РазноеРегулятор заряда аккумулятора – Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

Регулятор заряда аккумулятора – Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Предлагается вариант изготовления зарядного устройства аккумуляторов для бытовых приборов, с установкой тока и напряжения зарядки, со стабилизацией тока на нагрузке.

При периодическом проживании в летнем доме, иногда появляется необходимость в подзарядке различных источников питания для часов, приемника, фонарика. Кроме того, требуют заряда и Li-ion аккумуляторы от старых мобильных телефонов, используемые в изготовленных ранее самоделках. Учитывая то, что используемые аккумуляторы имеют различную форму, габариты и присоединительные размеры, а также различные режимы заряда, необходимо изготовить, в какой-то мере, универсальное зарядное устройство (ЗУ). Так как это ЗУ будет использоваться лишь периодически, изготовлять или приобретать специализированные ЗУ для каждого вида аккумуляторов не имеет смысла.

В связи с этим, для зарядки различных маломощных аккумуляторов, изготовим единое, упрощенное, но надежное зарядное устройство. При зарядке аккумуляторов под периодическим визуальным контролем над окончанием заряда, имея возможность установки режимов (величина стабильного тока и предельное напряжение заряда) такое ЗУ обеспечит качественную работу.

Процесс изготовления зарядного устройства для выполнения поставленной задачи рассмотрен ниже.

1. Установка исходных данных.
Для правильной эксплуатации никель-металлогидридных аккумуляторов рекомендуется поддерживать рабочее напряжение на элементах в пределах 1,2…1,4 вольта, допускается предельное снижение до 0,9 вольта. Быструю зарядку NiMH элементов батарей рекомендуется проводить при напряжении 0,8…1,8 вольта, с величиной тока заряда в интервале 0,3…0,5С.

Рабочее напряжение для Li-ion аккумулятора 3,0…3,7 вольта. Зарядку аккумулятора необходимо выполнять до предельного напряжения 4,2 вольта, с током заряда в интервале 0,1…0,5С (до 450 mA при емкости аккумулятора 900 mAh).

Учитывая рекомендации, установим следующие характеристики изготовляемого ЗУ:
Выходное напряжение 1,3…1,8 вольта (для NiMH аккумулятора).
Выходное напряжение 3,5…4,2 вольта (для Li-ion аккумулятора).
Выходной ток (регулируемый) – 100…400 mA (…900 mA).
Входное напряжение — 9…12 вольт.
Входной ток — 400 mA (1000 mA).


2. Источник тока.
В качестве источника тока для ЗУ применим мобильный адаптер 220/9 вольт, 400 mA. Можно использовать более мощный адаптер (например, 220/1,6…12 вольт, 1000 mA). При этом изменений в конструкции ЗУ не потребуется.
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

3. Схема зарядного устройства.
Схема ЗУ проста в изготовлении и наладке, не имеет дефицитных и дорогих деталей. Устройство позволяет заряжать различные аккумуляторы стабильным, заранее установленным, током. А также, до начала зарядки, можно установить предельное напряжение, выше которого оно не поднимется на клеммах аккумулятора, в течении всего процессе зарядки.

Изготовим ЗУ по схеме.

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

4. Описание работы схемы ЗУ.
Узел управления выходным током построен на силовом составном транзисторе VТ1. Максимальную величину выходного тока заряда ограничивает низкоомный резистор R7 (при номиналах деталей указанных на схеме и соответствующем по мощности блоке питания, максимальный ток заряда Li-ion аккумулятора достигает 1,2 А). При отсутствии резистора, необходимого сопротивления и мощности, его можно собрать из нескольких дешевых и распространённых резисторов. Например, в приведенной конструкции, трехваттный резистор R7 сопротивлением 3,4 Ом собран из двух последовательно соединенных групп, по три параллельно включенных резистора МЛТ-1 сопротивлением 5,1 Ом.


На транзисторе VТ2 и резисторах R5, R6 реализован стабилизатор и регулятор зарядного тока. Переменный резистор R6 включен параллельно ограничительному резистору R7 и является датчиком тока. Ток через резистор R6 пропорционален току через резистор R7, но благодаря соотношению сопротивлений имеет значительно меньшую величину, что позволяет управлять выходным током с помощью переменного резистора и транзистора малой мощности.

Под нагрузкой, на датчике тока появляется падение напряжения, пропорциональное проходящему току. При изменении тока зарядки, по различным причинам, соразмерно изменяется падение напряжения на R6 и соответственно управляющее напряжение на базе транзистора VТ2.
При увеличении напряжения на базе VТ2, увеличивается ток К-Э транзистора VT2, снижая напряжение на базе VТ1. При этом, силовой транзистор VT1 начинает закрываться, уменьшая зарядный ток аккумулятора. И наоборот, при уменьшении напряжения на базе VТ2, зарядный ток увеличивается. Таким образом, осуществляется автоматическая корректировка тока в нагрузке — стабилизация тока заряда.


