой вариаторной трансмиссией.

Устройство и принцип действия

Конструктивно гидротрансформатор идентичен гидромуфте с одним отличием — между насосным и турбинным колесами установлен статор (или роторное колесо). Назначение статора — направить движение жидкости на лопатки турбинного (ведомого) колеса гидротрансформатора и тем самым использовать кинетическую энергию относительного движения жидкости, которое в гидромуфте направлено от центра насосного (ведущего) колеса к его периферии. Гидротрансформатор по сравнению с гидромуфтой имеет более сложное устройство и больший КПД. В массовом производстве детали гидротрансформатора приходится обрабатывать с особой точностью. Но практическая ценность гидротрансформатора по сравнению с гидромуфтой несравнимо выше.

Ротор гидротрансформатора оснащен обгонной муфтой, которая блокирует его вращение при больших оборотах насосного колеса. Этот режим называется стоповым.
Сообщающееся с ведущим валом двигателя насосное колесо внутренними лопатками приводит в движение заполняющая картер гидротрансформатора жидкость. Жидкость совершает два типа движения — переносное, от лопаток насосного колеса к лопаткам турбинного колеса, и относительное, от центра насосного колеса к его периферии (за счет центробежных сил). На малых оборотах вала двигателя отбрасываемая лопатками насосного колеса жидкость попадает на внутреннюю поверхность статора, приводя его во вращение. Лопатки статора направляют жидкость на лопатки турбинного колеса. Благодаря этому используется кинетическая энергия как переносного, так и относительного движения, повышая КПД всего механизма. Часть кинетической энергии жидкости, которая не преобразуется в механическую энергию турбинным колесом, возвращается статором на лопатки насосного колеса. За счет этого достигается эффект трансформации, увеличения крутящего момента, который в стартовом режиме (при трогании автомобиля с места) может возрастать до трех раз. При увеличении оборотов обгонная муфта уменьшает частоту вращения статора, а затем блокирует его. Это происходит при частоте вращения коленчатого вала двигателя примерно в 3/4 от максимальной. Гидротрансформатор переходит в стоповый режим работы, при котором статор не принимает участия в перераспределении движения жидкости. В этом режиме гидротрансформатор работает, как обычная гидромуфта. Коэффициент трансформации крутящего момента равен единице — как при работе гидромуфты.

Гидротрансформатор обладает многими достоинствами, выполняя функции демпфера крутильных колебаний двигателя. Но из-за неизбежных потерь использование гидротрансформатора снижает экономичность автомобиля. Дело в том, что частота вращения насосного колеса всегда выше частоты вращения турбинного колеса. И если в моменты разгона автомобиля гидротрансформатор выполняет полезную работу по увеличению крутящего момента, то при равномерном движении его применение нецелесообразно.
Чтобы избежать повышенного расхода топлива, гидротрансформаторы оснащают автоматической блокировочной муфтой, которая механически жестко связывает насосное и турбинное колеса. Блокировка срабатывает при скорости движения автомобиля примерно в 70 км/ч. Блокировочная муфта расположена в ступице турбинного (ведущего колеса). В отключенном состоянии крутящий момент передается на турбинное колесо через демпфирующие пружины муфты. Во включенном состоянии поршень муфты прижимает нажимной диск к фрикционной накладке, происходит плавное выравнивание вращения ведущего и ведомого валов, а затем полная их блокировка — крутящий момент от двигателя передается на механизмы трансмиссии (коробку передач) напрямую.
Наличие механизма блокировки гидротрансформатора на автомобилях с АКП позволяет реализовать режим торможения двигателем и повышает экономичность. На тракторах с гидромеханической трансмиссией блокировка используется во время работы в стационарном режиме (как стационарного двигателя, электрогенератора и так далее) и для запуска двигателя буксировкой.
В автоматической трансмиссии крутящий момент полностью передается через гидротрансформатор на первой, второй передаче и на передаче заднего хода. На третьей передаче около 40% крутящего момента передается через гидротрансформатор и 60% (то есть после достижения автомобилем скорости в 70 км/ч) напрямую, с выключенным гидротрансформатором. На четвертой передаче гидротрансформатор в передаче крутящего момента не участвует.

Принцип работы гидротрансформатора — Лада мастер

Конструкцией любой гидромеханической автоматической коробкой передач предусмотрено наличие гидротрансформатора. Без него сама по себе АКПП теряет всякий смысл и недооценивать роль этого устройства в современных трансмиссионных система совершенно недопустимо. Сегодня мы ближе познакомимся с конструкцией и принципом его работы, а также разберёмся в некоторых неполадках.

Содержание:

  1. При чем тут гидромуфта
  2. Как устроен гидротрансформатор
  3. Роль реактора в гидротрансформаторе
  4. Признаки неисправности гидротрансформатора

При чем тут гидромуфта

Есть такое нехитрое устройство, которое называется гидромеханическая муфта. Если разобраться в её конструкции и понять как она работает, с любым гидротрансформатором проблем не возникнет. Так вот, гидравлическая муфта служит для передачи вращения от одного агрегата на другой. В принципе, для этого же можно использовать и обычный жёсткий вал, но когда стоит задача передать крутящий момент плавно и без жёсткой связи, без гидромуфты не обойтись.

Простейший гидротрансформатор Простейший гидротрансформатор

Устроена она довольно просто: есть ведущий и ведомый вал, на которых установлены крыльчатки, не связанные между собой и способные вращаться независимо друг от друга. Обе крыльчатки помещены в единый корпус, который заполнен трансмиссионной жидкостью. Лопасти обеих крыльчаток расположены на небольшом расстоянии друг от друга, поэтому при вращении ведущего вала энергия вращения неминуемо передаётся на ведомую, жёстко связанную с ведомым валом. За счёт того, что трансмиссионная жидкость имеет определённую вязкость, крутящий момент передаётся плавно, без рывков и без особых потерь. Собственно, гидротрансформатор это и есть гидромуфта, только с более сложной конструкцией и более широкими возможностями.

Как устроен гидротрансформатор

Простейший гидротрансформатор1Простейший гидротрансформатор1

Мы выяснили, что гидромуфта состоит из трёх основных элементов:

  1. Ведущая турбина.
  2. Ведомая турбина.
  3. Корпус с трансмиссионной жидкостью.

Конструкция гидротрансформатора отличается в общих чертах только наличием ещё одного элемента — реактора. Он представляет собой ещё одно колесо с лопастями, которое в принципе управляет работой гидротрансформатора.

Простейший гидротрансформатор2Простейший гидротрансформатор2

Принцип работы гидротрансформатора тоже прост. Реактор свободно вращается на ведущем валу и до поры до времени образует одно целое с ведущей турбиной. Но только до тех пор, пока ведущее и ведомое лопастные колеса вращаются с разновеликими скоростями. Применительно к двигателю и к АКПП, гидротрансформатор выполняет роль сцепления в этом случае. Как только угловые скорости ведущего и ведомого колес выравниваются, реактор растормаживается и весь гидротрансформатор работает точно так же, как и гидромуфта.

Роль реактора в гидротрансформаторе

Система управления гидравликойСистема управления гидравликой

Конструктивно реактор устроен так, что его лопасти имеют точно заданный профиль и угол наклона. Благодаря этому и центробежной силе, скорость выбрасываемой трансмиссионной жидкости из лопастей реактора постоянно возрастает с увеличением скорости вращения коленчатого вала. Поэтому жидкость постоянно воздействует на лопасти ведущего колеса, стараясь его подтолкнуть. Это сделано вот для чего:

  1. При увеличении скорости циркуляции трансмиссионной жидкости при стабильном режиме работы трансформатора, а точнее, стабильных оборотах коленвала, энергия внутри устройства накапливается, крутящий момент, естественно, увеличивается и передаётся на ведомый вал, на коробку передач.
  2. Независимо от того, какое усилие прикладывают ведущие колеса для движения и преодоления препятствий, крутящий момент в гидротрансформаторе (режим его работы) изменяется бесступенчато и плавно.

ПРинцип действие блокировочной муфтыПРинцип действие блокировочной муфты

Практически это выглядит так — автомобиль движется по ровной дороге, не меняя оборотов двигателя, но стоит ему начать преодолевать подъём, как усилие на ведущих колёсах изменится, автомобиль теряет скорость, следовательно, скорость вращения жидкости внутри трансформатора возрастает, автоматически и бесступенчато увеличивая усилие на ведущих колёсах. Примерно так вела бы себя обычная механическая коробка передач, но меняя передаточные отношения шестерён.

Простейший гидротрансформатор2Простейший гидротрансформатор2

Признаки неисправности гидротрансформатора

Гидротрансформатор в разрезе1Гидротрансформатор в разрезе1

Современные автоматические коробки с ног до головы окружены управляющей электроникой, а тот трансформатор, который мы только что рассмотрели, применялся ещё в 50-х годах прошлого века. Тем не менее общие проблемы старых и новых АКПП остаются:

  1. Механический шум во время переключения передач говорит об износе опорных подшипников.
  2. Вибрация на скоростях около 80 км/ч говорят о засорённой рабочей жидкости, которая срывает блокировку гидротрансформатора.
  3. Срыв шлица на турбинном колесе.
  4. Появившийся внезапно специфический запах говорит о перегреве АКПП и о возможном плавлении полимерных элементов.
  5. Течи сальника гидротрансформатора.
  6. При контроле уровня трансмиссионной жидкости иногда можно обнаружить на щупе металлическую пудру. Это говорит об износе торцевой шайбы, который стал следствием некорректной работы гидротрансформатора.

2011 Ford F-Series Super Duty

2011 Ford F-Series Super Duty

Кроме этих неисправностей, могут возникнуть проблемы с управляющей электроникой, двигатель может принудительно глохнуть при переключении передач или передачи могут переключаться не соответствуя режиму движения.

Все что нужно помнить для ремонта АКПП АудиВсе что нужно помнить для ремонта АКПП Ауди

Ремонт гидротрансформатора проводится только а условиях специальной мастерской и квалифицированными специалистами, поскольку при восстановлении или замене деталей устройства могут возникнуть непредвиденные сложности. Берегите свои автоматы, удачных и увлекательных всем путешествий!

Гидротрансформатор — Энциклопедия журнала «За рулем»

Схема гидротрансформатора:
1 — блокировочная муфта;
2 — турбинное колесо;
3 — насосное колесо;
4 — реакторное колесо;
5 — механизм свободного хода

Гидротрансформатор был изобретен немецким профессором Феттингером в 1905 г. Прежде чем найти применение на автомобилях, гидротрансформатор использовался на судах и тепловозах.
Простейший гидротрансформатор, выполнен в виде камеры тороидальной формы и включает в себя три лопастных колеса: насосное, вал которого соединен с коленчатым валом двигателя; турбинное, соединенное с трансмиссией, и реактор, установленный в корпусе гидротрансформатора.
Гидротрансформатор заполняется специальной жидкостью. Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеканию жидкости препятствует специальное уплотнение.
При вращении коленчатого вала двигателя вращается насосное колесо, которое перемещает жидкость, находящуюся между его лопастями. Жидкость не только вращается относительно оси гидротрансформатора, но и за счет воздействия на нее центробежных сил перемещается вдоль лопастей насосного колеса по направлению от входа к выходу, что сопровождается увеличением кинетической энергии потока. На выходе из насосного колеса поток жидкости попадает на турбинное колесо, оказывая силовое воздействие на его лопасти. Затем поток попадает в реактор, пройдя который, возвращается к входу в насосное колесо. Таким образом, жидкость постоянно перемещается по замкнутому кругу циркуляции, образованному проточными частями всех трех лопастных колес, и находится с ними в силовом взаимодействии. При этом насос передает энергию двигателя потоку, а тот, в свою очередь, — турбине.
Если бы между насосным и турбинным колесами отсутствовал реактор, то такая конструкция (гидромуфта) осуществляла бы перенос энергии от двигателя к трансмиссии гидравлическим способом, без возможности изменения крутящего момента. Расположенный между колесами гидротрансформатора неподвижный реактор, имеет лопасти специального профиля, которые изменяют направление потока жидкости, выходящей из турбинного колеса и направляют его под определенным углом на лопасти насосного колеса. Это позволяет значительно увеличить передаваемый от двигателя в трансмиссию крутящий момент.
Любой гидротрансформатор характеризуется определенным КПД, передаточным отношением, которое показывает соотношение угловых скоростей его колес, и коэффициентом трансформации, показывающим, во сколько раз увеличивается значение крутящего момента. Максимальный коэффициент трансформации зависит от конструкции гидротрансформатора и может составлять до 2,4 (при неподвижном турбинном колесе). При увеличении частоты вращения вала двигателя увеличивается угловая скорость насосного и турбинного колес, а увеличение крутящего момента в гидротрансформаторе плавно уменьшается. Когда угловая скорость турбинного колеса приближается к угловой скорости насосного, поток жидкости, поступающей на лопасти реактора, изменяет свое направление на противоположное.
Для того чтобы реактор на этом режиме не создавал помех потоку жидкости, его устанавливают на муфте свободного хода, и он начинает свободно вращаться (гидротрансформатор переходит на режим гидромуфты), что позволяет, в свою очередь, снизить потери. Такие гидротрансформаторы называют комплексными.
КПД гидротрансформатора определяет экономичность его работы. Максимальное значение КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД — 0,97.
Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