Изменяя сопротивление резистора R6, мы можем установить необходимый ток заряда аккумулятора. После регулировки, происходят аналогичные процессы стабилизации вновь установленного тока.

Узел установки предельного напряжения выполнен на регулируемом стабилизаторе напряжения DA1 (TL431). Подбирая сопротивление резисторов R3 и R4, выбираем оптимальный диапазон регулирования напряжения. С помощью переменного резистора R4 устанавливаем предельное напряжение на выходе (до подключения аккумулятора к ЗУ).


При подсоединении разряженного аккумулятора к ЗУ, напряжение на выходе понижается. Через аккумулятор начинает проходить ток, установленный с помощью резистора R6. По мере заряда и повышения напряжения на аккумуляторе, потенциал на управляющем электроде стабилитрона DA1 приближается к 2,5 вольт, стабилитрон TL431 начинает открываться. При этом, напряжение на базе VТ1 постепенно понижается, силовой транзистор закрывается, а ток зарядки, протекающий по нему, постепенно уменьшаться практически до нуля.
В разъем Х2 включается амперметр (мультиметр) для установки и контроля зарядного тока, при зарядке однотипных элементов вместо него устанавливается перемычка.
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Разъем Х3 используется для установки Li-ion аккумулятора от мобильного телефона. В разъем Х4 возможно установить аккумуляторы цилиндрической формы различной длины, с напряжением 1,2…1,4 вольта. Диоды VD1 и VD2 включены в цепь разъема X4, для понижения напряжения заряда аккумулятора до 1,3…1,8 вольта и предотвращения разряда аккумуляторов при отключении ЗУ. С помощью выносных щупов с зажимом, можно подключить для зарядки нестандартный аккумулятор с рабочим напряжением до 6… 9 вольт.

5. Изготовление корпуса зарядного устройства
Для корпуса ЗУ используем пластмассовую крышку от старого реле, размерами 90 х 60 х 65 мм. Усиливаем корпус панелью из текстолита для установки разъемов. Сверлим необходимые крепежные отверстия.

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

6. Комплектуем корпус разъемами и изготовляем нестандартные элементы.

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

7. Собираем корпус с навесными элементами. На задней панели расположены разъемы — контрольный Х2 (внизу) и входной Х1для соединения с адаптером питания ЗУ. Наверху корпуса расположена панель для установки Li-ion аккумулятора.

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

8. На передней стороне ЗУ закреплены ложемент и контакты для установки цилиндрических аккумуляторов.

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
9. Комплектуем ЗУ деталями согласно приведенной схеме.
Откладываем детали, имеющие большое тепловыделение. В данном случае это силовой транзистор VТ1 на радиаторе и сборный резистор R7, составленный из шести резисторов меньшей мощности. Для улучшения температурного режима, собираем эти детали на отдельной плате. Остальные детали устанавливаем и распаиваем на второй плате.

Размеры плат определяются внутренними размерами корпуса и их расположением в объеме корпуса. Определившись с расположением плат, сверлим в корпусе отверстия под переменные сопротивления и вентиляционные отверстия для отвода тепла.
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

10. Сборка ЗУ
Согласно схеме ЗУ собираем вместе силовую и управляющую платы, проверяем работоспособность схемы.
Устанавливаем и закрепляем все комплектующие ЗУ в корпусе. Для исключения возможного электрического контакта, изолируем от окружения управляющую плату пластмассовым колпачком.
Собираем конструкцию ЗУ в целом и проверяем работу устройства.
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
11. Работа зарядного устройства.
До подключения Li-ion аккумулятора к ЗУ, с помощью переменного резистора R4 (регулировка напряжения) устанавливаем предельное напряжение заряда на выходных клеммах для этого аккумулятора.
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Подключаем аккумулятор, напряжение на выходе понижается до остаточного напряжения на аккумуляторе. Регулировкой сопротивления резистора R6 (регулировка тока), устанавливаем необходимый зарядный ток.

При установке элемента аккумулятора цилиндрической формы, процесс выбора режимов аналогичен.
При включении ЗУ, до установки аккумулятора, открывается стабилизатор напряжения DA1 (напряжение на управляющем электроде стабилитрона выше 2,5 вольт) и загорается светодиод LED2 (красный индикатор, слева).
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Подключаем аккумулятор, напряжение на выходе понижается. Начинается зарядка установленным стабильным током. Светодиод LED2 гаснет. В зависимости от установленного тока, возможно некоторое свечение светодиода LED3 (красный индикатор, справа).
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
При достижении выставленного напряжения, заряд продолжается при этом напряжении, но с уменьшающимся током заряда. Яркость светодиода LED3 возрастает, включается светодиод LED2. Максимальная яркость светодиодов LED2 и LED3 указывает на минимальный зарядный ток, свойственный окончанию зарядки аккумулятора.
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Регуляторы заряда аккумуляторных батарей | Техника и Программы

   Во многих случаях необходимо, чтобы электроприборы и оборудование работали и при отсутствии солнечного света. Для этого следует накопить в аккумуляторах солнечную энергию, вырабатываемую в течение дня, для последующего использования. Наиболее приемлемыми для этих целей являются свинцово-кислотные аккумуляторные батареи.