Детали гидротрансформатора:
1 — насосное колесо;
2 — турбинное колесо;
3 — крышки муфты свободного хода;
4 — часть корпуса гидротрансформатора;
5 — остатки рабочей жидкости с продуктами механического износа деталей;
6 — колесо реактора;
7 — муфта свободного хода реактора;
8 — упорная шайба турбинного колеса;
9 — упорный подшипник реактора;
10 — поршень блокировки гидротрансформатора

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидротрансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.
В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и обычные ступенчатые коробки передач с автоматическим управлением.
Первые американские ГМП легковых автомобилей имели двухступенчатую передачу, причем низшая передача включалась вручную. Однако впоследствии одной автоматической передачи оказалось явно недостаточно и появились ГМП с двумя и тремя автоматическими передачами. Для повышения топливной экономичности, гидротрансформаторы стали делать блокирующимися — после разгона на высшей передаче насосное и турбинное колеса жестко соединялись фрикционной муфтой. Затем в конце 1980-х гг. блокировку гидротрансформатора стали применять на всех передачах, кроме первой.

Современная четырехступенчатая ГМП автомобиля классической компоновки

Принцип работы гидротрансформатора

20.05.2010

Краткий обзор гидротрансформатора

Крутящий момент, создаваемый двигателем, передается к автоматической коробке передач посредством гидротрансформатора. В этом разделе описывается, как элементы гидротрансформатора создают гидравлическую связь, увеличивают крутящий момент при низких значениях скорости и устанавливают прямую механическую связь с двигателем при высоких значениях скорости.

Гидротрансформатор обеспечивает гидравлическую связь между коленчатым валом двигателя и коробкой передач. Гибкая пластина крепится болтами к задней части коленчатого вала, а гидротрансформатор, в свою очередь, крепится болтами к гибкой пластине.

Трансмиссионная жидкость для автоматической коробки передач (ATF), находящаяся в гидротрансформаторе, передает вращательное движение коленчатого вала к первичному валу коробки передач. Гидротрансформатор вращается всегда, когда работает двигатель.

Простой гидротрансформатор имеет три основных элемента: лопастное колесо, статор (или направляющий аппарат) и турбину. Большинство современных гидротрансформаторов также имеют муфту, служащую для блокировки гидротрансформатора при соответствующих рабочих условиях автомобиля.

Трехэлементный гидротрансформатор

При работающем двигателе и гидротрансформаторе, не заполненном трансмиссионной жидкостью, первичный вал вращаться не будет. Однако, когда гидротрансформатор заполняется трансмиссионной жидкостью, вал будет не просто вращаться, он будет вращаться с силой, достаточной для приведения в движение внутренних элементов коробки передач, которые создают движущую силу автомобиля. Поэтому, трансмиссионная жидкость, находящаяся в гидротрансформаторе, обеспечивает связь между двигателем и коробкой передач.

В простом трехэлементном гидротрансформаторе нет никакой механической связи между секцией гидротрансформатора, приводимой в движение от двигателя, и первичным валом коробки передач. Двигатель с первичным валом связывает только трансмиссионная жидкость, находящаяся в гидротрансформаторе. В главах, данных на следующих страницах, описывается каждый элемент гидротрансформатора и объясняется, как обеспечивается гидравлическая связь.

Лопастное колесо

Если вы знакомы с конструкцией водяных насосов автомобиля, то уже знаете, что такое лопастное колесо. Лопастное колесо в водяном насосе — это ступица с лопастями, которая вращается на вале. Когда работает двигатель, вращающиеся лопасти лопастного колеса заставляют охлаждающую жидкость циркулировать по каналам охлаждающей жидкости и через радиатор.

Лопастное колесо гидротрансформатора работает аналогично. Вращающееся лопастное колесо за счет возникновения центробежной силы заставляет трансмиссионную жидкость циркулировать. Трансмиссионная жидкость вовлекается лопастями во вращательное движение, и по мере увеличения своей скорости уходит от центра лопастного колеса.

Т.к. жидкость стремится наружу, лопасти несут ее в направлении верхней кромки лопастного колеса. Когда скорость лопастного колеса увеличивается, трансмиссионная жидкость получает импульс движения, достаточный для того, чтобы уйти с краев лопастей и из лопастного колеса. Трансмиссионная жидкость выходит из лопастного колеса с силой, достаточной для приведения в движение первичного вала коробки передач, но при условии того, что сила правильно направлена.

Турбина

Турбина гидротрансформатора по конструкции аналогична лопастному колесу. Т.е. турбина — это ступица с лопастями (или лопатками). Такая конструкция нужна для того, чтобы турбина улавливала трансмиссионную жидкость, сбрасываемую лопастным колесом.