   Свинцово-кислотные аккумуляторные батареи фактически состоят из нескольких отдельных элементов, соединенных последовательно. Каждый элемент, развивающий напряжение до 2 В, содержит две свинцовые пластины, помещенные в слабый раствор серной кислоты. При протекании электрического тока через элемент происходит обратимая электрохимическая реакция, и в элементе запасается электрическая энергия, которую при необходимости можно впоследствии использовать.

   Несмотря на кажущуюся простоту, в действительности процесс зарядки аккумуляторной батареи достаточно сложен. Батарея свинцово-кислотных аккумуляторов является чувствительным электрическим устройством, требующим бережного отношения, особенно при зарядке. В подтверждение этого проследим за различными стадиями типичного зарядного цикла.

   Заряд аккумуляторной батареи начинается при приложении напряжения к пластинам элемента, в результате чего через него начинает протекать электрический ток. Он приводит к возникновений электрохимической реакции, изменяющей химический состав пластин и электролита аккумуляторного элемента. Скорость этой реакции зависит от величины зарядного тока. Чем больше ток, тем быстрее протекает реакция. В конечном счете именно заряд, связанный с этим током, запасается в элементе для последующего использования.

   Аккумуляторная батарея накапливает все больший заряд, и в конце концов наступает насыщение. По существу химическая реакция стабилизируется или уравновешивается, и дальнейшее накопление заряда прекращается. Равновесие наступает, когда большинство сульфатных ионов, которые были поглощены из раствора серной кислоты свинцовыми пластинами во время цикла разряда батареи, возвращается из пластин в раствор.

   При этом пластины снова приобретают металлические свойства и начинают вести себя, как электроды, помещенные в водный раствор (прекрасную среду для электролиза). Зарядный ток начинает разлагать воду в электролите на элементарные составляющие (водород и кислород).

   Этот процесс можно заметить, даже не зная о его существовании, наблюдая так называемое «кипение» батареи. Термин этот ошибочно используют из-за внешнего сходства пробулькивания пузырьков газа при электролизе с кипением.

   Правильнее этот эффект называть газовыделением. Газовыделение начинается, когда в батарее запасено около 70—80 % полного заряда. Если бы батарея заряжалась с прежней скоростью, газовыделение привело бы к повреждению аккумуляторных элементов.

   Однако скорость электролиза, вызывающего газовыделение, пропорциональна току, протекающему через элемент. Чем меньше ток, тем медленнее разлагается вода и слабее выделение газа. Можно существенно уменьшить разрушительные последствия выделения газа, снизив зарядный ток при появлении признаков газовыделения. Хотя оно полностью прекращается только в отсутствие тока, величину зарядного тока можно снизить до такого уровня, чтобы не ухудшить качество батареи при накоплении заряда. На последнем этапе заряда аккумуляторную батарею заряжают током, величина которого обычно составляет небольшую часть начального зарядового тока. Этим током медленно заряжают батарею и тем самым предотвращают интенсивное выделение газа.

   После полного заряда аккумуляторной батареи ее можно отключить от источника питания. Из-за наличия примесей в электролите и изменения химического состава пластин в аккумуляторных элементах возникают внутренние токи, уменьшающие со временем накопленный заряд. В конечном итоге аккумуляторная батарея саморазрядится.

   Очевидно, что ток, необходимый для заряда аккумуляторной батареи, зависит от степени заряженности аккумуляторных элементов. Отсюда вытекает необходимость создания регулятора заряда, оценивающего состояние разряженности батареи и в зависимости от него управляющего зарядным током. Известны три способа заряда свинцово-кислотных аккумуляторов. При заряде от солнечных элементов наиболее пригоден способ с двухступенчатым зарядным циклом (рис. 1).

   Прежде всего предположим, что аккумуляторная батарея полностью разряжена. Начнем пропускать ток через элементы. Поскольку зарядный цикл аккумуляторной батареи должен соответствовать периоду генерации солнечными элементами полезной электрической мощности, желательно, чтобы заряд батареи происходил за возможно кратчайшее время.

   Оптимальным режимом заряда будет такой, при котором выделение газа начнется примерно через 4 ч после начала заряда батареи. Это время соответствует наибольшей интенсивности солнечного излучения в светлое время суток, обычно в интервале 10—14 ч. Независимо от сезонных изменений и погодных условий именно в это время суток можно достичь максимальной отдачи от солнечных элементов.

   Этому времени заряда численно соответствует зарядный ток величиной 20 А на каждые 100 А-ч емкости батареи, если, конечно, солнечные элементы позволяют получать такой ток. Например, батарея емкостью 75 А-ч должна заряжаться током 15 А. После 4-часового заряда при фиксированной скорости до начала газовыделения в батарее будет запасено 80 % полного заряда. На следующем этапе необходимо снизить зарядный ток до более низкого уровня.

   Рис. 1

   Величина этого тока обычно составляет 2—5 % емкости батареи. Для взятой в качестве примера батареи емкостью 75 А-ч зарядный ток на конечном этапе заряда может составлять 1,5—3,75 А. В зависимости от выбранного тока потребуется еще 4—10 ч для окончательного заряда аккумуляторной батареи.

   При такой скорости для полного заряда батареи требуется более 1 сут. Однако в совершенных энергетических устройствах аккумуляторные батареи обычно находятся в полностью заряженном состоянии большую часть времени эксплуатации, а их полная разрядка встречается крайне редко.

   После окончательного заряда аккумуляторной батареи рекомендуется дополнительно подать на нее ток резервного (компенсационного) подзаряда. Величина этого тока обычно составляет 1—2 % полной емкости аккумуляторной батареи. Этот дополнительный третий этап заряда батареи усложняет конструкцию регулятора заряда.

   Выйти из положения можно, объединив второй и третий этапы заряда, используя в качестве конечного тока или резервного подза-рядного тока один и тот же ток, значение которого составляет 2 % от емкости батареи. В результате упрощается конструкция регулятора и повышается его надежность.

   Для нормальной работы регулятора заряда, удовлетворяющего перечисленным выше требованиям к зарядному току, необходимо иметь сведения о степени зараженности аккумуляторной батареи в любой момент времени.

   К счастью, сама батарея дает ключ к решению этой проблемы: имеется надежно установленное соотношение между количеством запасенного в батарее заряда и напряжением на ней. Как видно из рис. 2, это отношение почти всегда линейно.

   Рис. 2

   Интересующая нас область заряда лежит в пределах 70—80 % от полного заряда батареи. Именно при достижении такой степени заряженности начинается газовыделение и необходимо изменить зарядный ток. Для 12-вольтовой батареи в этой точке напряжение составляет 12,6 В. Полностью заряженная батарея развивает напряжение 13,2 В.

   Определяя напряжение на батарее, можно регулировать зарядный ток. Если напряжение ниже 12,6 В, то аккумуляторные элементы содержат менее 80 % заряда и регулятор выдает полный зарядный ток. Когда же напряжение на батарее поднимается выше 12,6 В, необходимо снизить зарядный ток до уровня подпитывающего тока.

   За напряжением на батарее следит специальное устройство (компаратор), которое представляет собой не что иное, как обычный усилитель с очень большим коэффициентом усиления. Действительно, компаратор, включенный в схему, представленную на рис. 3, можно использовать как операционный усилитель.

   Компаратор сравнивает два напряжения—измеряемое и опорное, подаваемое на его входы. На инвертирующий вход компаратора (—) подается опорное напряжение со стабилитрона D2. Этим напряжением задается уровень срабатывания устройства.

   Рис. 3

   Напряжение батареи делится резисторами R1, и R2 так, чтобы оно приблизительно равнялось напряжению стабилизации диода D2. Напряжение, поделенное резисторами, подается на неинвертирующий вход (+) компаратора с движка потенциометра точной настройки порога переключения.

   Если напряжение аккумуляторной батареи уменьшится настолько, что сигнал на неинвертирующем входе опустится ниже предела, определяемого диодом D2, на выходе компаратора установится отрицательное напряжение. Если же напряжение батареи поднимается выше опорного, на выходе компаратора установится положительное напряжение. Переключение знака напряжения на выходе компаратора и будет обеспечивать необходимое регулирование зарядного тока.

   Зарядный ток регулируется с помощью электромагнитного реле. Реле управляется через транзистор Q1 выходным напряжением компаратора. Отрицательное напряжение на выходе компаратора означает, что батарея разряжена и требуется полный зарядный ток (транзистор Q1 закрыт). Следовательно, коллекторный ток равен нулю и реле выключено.

   Нормально замкнутые контакты реле шунтируют токоограничительный резистор Rs. Когда реле выключено, резистор исключен из цепи и полный ток от солнечных элементов поступает на аккумуляторную батарею.

   С увеличением степени заряженности возрастает напряжение на аккумуляторной батарее. Выделение газа начинается, когда напряжение достигнет 12,6 В. Компаратор, настроенный на этот уровень, переключается (на выходе компаратора — плюс). Транзистор открывается, и коллекторный ток включает реле. Контакты реле, шунтировавшие резистор Rs, размыкаются.