Когда рабочая жидкость сбрасывается с лопастного колеса, лопатки турбины подхватывают ее, заставляя течь к центру турбины. Эта сила вращает турбину до того момента, как жидкость пойдет обратно через центр турбины в направлении лопастного колеса.

Сила трансмиссионной жидкости, ударяющейся о лопатки турбины, зависит от частоты вращения коленчатого вала двигателя. Чем быстрее вращается коленчатый вал, тем большее количество силы передается жидкостью от лопастного колеса к турбине. Когда двигатель работает в режиме холостого хода, рабочая жидкость не имеет достаточно силы, чтобы вращать турбину, преодолевая удерживающее усилие тормозов. Жидкость просто циркулирует от лопастного колеса к турбине и обратно.

Трансмиссионная жидкость уходит от лопастного колесо в направлении по часовой стрелке, а возвращается к нему от турбины в направлении против часовой стрелки.

Статор (направляющий аппарат)

Статор (или направляющий аппарат) располагается между турбиной и лопастным колесом. Назначение статора гидротрансформатора — изменять направление потока трансмиссионной жидкости, когда она перемещается от центра турбины к центру лопастного колеса.

Жидкость течет от лопастного колеса к турбине в направлении по часовой стрелке. Однако, когда жидкость проходит через турбину, ее направление изменяется на противоположное — против часовой стрелки.

Если бы трансмиссионной жидкости было разрешено вернуться к лопастному колесу в направлении против часовой стрелки, это вызвало бы противодействие потока жидкости вращению лопастного колеса, тем самым уменьшая эффективность нагнетания лопастного колеса. Лопастное колесо должно было бы тратить часть крутящего момента, который оно получает от двигателя, на изменение направления потока жидкости.

Когда статор изменяет направление потока трансмиссионной жидкости, чтобы лопастное колесо вращалось в направлении по часовой стрелке, никакой крутящий момент не тратится впустую. Фактически жидкость с измененным направлением вращения помогает воздействовать на лопастное колесо, тем самым увеличивая крутящий момент.

Статор состоит из нескольких лопастей, подсоединенных к ступице, которая закреплена на муфте одностороннего действия.

Муфта в сборе имеет внутреннюю и наружную обоймы с двумя дорожками, разделенными подпружиненными роликами. Внутренняя обойма располагается на шлицевой опоре статора, которая проходит из коробки передач в гидротрансформатор. Т.к. внутренняя обойма имеет шлицевое соединение с опорой статора, она зафиксирована и не может вращаться.

Наружная обойма устанавливается над внутренней обоймой. Внутренняя и наружная обоймы разделяются подпружиненными роликами. Ролики располагаются в клиновых зазорах, образованных наклонными плоскостями, сделанными в наружной обойме. При наличии пружин ролики удерживаются напротив суженных концов клиновых зазоров.

Ролики, клиновые зазоры и дорожки позволяют наружной обойме вращаться только в одном направлении. Когда статор вращается по часовой стрелке, каждый ролик перемещается в расширенный конец клинового зазора, преодолевая усилие пружины, тем самым позволяя статору вращаться. Если статор вращается в противоположном направлении, пружина толкает каждый ролик внутрь клинового зазора, где он заклинивается между двумя дорожками. Когда ролики заклиниваются, статор стопорится относительно внутренней обоймы и не может вращаться.

Возврат потока трансмиссионной жидкости

Поток трансмиссионной жидкости, направленный против часовой стрелки, покидая турбину, перед достижением лопастного колеса проходит через лопасти статора. За счет кривизны лопастей статора направление потока жидкости полностью изменяется.

Изменение направления позволяет трансмиссионной жидкости входить в лопастное колесо и присоединяться к жидкости, текущей вдоль его лопастей. Первое преимущество статора заключается в том, крутящий момент двигателя не затрачивается впустую за счет способности статора изменять направление потока. Второе преимущество заключается в том, что жидкость входит в лопастное колесо в направлении, которое позволяет «помогать толкать» лопасти лопастного колеса.

Увеличение крутящего момента

Влияние статора приводит к тому, что трансмиссионная жидкость, входящая на лопастное колесо, уже находится в движении. Жидкость не должна разгоняться из неподвижного состояния. Она попадает на лопасти, где ускоряется. Ускорение прогоняет жидкость через лопастное колесо и отбрасывает ее к турбине со значительно увеличенной силой.

Благодаря этому эффективному управлению жидкостью, крутящий момент турбины становится больше, чем крутящий момент двигателя. Фактически крутящий момент увеличивается.

Увеличение крутящего момента статором возможно только в том случае, когда имеется большая разница в скорости между лопастным колесом и турбиной. Чем больше разница в скорости между этими двумя элементами, тем больше увеличение крутящего момента.

Увеличение крутящего момента

Муфта одностороннего действия статора играет важную роль в увеличении крутящего момента. Трансмиссионная жидкость, циркулирующая между лопастным колесом и турбиной, называется вихревым потоком. Этот поток существует только в том случае, когда имеется разница в частоте вращения между лопастным колесом и турбиной.

Самая большая разница скорости между этими двумя элементами имеет место, когда автомобиль в первый раз разгоняется из неподвижного состояния. В этот момент лопастное колесо вращается, а турбина — нет. Вследствие наличия большой разницы в скорости вихревой поток и увеличение крутящего момента — максимальны. Вихревой поток, проходящий через лопасти статора, пытается вращать статор против часовой стрелки. Когда это происходит, ролики муфты уходят в клиновые зазоры и блокируют статор относительно его опоры.

Когда автомобиль ускоряется, турбина постепенно приобретает скорость относительно лопастного колеса. В конечном счете турбина ускоряется вплоть до того момента, когда трансмиссионная жидкость начинает течь в одном направлении (по часовой стрелке).