   Рис. 4

   Теперь зарядный ток от солнечных элементов должен преодолеть сопротивление ограничивающего резистора. Номинал этого резистора выбирается таким, чтобы величина зарядного тока составила 2 % от емкости батареи. В таблице на рис. 4 представлены значения Rs в зависимости от емкости аккумуляторной батареи.

   Вблизи напряжения переключения компаратора имеется некоторая неопределенность. Пусть, например, напряжение на батарее поднялось до 12,6 В, превысив порог срабатывания. В обычных условиях при этом изменится выходное напряжение компаратора, сработает реле и уменьшится зарядный ток. Однако выходное напряжение аккумуляторной батареи зависит? не только от степени заряженности, но и от других факторов, и поэтому не так уж и редко наблюдается небольшое снижение напряжения после выключения большого зарядного тока. Вполне вероятно, например, снижение напряжения на несколько сотых долей вольта (до 12,55 В). Как в этом случае будет работать схема?

   Очевидно, что компаратор переключится обратно и восстановится режим большого зарядного тока. Поскольку напряжение на аккумуляторной батарее очень близко к 12,6 В, то резкий рост тока несомненно вызовет скачок напряжения до уровня, превышающего 12,6 В. В результате реле снова выключится.

   В этих условиях будет происходить переключение компаратора туда и обратно вблизи напряжения срабатывания. Для исключения этого нежелательного эффекта, называемого «рысканием», в усилитель вводится небольшая положительная обратная связь с помощью резистора R4, создающая гистерезисную зону нечувствительности.

   При наличии гистерезиса для срабатывания компаратора требуется большее изменение напряжения, чем раньше. Как и прежде, компаратор переключится при 12,6 В, но для его возвращения в исходное состояние напряжение на аккумуляторной батарее должно снизиться до 12,5 В. Тем самым колебательный эффект исключается.

   Последовательное включение диода D1 в зарядную цепь предохраняет аккумуляторную батарею от разряда через солнечные элементы в темное время суток (ночью). Этот диод предотвращает также потребление энергии регулятором заряда от аккумуляторной батареи. Регулятор полностью питается от солнечных элементов. В регулятор заряда введено индикаторное устройство, предназначенное для отображения режима работы регулятора в любой момент времени. Хотя индикатор не является необходимой частью устройства (регулятор будет работать и без него), тем не менее его наличие повышает удобство работы с регулятором.

   Индикаторное устройство (рис. 3) состоит из двух компараторов и двух светоизлучающих диодов (СД). Инвертирующий вход одного компаратора и неинвертирующий — другого соединены со стабилитроном, вырабатывающим опорное напряжение. Остальные входы компараторов соединены с выходом компаратора, управляющего зарядным током.

   Верхний компаратор срабатывает и включает светодиод СД1, когда регулятор работает в режиме большого зарядного тока. Если регулятор переключается в режим подпитывающего тока, верхний компаратор выключается, а нижний срабатывает и включает светодиод СД2.

   Регулятор заряда монтируется на печатной плате (рис. 5), размещение компонентов схемы на которой показано на рис. 6. Особое внимание следует обратить на размещение полупроводниковых элементов (во избежание ошибочного подключения выводов). Законченная схема размещается в любом (желательно водонепроницаемом)’ рорпусе. Для этих целей вполне подойдет небольшая пластмассовая коробочка.

   Если корпус непрозрачен, для индикации режимов работы следует просверлить в его крышке отверстие для светодиодов. Необходимо также сделать отверстие сбоку корпуса для вывода соединительных проводников,

   Рис. 5

   Рис. 6

   Описанный регулятор может управлять зарядным током около 5 А. Его величина ограничивается свойствами контактор используемого электромагнитного реле.

   Контакты реле рассчитаны на ток до ЗА, и вполне естественным является вопрос, почему рекомендовано использовать их до 5 А. Этому можно дать следующее объяснение. Когда контакты размыкают цепь, между ними обычно возникает небольшая электрическая дуга. Дуга приводит к явлениям, аналогичным электросварке, и на поверхности контактов появляются выемки. Чем больше протекающий ток, тем сильнее воздействие электрической дуги.

   Для предотвращения подобного процесса в схеме описываемого регулятора контакты реле зашунтированы небольшим сопротивлением. Поэтому значительная часть энергии поглощается резистором, а не рассеивается в электрической дуге. Таким образом контакты, не разрушаясь, могут регулировать токи, превышающие номинальный.

   Рис, 7

   Если требуется увеличить регулируемый ток, в схеме необходимо использовать более мощное реле, включаемое контактами слаботочного реле, как это показано на рис. 7.

   Для установки второго реле в рисунок печатной платы необходимо внести соответствующие изменения.