Т.к. центробежная сила уменьшает вихревой поток, увеличение крутящего момента также уменьшается. Наконец, когда скорость турбины достигает приблизительно 90 процентов от скорости лопастного колеса, гидротрансформатор достигает фазы «сцепления». В этой фазе гидротрансформатор просто передает крутящий момент от двигателя через «гидравлическую муфту» к первичному валу коробки передач.

Связь не обязательно имеет место при определенной скорости движения. Например, автомобиль может перемещаться при стабильной скорости с гидротрансформатором, связанным с коробкой передач. Если водитель резко ускоряет автомобиль, чтобы обогнать другой автомобиль, более быстрое вращение двигателя приводит к увеличению скорости лопастного колеса, заставляя его вращаться быстрее, чем турбина. При значительной разнице в скорости между лопастным колесом и турбиной снова происходит увеличение крутящего момента (и вихревого потока) вплоть до того момента, когда турбина не начинает вращаться со скоростью лопастного колеса.

Когда скорость турбины увеличивается, а вихревой поток уменьшается, вращательное усилие, действующее на статор, реверсируется. Ролики муфты уходят из клиновых зазоров, отпуская муфту и позволяя статору вращаться свободно (по часовой стрелке). Направление потока трансмиссионной жидкости, ударяющейся о лопасти статора, также изменяются. Вместо течения к передней части лопастей статора, жидкость ударяется о заднюю часть лопастей. Если бы муфта не отпускала статор, его лопасти генерировали бы турбулентность потока, что значительно уменьшило бы эффективность гидротрансформатора.

Гидравлическая и механическая связь

Т.к. гидротрансформатор не имеет прямой механической связи с двигателем, он теряет некоторый крутящий момент двигателя вследствие наличия проскальзывания трансмиссионной жидкости. Скорости и нагрузки, прикладываемые к жидкости, заставляют лопастное колесо и лопатки турбины в некоторой степени проскальзывать в жидкости.

Это проскальзывание вызывает определенную потерю эффективности, особенно при более высоких значениях скорости автомобиля. Коленчатый вал двигателя может вращаться быстрее, чем турбина или вторичный вал, таким образом топливо тратится впустую. Чтобы исключить эту потерю эффективности, многие гидротрансформаторы обеспечивают прямую механическую связь (называемую блокировкой гидротрансформатора) между двигателем и коробкой передач. В режиме блокировки турбина и лопастное колесо вращаются с одинаковой скоростью. Нет никакого проскальзывания жидкости, что помогает уменьшать выделение тепла.

Блокирующийся гидротрансформатор — это один из самых распространенных способов обеспечения механической связи.

Блокирующийся гидротрансформатор механически связывает турбину с крышкой гидротрансформатора при различных значениях рабочей скорости, в зависимости от модели автомобиля и условий движения. Крышка механически крепится болтами к двигателю. В режиме блокировки крышка гидротрансформатора приводит в движение турбину. Гидравлическая связь исключается, а двигатель и турбина механически блокируются вместе, напрямую приводя в движение первичный вал коробки передач.

Блокирующийся гидротрансформатор требует, чтобы муфта сцеплялась и расцеплялась, обеспечивая и убирая механическую связь между двигателем и крышкой гидротрансформатора. Два основных типа муфты гидротрансформатора — это центробежная муфта и гидравлически активизируемая муфта гидротрансформатора.

Центробежная муфта гидротрансформатора использовалась главным образом до 1990 года. На современных автомобилях используется преимущественно гидравлически активизируемая муфта.

Центробежная муфта

Центробежная муфта имеет шлицевое соединение с турбиной через муфту одностороннего действия. Когда скорость автомобиля увеличивается, гидравлически активизируемая турбина и блокирующая муфта, соединенная с ней посредством шлицевого соединения, вращаются с увеличивающейся скоростью. Центробежная сила, воздействующая на колодки муфты, увеличивается, когда муфта вращается все быстрее и быстрее.

Когда турбина и блокирующая муфта начинают вращаться достаточно быстро, центробежная сила заставляет колодки муфты расходиться наружу до тех пор, пока они не войдут в контакт с внутренней поверхностью крышки гидротрансформатора. Каждая колодка прижимается своей рабочей поверхностью к крышке и блокирует ее относительно турбины.

Когда скорость автомобиля падает, скорость турбины и центробежная сила уменьшаются. Возвратные пружины втягивают колодки муфты, крышка отпускается, и турбина снова приобретает «гидравлический привод».

Муфта одностороннего действия приводит в движение муфту в сборе. При сцепленной муфте водитель может слегка отпустить педаль акселератора, позволяя автомобилю двигаться по инерции. Это позволяет двигателю и первичному валу вращаться с различной частотой вращения.

Фрикционные колодки не могут отпускаться при движении накатом, потому что центробежная сила удерживает их прижатыми к крышке. Вместо этого муфта одностороннего действия в сборе с демпфером отпускается таким образом, что первичный вал может вращаться с частотой, большей чем частота вращения коленчатого вала двигателя. Когда водитель разгоняет автомобиль, муфта одностороннего действия в сборе с демпфером снова блокирует турбину.

Муфта одностороннего действия в сборе с демпфером обеспечивает плавную работу гидротрансформатора. Пружины демпфера также способствуют обеспечению плавности работы. Эти пружины поглощают вибрации двигателя и демпфирует действие колодок, когда они прижимаются к крышке гидротрансформатора.

Когда при ускорении потребность в крутящем моменте превышает удерживающую способность фрикционных колодок, имеет место некоторое проскальзывание. Оно уменьшает крутильные колебания/ вибрации при более высокой нагрузке двигателя.

Гидравлически активизируемая муфта гидротрансформатора

Другой способ соединения двигателя и коробки передач напрямую заключается в использовании муфты гидротрансформатора (ТСС) с торсионными демпфирующими пружинами, присоединенными к ступице. Ступица в сборе имеет шлицевое соединение с первичным валом или турбиной в сборе.

Гидравлическая муфта отпущена

Сигналы от модуля управления управляют активизацией и отпусканием муфты гидротрансформатора. Модуль управления активизирует и отпускает гидравлическую муфту, включая или выключая электромагнит муфты гидротрансформатора. Электромагнит — это такой электрический переключатель, который имеет проволочную катушку. Когда через катушку пропускается электрический ток, катушка намагничивается. Электромагнитное поле перемещает якорь, который открывает и закрывает гидравлический канал.

Гидравлическое давление прикладывается к зоне между крышкой гидротрансформатора и пластиной поршня муфты. Гидравлическое давление обеспечивается питающим контуром гидротрансформатора, расположенным в блоке клапанов.

Когда электромагнит муфты гидротрансформатора не активизирован модулем управления, клапан остается открытым. Давление в магистрали проходит через электромагнитный клапан. Трансмиссионная жидкость проходит через переднюю камеру гидротрансформатора, между ТСС и крышкой гидротрансформатора.

Гидравлическая муфта активизирована

Муфта гидротрансформатора включается только тогда, когда модуль управления возбуждает электромагнитный клапан муфты гидротрансформатора. Электромагнитный клапан закрывает сливной канал, позволяя обеспечить в контуре рост давления в магистрали. Трансмиссионная жидкость направляется к задней камере, и сливается из передней камеры.

Гидравлическая сила толкает поршень ТСС к крышке гидротрансформатора. Эта связь напрямую передает крутящий момент двигателя через демпфер в сборе к первичному валу коробки передач. Т.к. лопастное колесо и турбина вращаются с одинаковой скоростью, увеличения крутящего момента не происходит, и гидротрансформатор находится в режиме блокировки.

автозапчасти в москве

АКПП принцип работы

Одним из существенных недостатков двигателей внутреннего сгорания, а также двигателей дизеля заключается в передаче на колеса максимального крутящего момента лишь в небольшом диапазоне оборотов. Для ликвидации этого недостатка их работы и была придумана трансмиссия.

Автоматическая коробка перемены передач

Автоматическая коробка переключения передач или АКПП появилась сравнительно давно. Основной целью ее создания было избавление водителя от постоянной необходимости работы сцеплением и ручкой переключения передач. Автомобиль, таким образом, должен был стать комфортнее и безопаснее. Первые разработки в этой сфере начались в 1930 году в Америке, и к шестидесятым годам двадцатого века автоматические трансмиссии приобрели привычный нам вид, стали надежными и долговечными. АКПП распространились по миру, но в Европе они получили свое распространение совсем недавно, на конец двадцатого века автомобилей с АКПП было не более 20%. В СССР автомобили с АКПП массово не производились и пришли к нам только после распада советского союза. Редкие исключения составляли специализированные Чайки и Волги, некоторые автобусы, тракторы и БелАЗы. В XXI веке автомобили гражданского пользования с АКПП, наконец, начали производить и у нас.

Принцип работы АКПП

Состоит классический автомат из гидротрансформатора, фрикционных и обгонных муфт, а также соединительных валов, электронного блока управления и планетарной передачи. Принцип работы автоматической коробки перемены передач

Для обеспечения передаточных отношений используются планетарные передачи, которые состоят из водила, солнечной и кольцевой шестерни, сателлитов. За счет вращения одних и фиксации других элементов и происходит смена передаточного числа. Вокруг солнечной шестерни вращаются сателлиты, между ними устанавливается планетарное водило, сверху – коронная шестерня. Фиксация осуществляется за счет тормозных лент и фрикционов. При блокировке коронной шестерни передаточное отношение растет. Уменьшается при блокировке солнечной шестерни. Переключение передачи происходит посредством давления масла на гидравлический толкатель.

Масляный насос поддерживает необходимое для работы коробки давление всегда, пока двигатель работает.

В современных АКПП гидроблок и электронный блок управления объединены в один узел. Гидравлическая плита представляет собой лабиринт каналов, через которые и происходит воздействие масла на фрикционы или тормозные ленты. Внутри каналов устанавливаются регуляторы, клапана и соленоиды. Электрическая часть состоит из различных датчиков и компьютера.

Принцип работы гидротрансформатора АКПП

Принцип работы гидротрансформатора автоматической коробки перемены передач

Механизм гидротрансформатора заменяет АКПП сцепление, он представляет собой большое колесо и его основная задача – передавать крутящий момент с двигателя на колеса, посредством вращения потоков масла, то есть АКПП не связана с двигателем жестко. Переключение передач происходит путем блокировки муфт. Процессом переключения руководит электронный блок управления, основываясь на показаниях датчиков оборота двигателя, его скорости, показаний гироскопа и других датчиков. Помимо гидравлических АКПП, принцип гидротрансформатора используется для работы бесступенчатых трансмиссий – вариаторов. Сфера применения гидротрансформатора очень велика – от привычных нам легковых автомобилей до сверхтяжелой специальной техники.

Гидротрансформатор включает турбинное, насосное и реакторное колеса. Насосное колесо соединяется с валом двигателя, а турбинное – с коробкой. Между ними находится реакторное колесо, которое связано с насосным через обгонную муфту. Принцип работы гидротрансформатора заключается в следующем: при начале движения начинает вращаться насосное колесо, тем самым закручивая потоки масла. Оно, в свою очередь, начинает вращать реакторное колесо, усиливая вращение за счет своих лопастей. Далее, на турбинное колесо передается поток масла и оттуда уже на колеса. Работа блокировки гидротрансформатора

Блокировка гидротрансформатора. Принцип работы современного гидротрансформатора включает использование блокировки. Насосное и турбинное колеса жестко связаны. Ранее блокировка активировалась на 70 км/ч, но современные автомобили используют ее с самых маленьких скоростей. Блокировка гидротрансформатора позволяет экономить топливо, эффективно тормозить двигатель. Однако из-за нее куда быстрее изнашивается фрикцион гидротрансформатора, уменьшается плавность хода и в целом АКПП изнашивается быстрее. КПД по ходу работы гидротрансформатора теряется на перемешивание масла и его нагрев.

Гидромуфта работает для передачи момента, но не изменяет его величину. Для его изменения предназначено реакторное колесо. Реактор остается неподвижным пока скорость вращения турбинного колеса не сравняется с вращательной скоростью насосного колеса, затем оно освобождается. Таким образом, снижаются потери, и крутящий момент увеличивается до 300%.