   Начните со снятия перемычек, идущих к контактам реле. Тем самым контакты отключаются от токоограничивающего резистора. Теперь используйте эти контакты для управления более мощным реле. Необходимо также заменить диод D1 и токоограничительный резистор Rs на диод и резистор, выдерживающие большие токи. Разумнее разместить оба этих элемента вне платы рядом с реле, поскольку они рассеивают больше тепла, чем прежние элементы схемы. Аккумуляторную батарею и солнечные элементы соедините непосредственно с мощным реле с помощью толстых проводников, а с помощью тонких проводников подайте питание на схему регулятора с положительного вывода солнечных элементов.

   Возможен такой случай, когда электрической энергии небольшой солнечной батареи не хватит даже для питания реле. Тогда реле можно просто заменить транзистором. С этой целью можно убрать реле RL1 и управляющий им транзистор Q1 и подключить к резистору Rs p-n-p транзистор, а его базу — к резистору R5. На рис. 8 приведена электрическая схема после полной модификации.

   Когда напряжение на выходе компаратора положительно, транзистор включен и полный зарядный ток течет к батарее. Когда регулятор переключается в режим подпитывающего заряда, напряжение на выходе компаратора становится отрицательным, транзистор запирается и зарядный ток теперь течет только через резистор Rs в обход транзистора.

   Преимущество данной схемы перед релейной в том, что ее работа не ограничивается напряжением 12 В. Устройство может регулировать зарядку батарей, рассчитанных на напряжения 3—30 В. Конечно, необходимо изменить номиналы резисторов R1 и R2 и тип диода D2, чтобы сблизить значения напряжения, падающего на потенциометре ѴR1 и опорного на стабилитроне. Ток ограничивается значением около 250 мА,

   Рис. 8

   Радиатором, позволяющим отвести избыточное тепло от используемого транзистора, служит сама печатная плата. Теплоотводящая площадка формируется с обратной стороны платы и не требует никакой изоляции. Для подключения регулятора необходимо сделать только четыре соединения. Два — к положительному и отрицательному выводам солнечной батареи и два соответственно к положительному и отрицательному зажимам аккумуляторной батареи. После установки регулятора в зарядное устройство необходимо откалибровать схему и, в частности, отрегулировать ее чувствительность к изменению напряжения так, чтобы ток переключался в нужный момент Для этого сначала пусть батарея слегка разрядится. Затем движок потенциометра VR1 поворачивается по часовой стрелке до упора 1). При этом контакты реле замкнутся.

   Напряжение на батарее по мере подзаряда контролируется о помощью вольтметра. Когда оно достигнет 12,6 В, движок потенциометра VR1 вращается в обратную сторону до тех пор, пока не выключится реле. Это будет соответствовать «подпитывающему» заряду. К сожалению, зарядное напряжение батареи зависит и от ее температуры. Чем холоднее батарея, тем большее напряжение требуется для заряда. Тем самым изменяется пороговое напряжение, при котором должен срабатывать регулятор. График на рис. 9 показывает зависимость напряжения срабатывания от температуры.

   Рис. 9

   Ошибкой в установке напряжения срабатывания можно в принципе пренебречь. Если температура батареи во время заряда будет относительно стабильной и положительной, что можно обеспечить тем или иным способом, например хорошо укрыв ее, то небольшие температурные изменения практически не повлияют на работу регулятора.

   Список деталей

   Мощный регулятор

   Резисторы

   R1, R2—33 кОм

   R3—510 Ом

   R4—1 МОм

   R5, R8—1 кОм

   R6, R7—470 Ом

   R — см. рис. 4

   Полупроводники

   D1 —1N5400

   D2—1NГ4735

   IС1—LM339

   СД1, СД2 — индикаторы

   Q1—2N2222

   Остальные детали

   RL1 — реле Radio Shack 275-247)

   VR1—50 кОм, потенциометр

   Маломощный регулятор

   Резисторы

   R1, R 2—33 кОм

   R 3—510 Ом

   R4—1 мОм

   R5, R8—1 кОм

   R6, R7—480 Ом

   R —100 Ом

   Полупроводники

   D1— Ш4001

   D2—1N4735

   IC1—LM339

   СД1, СД2 — индикаторы

   Q1—ECG 187

    Остальные детали

   VR1—50 кОм, потенциометр

Литература: Байерс Т. 20 конструкций с солнечными элементами: Пер. с англ.— М.: Мир, 1988 год.

nauchebe.net

Регулятор тока для зарядного устройства аккумулятора – Поделки для авто

Зачастую при изготовлении самодельных зарядных устройств для аккумулятора, а также в дешевых покупных зарядных устройствах, разработчики забывают о такой важной функции как регулятор тока. В большинстве случаев он задается автоматически в зависимости от степени просадки аккумулятора и прочих факторов.