Использование АКПП

Классическая АКПП имеет орган управления – селектор, на котором представлены несколько «передач»:

Режимы которые используется в автоматической коробке перемены передач

P – режим парковки, АКПП заблокирована механически. Завести автомобиль можно только на P и R. При отсутствии уклона этого режима достаточно, чтобы удержать автомобиль на месте;

R – режим заднего хода. Активируется только после того, как автомобиль полностью остановится;

N – нейтраль, используется для буксировки, АКПП выключена, но колеса не заблокированы;

D – переключение передач с 1 по последнюю последовательно;

S – переключение до второй передачи;

L – Езда на первой передаче.

Кроме этого, современные АКПП имеют еще и различные режимы функционирования коробки:

Sport – спортивный режим характеризуется тем, что переключение передач осуществляется на более высоких оборотах, автомобиль разгоняется быстрее;

Snow – зимний режим АКПП. В данном режиме машина начинает свое движение со 2-й передачи, снижая пробуксовки;

ECO – экономичный режим, топливная экономия;

O/D – запрет на переключение более высокой передачи, как правило, применяется для обгона;

Kickdown – режим быстрого ускорения для обгона, который активируется быстрым двойным нажатием на педаль акселератора, при этом автомат переключается на ступень вниз.

Плюсы АКПП

  1. Комфорт для водителя, меньше действий для управления машиной, больше времени на дорогу.
  2. АКПП не позволяет излишне нагружать двигатель, увеличивая его ресурс.
  3. Современные АКПП переключаются быстрее, чем любой водитель переключает МКПП.
  4. Огромный ресурс при правильной эксплуатации.
  5. Из-за отсутствия жесткой связи двигателя с трансмиссией ударные нагрузки на нее исключены.

Минусы АКПП

Режим Kickdown в автоматической коробке перемены передач

  1. Более дорогие в производстве по сравнению с МКПП.
  2. Более дорогой и сложный ремонт в случае поломки.
  3. Из-за передачи крутящего момента жидкостью больше потери мощности на двигатели, выше расход.
  4. АКПП не позволяет использовать двигатель на полную.
  5. Критична к пробуксовкам, меньше проходимость на моноприводных автомобилях.
  6. Нельзя запустить с толкача.

Эксплуатация и обслуживание АКПП

Как и любой узел автомобиля АКПП необходимо эксплуатировать правильно, если этого не делать ресурс коробки можно сократить в несколько раз.

Эксплуатация в зимний период. Перед началом поездки АКПП необходимо прогревать не менее 5 минут при минусовой температуре. Автомату необходимо прогреться и разогнать по своим внутренностям загустевшее масло. Эксперты рекомендуют поставить автомобиль на тормоз и прогнать все положения селектора АКПП, задерживаясь в каждом на срок до минуты. До прогрева автомобиля и АКПП до рабочей температуры не следует допускать пробуксовок и резких разгонов.
Эксплуатация и обслуживание автоматической коробки перемены передач

Преодоление препятствий. Испытание сельскими, размытыми, грязными дорогами или снежно-ледяной коркой в России привычно для любого автовладельца. Приключения могут начинаться каждое утро в собственном дворе из-за «отличной» работы коммунальщиков и дорожных служб. АКПП не любит пробуксовок и выхода «раскачкой», таким образом её можно сжечь. Для преодоления препятствий лучше использовать режим SHOW/WINTER, если его нет – переключить передачу в положение L или S (на некоторых автомобилях может обозначаться 1 или D1) и стараться не останавливаться. Если колеса угодили в ямку, раскачку можно изобразить с помощью движения вперед, отпускания газа, съезда в ямку естественным ходом и снова набиранием оборотов, то есть, не переключаясь на задний ход. Если выбраться сразу не получается – дайте АКПП остыть и отдохнуть. В конце концов, существует масса других приемов для преодоления препятствий, например, помощь другого участника движения. Не забывайте отключать TRC или ESP, они снижают обороты двигателя при пробуксовках, что совсем не поможет, если автомобиль уже застрял.

Использование нейтрали. Переключать АКПП в нейтраль стоит только при простое свыше двух минут, в остальных случаях это сильно изнашивает АКПП и совсем ей не помогает. При съезде с горы, переключение в нейтраль не дает никакой экономии. Нейтраль существует только для буксировки неисправного автомобиля. Использование нентрали в автомобилях с АКПП

Буксировка прицепа либо же другого авто изнашивает автомобиль с АКПП значительно быстрее, буксировка не должна превышать расстояние в 20 километров.

Режим Кикдауна и разгоны. Если автомобиль изначально не позиционируется как спортивный, то постоянные разгоны ему только навредят. Если владелец автомобиля гонщик, то он может сразу готовить деньги на ремонт автомата. АКПП следует эксплуатировать в режимах, не превышающих 5 тыс. оборотов.

Запрещено переключать движущийся автомобиль на парковку или реверс, нажимать педаль газа и тормоза одновременно. Ездить на пониженной передаче и продолжать использовать ушедшую в аварию АКПП также запрещается.

Удаление царапин на кузове автомобиля без покраски.

НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!
Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.

Читать далее >>

Режим парковки. Данным режимом следует пользоваться исключительно на горизонтальной плоскости. Если автомобиль стоит под уклоном, необходимо пользоваться ручным тормозом, а иначе весь вес автомобиля ляжет на блокиратор коробки, который тоже имеет свой ресурс. Причем сначала надо активировать ручник, потом уже переводить в положение парковки.

Контроль уровня и замена масла. Как и двигатель, АКПП способна проработать без масла всего несколько часов. От качества и чистоты масла зависит, насколько будет хорошо и долго работать АКПП. На различных АКПП масло меняется от 20 тыс. до 120 тыс. километров пробега. Масляный фильтр АКПП

Фильтр. Фильтр – это узел АКПП, ответственный за очистку масла от продуктов износа механизмов коробки. Современные фетровые фильтры меняются при каждой замене масла или ремонте, уже устаревшие, металлические, могли использоваться вплоть до капитального ремонта АКПП.

Современные АКПП. RAV4

Айсин – японская компания, специализирующаяся на производстве автоматических коробок передач, дочернее предприятие Японии. АКПП от Айсин по своей надежности и долговечности уступают лишь некоторым старым американским разработкам. Ресурс некоторых АКПП от Айсин доходит до 1500000 километров. В то время как многие производители ударились в эксперименты по созданию вариаторов и роботизированных коробок передач, Айсин и не думала о них забывать. Современные АКПП в автомобилях RAV 4С 2009 года Айсин начала выпускать АКПП модели U760E для автомобилей Лексус и Тойота Камри, Рав4 и других. Шестиступенчатые АКПП U760E и некоторые другие аналоги от других производителей называют убийцами механических и роботизированных коробок передач. Характеристики этой разработки догнали и перегнали механические коробки передач. Они переключаются быстрее, более плавно, комфортнее, достигнута большая топливная экономия, лучше управляются и при этом достаточно надежны. Но цена и ресурс АКПП и МКПП по-прежнему не сравнимы. На Рав4 и других автомобилях блокировка гидротрансформатора срабатывает с невысоких оборотов, КПД коробки значительно повышено, автомат не «протупливает», позволяет быстрее разгоняться, но при этом фрикцион гидротрансформатора изнашивается очень быстро.

Переключения АКПП Рав4 и других автомобилей занимают всего 0,2 секунды, их конкурент ДСГ немного быстрее, но совсем некомфортен при быстрой езде.

Автор: Д. Спирин

Как работает гидротрансформатор?

Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач — Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель. Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием гидротрансформатор. Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно!

В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки.

Основы гидротрансформатора

Так же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор.

Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль.

Если бы Вы надавили на педаль газа в то время как автомобиль остановился, Вам пришлось бы также нажать сильнее на тормоза, чтобы удержать машину от перемещения. Это происходит потому, что при нажатии на газ двигатель ускоряется, и насос из-за этого ускорения подаёт больше жидкости в гидротрансформатор, вызывая больший крутящий момент, который, в свою очередь передаётся на колеса.

Как работает гидротрансформатор?

Как показано на рисунке выше, существуют четыре компонента внутри очень крепкого корпуса гидротрансформатора:

  1. Насос
  2. Турбина
  3. Статор
  4. Трансмиссионное масло

Корпус гидротрансформатора крепится болтами к маховику двигателя, то есть корпус всегда крутится с той же скоростью, с какой крутится коленвал двигателя. Плавники, которые составляют насос гидротрансформатора, крепятся к корпусу, поэтому они также вращаются с одинаковой скоростью, что и двигатель. Гидротрансформатор в разрезе на рисунке ниже показывает, как всё это связано внутри гидротрансформатора.

Насос внутри гидротрансформатора является одним из видов центробежных насосов. В то время как он вращается, жидкость движется направленно от центра к краям, примерно как вращающийся барабан стиральной машины во время отжима бросает воду и одежду по своим стенкам. В то же время, так как жидкость устремляется от центра, в это центре создаётся вакуум, который привлекает ещё больше жидкости.

Затем жидкость поступает в лопасти турбины, которая связана с передачей. Именно турбина заставляет передачу крутиться, что в основном и приводит в движение Ваш автомобиль. Так как же жидкость (точнее, масло) поступает из насоса к турбине?! Дело в том, что в то время, как жидкость эта устремляется от центра к краям насоса, она встречает на своём пути лопасти насоса, которые направлены таким образом, что жидкость рикошетит о них и направляется уже вдоль оси вращения насоса прочь от него — к турбине, которая как раз и расположена напротив насоса.

Лопасти турбины также немного искривлены. Это означает, что жидкость, которая поступает в турбину снаружи, должна изменить своё направление, переместившись в центр турбины. Именно это направленное изменение вызывает вращение турбины.

Чтобы ещё проще представить принцип работы гидротрансформатора, представим ситуацию с расположенными друг напротив друга на небольшом расстоянии (допустим, около одного метра) комнатными вентиляторами и направленными друг напротив друга — если включить один из вентиляторов, то он за счёт своих искривлённых лопастей погонит воздух от себя к вентилятору, который стоит напротив него, а тот, в свою очередь, начнёт вращаться, потому как его лопасти также искривлены и поток воздуха толкает их все в какую-либо одну сторону (именно в ту сторону, в какую и начнёт вращаться вал вентилятора).

Но мы всё ещё двигаемся далее: жидкость выходит из турбины в её центре, двигаясь опять же в другом — противоположном направлении, чем то, в котором она когда-то вошла в турбину — то есть снова по направлению к насосу. И вот здесь заключается большая проблема — дело в том, что по своей конструкции (точнее, по конструкции своих лопастей, насос и турбина вращаются в противоположные стороны, и, если жидкости будет разрешено попасть обратно в насос, то это будет сильно замедлять двигатель. Вот почему гидротрансформатор имеет статор, который, благодаря своей конструкции, изменяет направление движения масла, и, таким образом, остаточная энергия, которая возвращается от турбины к насосу, идёт в дело — немного помогая двигателю раскручивать насос. 

Важно отметить, что скорость вращения турбины никогда не будет равной скорости вращения насоса, а КПД в гидротрансформаторе даже близко не будет стоять к механическим шестерёнчатым механизмам, передающим крутящий момент. Именно поэтому у автомобиля с АКПП значительно более высокий расход топлива. Для борьбы с этим эффектом, большинство автомобилей имеет гидротрансформатор, снабжённый блокировочной муфтой . Когда требуется, чтобы две половинки гидротрансформатора (насос и турбина) вращались с одинаковой скоростью (это происходит, например, когда автомобиль движется на высокой скорости), блокировочная муфта блокирует их вместе намертво, что исключает проскальзывание насоса относительно турбины и, таким образом, повышает эффективность расхода топлива.

Отправить ответ

avatar
  Подписаться  
Уведомление о