Регулятор тока в свою очередь позволяет выставить необходимое значение тока без просадки напряжения. Это полезно для аккумулятора и не приведет к критическим режимам зарядки, что естественно увеличит его срок службы и предотвратит от не желательных отказов.

Регулятор тока для зарядного устройства аккумулятора

Приведенная схема представляет собой источник тока, для установки ее на зарядное устройство, от схемы нужно отсечь трансформатор и выпрямительный мост и установить обвес на выход зарядного устройства. Принцип действия простой переменником и управляющим транзистором КТ814, управляется силовой транзистор КТ837, с помощью амперметра и подкруткой переменного резистора устанавливается необходимое значения тока ограничения.

Все номиналы указаны на схеме, ваттность переменного резистора должна составлять не менее 1 Вт. Мощность резистор R1 не менее 20 Вт, можно поставить и 10 Вт, но греться будет прилично и скорее всего быстро выйдет из строя. Силовой транзистор КТ837 устанавливаем на теплоотвод. После сборки проверти максимально возможное значение тока, возможно пожжёте пару раз транзистор и резисторы.

Если значение тока не достаточное можно заменить резистор R1 на более низкий номинал, например, 0,33 Ом. Если вам необходимо значение тока в 7 А и выше, транзистор КТ837 уже не подойдет, его необходимо будет заменить на более мощный, например, КТ818ГМ. Остальные резисторы берем мощностью не менее 1 Вт. Стабилитрон или такой же как указан на схеме (Д814А) или его аналог.

Автор; Ака Касьян

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Зарядное устройство на регуляторе напряжения

Предлагаемое достаточно простое зарядное устройство на автомобильном регуляторе напряжения генератора (рис. 1), которое предназначено как для зарядки аккумуляторов, так и для поддержания их в работоспособном состоянии при длительном хранении.

В первичной обмотке трансформатора Т1 включены балластные конденсаторы (С1 или С1+С2), ограничивающие ток через трансформатор. С вторичной обмотки трансформатора напряжение подаётся на диодно — тиристорный мост, нагрузкой которого служит аккумуляторная батарея.

В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РН) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Подойдёт, например, регулятор типа 121.3702 или интегральный — Я112А.

При использовании регулятора Я112А — выводы «Б» и «В» соединяются вместе и с «+». Вывод «Ш» соединяется с цепью управляющих электродов тиристоров. Таким образом, на аккумуляторной батарее поддерживается напряжение 14 В при зарядном токе, определяемом ёмкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:

где:

Iз — зарядный ток (A),

U2 — напряжение вторичной обмотки при «нормальном» включении трансформатора (В),

U1 — напряжение сети.

Переключатель SA1 служит для выбора режимов зарядки/хранения. Ток заряда выбирается равным 0,1 от численного значения емкости аккумулятора, а ток хранения — 1 ÷ 1,5 А.

Зарядное устройство на регуляторе напряжения настройки практически не требует. Возможно, придется уточнить ёмкость конденсатора, контролируя ток амперметром, включенным в разрыв цепи, между аккумулятором и зарядным устройством. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).

Если есть возможность, то периодически, примерно один раз в две недели, желательно производить разряд аккумуляторной батареи током 2Iз с контролем температуры электролита.

Трансформатор — любой, мощностью 150 ÷ 250 Вт, с напряжением на вторичной обмотке 20 ÷ 36 В.

Диоды моста — любые на номинальный ток не менее 10 А. Тиристоры — КУ202 В ÷ М.

Диоды VD1 и VD3, а как же тиристоры VS1, VS2 необходимо установить на радиаторы.

Зарядные устройства. Выпуск 1:

Информационный обзор для автолюбителей

Сост. А. Г. Ходасевич, Т. И. Ходасевич

М.: НТ Пресс, 2005.»192 с.: ил.

(Автоэлектроника), с. 133

www.radiolub.ru

ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ

Попалась в интернете схема двухканального зарядного устройства. Я не стал делать сразу на два канала, так как не было необходимости — собрал один. Схема вполне рабочая и заряжает прекрасно.

Схема ЗУ для автоаккумуляторов

ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ

Характеристики зарядного устройства

  • Напряжение сети 220 В.
  • Выходное напряжение 2 х 16 В.
  • Ток заряда 1 — 10 А.
  • Ток разряда 0,1 — 1 А.
  • Форма тока заряда – однополупериодный выпрямитель.
  • Ёмкость аккумуляторов 10 — 100 А/ч.
  • Напряжение заряжаемых аккумуляторов 3,6 — 12 В.

Описание работы: это зарядно-разрядное устройство на два канала с раздельной регулировкой тока заряда и тока разряда, что очень удобно и позволяет подобрать оптимальные режимы восстановления пластин аккумулятора исходя из их технического состояния. Использование циклического режима восстановления приводит к значительному снижению выхода газов сероводорода и кислорода из-за их полного использования в химической реакции, ускоренно восстанавливается внутреннее сопротивление и ёмкость до рабочего состояния, отсутствует перегрев корпуса и коробление пластин. 

Ток разряда при зарядке ассиметричным током должен составлять не более 1/5 тока заряда. В инструкциях заводов изготовителей перед зарядкой аккумулятора требуется произвести разрядку, то есть провести формовку пластин перед зарядом. Искать подходящую разрядную нагрузку нет необходимости, достаточно выполнить соответствующее переключение в устройстве. Контрольную разрядку желательно проводить током в 0,05С от ёмкости аккумулятора в течении 20 часов. Схема позволяет провести формовку пластин двух аккумуляторов одновременно с раздельной установкой разрядного и зарядного тока.
 
Регуляторы тока представляют ключевые регуляторы на мощных полевых транзисторах VT1,VT2.
В цепях обратной связи установлены оптопары, необходимые для защиты транзисторов от перегрузки. При больших токах заряда влияние конденсаторов C3,C4 минимальное и почти однополупериодный ток длительностью 5 мс с паузой в 5 мс ускоряет восстановление пластин аккумуляторов, за счёт паузы в цикле восстановления, не возникает перегрева пластин и электролиза, улучшается рекомбинация ионов электролита с полным использованием в химической реакции атомов водорода и кислорода.

Конденсаторы С2,С3 работая в режиме умножения напряжения, при переключении диодов VD1,VD2, создают дополнительный импульс для расплавления крупнокристаллической сульфатации и переводе окисла свинца в аморфный свинец. Регуляторы тока обеих каналов R2, R5 питаются от параметрических стабилизаторов напряжения на стабилитронах VD3, VD4. Резисторы R7, R8 в цепях затворов полевых транзисторов VT1, VT2 ограничивают ток затвора до безопасной величины.

Транзисторы оптопар U1, U2 предназначены для шунтирования напряжения затвора полевых транзисторов при перегрузке зарядным или разрядным токами. Напряжение управления снимается с резисторов R13, R14 в цепях стока, через подстроечные резисторы R11, R12 и через ограничительные резисторы R9, R10 на светодиоды оптопар. При повышенном напряжении на резисторах R13, R14 транзисторы оптопар открываются и снижают напряжение управления на затворах полевых транзисторов, токи в цепи сток-исток понижаются.

Режим заряда устанавливается переключателями SA1, SA2 в верхнее положение, разряда в нижнее положение. Полевые транзисторы крепятся для охлаждения на отдельные радиаторы. Светодиоды HL1, HL2 показывают правильную полярность подсоединения аккумуляторов в зарядную цепь.

После подключения аккумулятора переключатель режима SA1 или SA2 переводится в режим разряда. Регулятором тока, при включенной сети, устанавливается ток разряда в указанных выше пределах. После снижения тока разряда до нулевого значения через 6-10 часов переключатель режима переводится в верхнее положение – заряд, регулятором тока устанавливается рекомендуемое значение зарядного тока. Через 6-10 часов заряда ток должен упасть до величины подзаряда.

Далее провести повторный разряд. При полной ёмкости 10-ти часового разряда (напряжение не ниже 1,9 Вольта на элемент), провести повторный 10-ти часовой заряд. Проводить зарядно-разрядный цикл аккумулятора рекомендуется даже при отличном его состоянии, легче кристаллизацию устранить в начале эксплуатации и не ждать когда она перейдёт в «застарелую» сульфатацию с ухудшением всех параметров аккумулятора.

ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ

Сделал печатку под схему, надеюсь кому нибудь потребуется. На схеме есть опечатка, оптотрон не АОУ110Б (таких нет в природе), а АОТ110Б. В качестве диода VD1, применил КД213 и установил его на радиатор. Насчёт замены оптотрона, тут как мне кажется подойдут из современных 4N32, ну а симисторная оптопара MOC3062 не знаю. В принципе а почему бы и нет?! Если предварительно на макетке собирать, то можно многие оптопары «обкатать» на этой схеме.

ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ - сборка

Испытания уже проводил без корпуса. При токе зарядки 5 А, радиатор транзистора еле тёплый, радиатор диода КД213 немного сильнее нагрет. Аккумулятор автомобиля заряжался около часа, ток зарядки упал до номинального при достижении 14,8 вольт. Напряжение окончания зарядки выбрал с помощью резистора R11, резистор установил многооборотный, на переднюю панель не стал ставить R11, так как нет необходимости. Просто выставил напряжение окончания и всё. Да, сильно греется R13, на схеме он 10 Вт, может придётся установить ещё более мощный. На этом всё, с вами был Demo.

   Форум по ЗУ

   Обсудить статью ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ


radioskot.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *