РазноеШестерня дифференциала – Шестерня дифференциала в Беларуси. Сравнить цены, купить потребительские товары на маркетплейсе Deal.by

Шестерня дифференциала – Шестерня дифференциала в Беларуси. Сравнить цены, купить потребительские товары на маркетплейсе Deal.by

Содержание

Дифференциал (механика) — Википедия

дифференциал автомобиля, канонический вид Задний ведущий мост, в нём стоит дифференциал.

Дифференциа́л (от лат. differentia – разность, различие) — в общем случае есть механизм по передаче мощности вращением, позволяющий без каких-либо пробуксовок и потерь КПД складывать два независимых по своим угловым скоростям входящих потока мощности в один исходящий, раскладывать один входящий поток мощности на два взаимозависимых по своим угловым скоростям исходящих, а также работать в первом и втором вариантах попеременно. Основное назначение дифференциала в технике — трансмиссии транспортных машин, в которых дифференциал разветвляет поток мощности от двигателя на два между колёсами, осями, гусеницами, воздушными и водными винтами. Прочее использование дифференциалов в технике вообще и в транспортной технике в частности является вторичным и нечастым. Механической основой дифференциала по умолчанию является планетарная передача, как единственная из всех передач вращательного движения, имеющая две

степени свободы.

Применение дифференциалов в трансмиссиях автомобилей обусловлено небходимостью обеспечить вращение ведущих колёс одной оси с разной частотой. В первую очередь это необходимо в поворотах, но также и при разном диаметре ведущих колёс, что возможно при вынужденной установки шин двух разных типоразмеров или при разности давления в шинах. В случае, если оба колеса имеют жёсткую кинематическую связь, любое рассогласование частот вращения по вышеупомянутым причинам приводит к возникновению так называемой паразитной циркуляции мощности. Это безусловно вредное явление вызывает проскальзывание колеса с меньшей силой сцепления относительно поверхности дороги, дестабилизирует движение автомобиля по дуге, нагружает трансмиссию и двигатель, повышает расход топлива и проявляется тем сильнее, чем меньше радиус поворота и выше силы сцепления, действующие на колёса. Дифференциал, установленный в разрез валов привода колёс одной оси, позволяет разорвать жёсткую кинематическую связь между колёсами и устранить паразитную циркуляцию мощности, не потеряв при этом возможностей по передаче мощности на каждое колесо с КПД близким к 100%. Подобный дифференциал называется «межколёсным», а данная область применения является основной для дифференциалов вообще, так как межколёсный дифференциал присутствует в приводе ведущих колёс всех легковых, грузовых и абсолютно подавляющей части

внедорожных, спортивных и гоночных автомобилей.

Помимо привода ведущих колёс автомобиля дифференциалы также применяются:

  • В приводе двух и более постоянно ведущих осей от одного двигателя (так называемый «межосевой» дифференциал).
  • В приводе соосных воздушных и водных винтов противоположного вращения (в качестве дифференциала и редуктора одновременно).
  • В дифференциальных механизмах поворота гусеничных машин (в связке из одного-двух-трёх дифференциалов с разными принципами совместной работы).
  • При сложении передаваемой вращением мощности от двух двигателей с произвольными частотами вращения на один общий вал.
планетарный механизм любой схемы может выполнять функцию дифференциала

Основой любого дифференциала может быть только планетарная передача, которая в силу механики своей работы единственная из всех передач вращательного движения может решать задачи, стоящие перед дифференциалом в трансмиссии. Термин «планетарный дифференциал» является избыточным — любой дифференциал по умолчанию планетарный. Работоспособность как дифференциала абсолютно не зависит ни от её состава или формы, ни от выбора конкретных звеньев под ведущие или ведомые. Любая в самом простом своём варианте — трёхзвенного планетарного механизма без каких-либо управляющих элементов — может выполнять функции по разложению одного потока на два взаимосвязанных или сложению двух независимых потоков в один. Выбор иных звеньев в качестве ведущих, а других в качестве ведомых определяется лишь требуемой кинематикой связей дифференциала с другими элементами трансмиссии и особенностями механики работы дифференциала в выбранном формате распределения функций между звеньями. Дополнение управляющими элементами и применение так называемых сложных планетарных механизмов наделяет дифференциал возможностями по взаимовыравниванию угловых скоростей потоков и возможностями по активному управлению этими скоростями.

Дифференциал автомобиля Porsche Cayenne в разрезе

Каноническим, наиболее известным видом дифференциала является межколёсный дифференциал автомобиля, выполненный на основе простого (то есть, трёхзвенного) пространственного планетарного механизма схемы на четырёх конических шестернях. Водилом планетарной передачи такого дифференциала фактически служит весь его корпус — это ведущее звено ➁. Две шестерни являются сателлитами на общей оси ➂. И две шестерни являются двумя солнцами — двумя ведомыми звеньями ➃. Подача мощности осуществляется на корпус (водило) через жёстко закреплённую ведомую шестерню

главной передачи, которая в свою очередь в паре с ведущей шестернёй ➀ формально есть другой элемент трансмиссии, несмотря на то, что дифференциал с ведомой шестернёй зачастую выглядит как единый сборочный узел. Снятие мощности осуществляется с двух солнц, к которым в данном случае пристыкованы валы с шарнирами типа ШРУС.

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На автомобилях с подключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с плотным покрытием с включенным полным приводом.

На автомобилях с постоянным полным приводом есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6 × 6 или 8 × 8) добавляется ещё межтележечный дифференциал.

Обычный («свободный») дифференциал отлично работает, пока ведущие колёса неразрывно связаны с дорогой. Но, когда одно из колёс теряет сцепление (оказывается в воздухе или на льду), то вращается именно это колесо, в то время как другое, стоящее на твёрдой земле, неподвижно. В случае потери сцепления одним из колёс, его сопротивление вращению падает, а раскрутка происходит без существенного увеличения момента сопротивления (трение скольжения в пятне контакта меньше трения покоя и несущественно зависит от скорости пробуксовки). В момент когда колесо начинает проскальзывать, крутящие моменты на колесах не равны друг другу, а обратно пропорциональны сопротивлению вращения колес.

При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей. Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней, наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется, — ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

История способов решения проблемы буксующего колеса[править | править код]

  • 1825 — Онесифор Пеккёр (Onesiphore Pecqueur, 1792—1852)
    изобрёл дифференциал.
  • 1932 — Фердинанд Порше начал исследования в области дифференциалов c проскальзыванием.
  • 1935 — компания «ZF Friedrichshafen AG», сотрудничающая с «Порше», выпустила на рынок кулачковый дифференциал, примененный впоследствии на ранних моделях Фольксваген (Type B-70)[1]
  • 1956 — американская компания Packard одной из первых начала выпуск моделей с -дифференциалом под фирменным названием «Twin Traction». В 60-х годах многие компании начали производство LSD-дифференциалов под различными фирменными названиями:
  • Alfa Romeo: Q2
  • American Motors: Twin-Grip
  • Buick: Positive Traction
  • Cadillac : Controlled
  • Chevrolet/GMC: Positraction
  • Chrysler: Sure Grip
  • Dana Corporation:Trak-Lok or Powr-Lok
  • Ferrari: E-Diff
  • Fiat: Viscodrive
  • Ford: Equa-Lock and Traction-Lok
  • International: Trak-Lok или Power-Lok
  • Jeep: Trac-Lok (clutch-type mechanical), Tru-Lok (gear-type mechanical), and Vari-Lok (gerotor pump), Power Lok
  • Oldsmobile: Anti-Spin
  • Pontiac: Safe-T-Track
  • Porsche: PSD (electro-hydraulic mechanical)
  • Saab: Saab XWD eLSD
  • Studebaker-Packard Corporation: Twin Traction

Термин обозначает любой дифференциал, механика работы которого позволяет ему самостоятельно блокироваться — то есть, в первую очередь, выравнивать угловые скорости ведомых шестерён и превращаться в прямую передачу. Самоблокирующиеся дифференциалы не требуют никаких внешних систем управления и работают автономно. В автомобилях могут использоваться и как межколёсные и как межосевые. В гусеничной технике принципиально не используются. Условно все такие дифференциалы можно разделить на две группы: срабатывающие от крутящего момента и срабатывающие от разницы угловых скоростей на ведомых шестернях. В первую группу попадают дифференциалы с винтовой, червячной и дисковой блокировками. Во вторую — дифференциалы с вискомуфтой, дифференциалы с героторным насосом, дифференциалы с центробежным автоматом включения (Eaton G80), дифференциалы с обгонными муфтами (Ferguson). Такие конструкции, как кулачковые дифференциалы и дифференциалы Красикова/Нестерова, в контексте принципов срабатывания блокировки вероятно можно считать чем-то промежуточным.

Принудительно блокируемые дифференциалы[править | править код]

Ручная блокировка дифференциала[править | править код]

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом[править | править код]

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, то оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 году. В болиде McLaren MP4/13 команды «Макларен» при повороте гонщик мог притормозить внутреннее колесо рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений водителя. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS[править | править код]

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Имитация блокировки дифференциала (далее ИБД) — выравнивание частоты вращения буксующего и небуксующего колёс наподобие того, как это выглядит в случаях реальной механической блокировки дифференциала, только не за счёт механической связи колёс или принудительного снижения КПД дифференциала, а за счёт торможения буксующего колеса рабочим тормозом. При этом, согласно принципам работы любого дифференциала, на имеющем низкую силу сцепления с дорогой буксующем колесе тормозное усилие вызывает рост крутящего момента, что приводит к сравнимому росту крутящего момента на имеющем высокую силу сцепления с дорогой отстающем колесе, что, в свою очередь, позволяет использовать его зацеп с дорогой и тем самым даёт эффект в виде общего роста силы тяги оси. Главный управляющий механизм всех систем ИБД — АБС тормозов. Работа системы ИБД выражается в кратковременном импульсном подтормаживании буксующего колеса рабочим тормозом, и её эффективность определяется частотой срабатывания, поэтому системы ИБД стали возможны только вместе с появлением современных высокочастотных АБС тормозов.

ИБД есть именно имитация. В отличие от любых систем реальной блокировки дифференциала, которые при срабатывании как бы выводят дифференциал из работы и тем самым позволяют перераспределять крутящие моменты до некоего соотношения, декларируемого коэффициентом блокировки, ИБД ни при каких условиях не может вывести дифференциал из работы, и в процессе работы ИБД крутящие моменты всегда находятся в единственно возможной пропорции, присущей данному дифференциалу (для межколёсного дифференциала это обычно 50/50). Невозможность произвольно перераспределять крутящие моменты в соответствии с имеющимися силами сцепления на колёсах есть неустранимый недостаток любой системы ИБД, и именно поэтому ИБД обычно не применяется на настоящих внедорожниках, эксплуатация которых предполагает случаи движения при ежесекундно произвольно меняющихся силах сцепления на колёсах в максимально широком диапазоне от 0 до 100 процентов. Другим неустранимым недостатком любых систем ИБД есть то, что при срабатывании ИБД некоторая часть мощности двигателя тратится на преодоление тормозного усилия, что понижает величину эффективно используемой мощности для движения. Также само заторможенное колесо может увеличивать общее сопротивления движению, хотя современные высокочастотные системы ИБД стараются этого не допускать.

Системы ИБД могут применяться на автомобиле как сами по себе, так и вместе с различными системами настоящей блокировки. Совместная работа обеих систем может строится как по взаимоисключающему, так и по взаимодополняющему принципу. Потенциально система ИБД может применять на машинах любых типов. В сравнении с механически блокируемыми дифференциалами ИБД не теряет своих качеств от эксплуатации, не требует регулировок и специального техобслуживания, не требует от водителя специальных навыков езды.

Системы ИБД не являются противобусовочными системами в чистом виде, и в отличие от них ИБД никак не влияют на управление двигателем автомобиля, а решают задачу по максимизации силы тяги при императивно заданном водителем уровне доступной мощности.

Термин означает любой дифференциал, устройство которого позволяет перераспределять мощность/тягу на ведомых звеньях в любой требуемой для данного момента движения пропорции. Именно в этом и есть отличие активного дифференциала от блокируемого, в котором управление мощностью на ведомых звеньях в принципе не возможно, и таковая определяется исключительно силами сцепления. Все активные дифференциалы имеют двухканальную систему управления и обязательно два управляющих элемента — два тормоза или два фрикциона — включающихся в работу по команде от внешних источников. Все активные дифференциалы помимо основной планетарной передачи, выполняющей функции свободной раздачи мощности, имеют парный комплект дополнительных планетарных или простых зубчатых передач, выполняющих функцию перераспределения мощности в свою сторону. Каждая из этих парных передач связана со своим управляющим элементом. Хотя какие-либо механизмы блокировки у активных дифференциалов отсутствуют, фактически, все активные дифференциалы также являются блокируемыми, только в них не один симметричный режим блокировки, а два несимметричных (по одному для каждой из двух сторон). В этих режимах управляющий элемент дифференциала работает без внутренней пробуксовки, а сам дифференциал превращается в понижающе-повышающую передачу. На легковых автомобилях с активными дифференциалами эти крайние режимы могут и не использоваться, зато они используются в дифференциальных механизмах поворота гусеничных машин.

Случаи отсутствия дифференциалов в трансмиссии[править | править код]

Наличие дифференциалов, делящих мощность, в трансмиссии транспортной машины не обязательно. Их отсутствие несомненно приводит к повышению нагрузок на трансмиссию и повышенному износу колёс, но с этим либо мирятся, либо в аспекте предполагаемой эксплуатации конкретной машины это не важно. Четырёхколёсный автомобиль с двумя ведущими колёсами в принципе может обходится без дифференциала — например, карт, или гоночный автомобиль с задней ведущей осью для гонок на покрытиях с низким коэффициентом сцепления. В экстра случаях дифференциал может отсутствовать даже и на гоночной машине для асфальта (пример — победитель гонки 24 часа Ле-Мана 1991 года Mazda 787B). На чисто переднеприводной машине межколёсный дифференциал должен быть обязательно, так как его отсутствие не позволит адекватно поворачивать независимо от типа дорожного покрытия. В полноприводных машинах могут отсутствовать межосевые дифференциалы, при этом опять же, либо это неважно в аспекте экплуатации машины (пример — гоночные машины WRC 2012-2016 годов), либо движение на такой машине допускается только на покрытиях с низким коэффициентом сцепления (пример — внедорожники с подключаемой передней осью типа УАЗ-469, ГАЗель 4х4, Соболь 4х4 или Jeep Wrangler). Дифференциалы отсутствуют на тяговых машинах ж/д транспорта — на электровозах, тепловозах, электропоездах, вагонах метро. Колёса одной оси этих машин за счёт конической поверхности круга катания и увеличения ширины колеи на дуге могут сдвигаться чуть в сторону от центра пути и тем самым обеспечивают разный диаметр в точках контакта колеса с рельсом. Плюс к этому, колёса могут проскальзывать при движении по дуге, издавая при этом специфический звук, что отчасти нивелируется наклоном рельсового полотна в кривых. Отдельные механизмы поворота гусеничных машин также могут обходиться без дифференциалов в своей конструкции — здесь движение машины по дуге определяется либо пробуксовкой фрикционных муфт, либо вообще машина имеет лишь несколько фиксированных радиусов поворота. Дифференциалов нет в веломобилях, где вместо них ради удешевления и простоты применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом тяга передаётся только на то колесо, которое медленнее вращается. Дифференциалов может не быть в мотоблоках и средствах малой механизации, где их отсутствие нивелируется предельно узкой колеёй колёс ведущей оси, легкодеформируемыми покрышками и низким коэффициентом сцепления между колёсами и землёй.

  1. ↑ The Motor Vehicle K.Newton W.Steeds T.K.Garrett Ninth Edition pp549-550

Принцип работы дифференциала и его устройство

Автоликбез28 января 2018

Крутящий момент, создаваемый двигателем внутреннего сгорания, передается колесам с помощью различных механизмов – валов, шлицевых и шестеренчатых передач, дифференциалов. Последние вызывают наибольший интерес у любителей экстремальной езды по бездорожью, поскольку принимают участие в распределении мощности. Многие автолюбители слабо представляют работу данного узла, поэтому стоит рассмотреть вопрос, что такое дифференциал в автомобиле, объяснить его устройство и принцип действия.

Дифференциал

Назначение механизма

Чтобы понять роль дифференциала, применяющегося в транспортных средствах всех типов, нужно рассмотреть конструкцию обычного планетарного редуктора, передающего усилие от карданного вала двум полуосям. Алгоритм работы агрегата прост:

  1. Кардан вращает хвостовик с косозубой шестеренкой на конце.
  2. От хвостовика крутится большая планетарная шестерня, соединенная с двумя полуосями.
  3. Крутящий момент передается от планетарной шестерни полуосям и закрепленным на концах колесам.

Без дифференциала редуктор поровну распределяет крутящий момент на 2 оси, в результате колеса вертятся с одинаковой скоростью. Такое разделение вполне годится для прямолинейного движения, которое в реальности встречается довольно редко – даже при езде по ровным участкам трассы автомобиль отклоняется от прямой линии.

Чтобы машина идеально прошла поворот, колеса одного моста должны вращаться с разными скоростями, поскольку внешнее катится по более широкой дуге. Простой редуктор, обеспечивающий одинаковое вращение обеих полуосей, на повороте заставит одну шину скользить, вторую – буксовать, что заметно ухудшает маневренность авто.

Справка. Проблема весьма актуальна для внедорожников с постоянным полным приводом. В данном случае крутящий момент делится не только между колесами, но и между осями, вращающими редукторы переднего и заднего моста.

Совмещенный с планетарным редуктором дифференциал нужен для изменения угловых скоростей правого и левого колеса в зависимости от крутизны поворота. Механизм автоматически распределяет крутящий момент на полуоси, позволяя колесным покрышкам совершать разное число оборотов при движении автомобиля по дуге. Без дифференциала нормальная эксплуатация транспортного средства невозможна по таким причинам:

  • недостаточная управляемость;
  • быстрое истирание шин;
  • ускоренный износ деталей редуктора, валов и полуосей.

Как работает свободный дифференциал?

Механизмами данного типа оснащается подавляющее большинство машин с приводом на переднюю либо заднюю ось. В первом случае узел размещается внутри коробки передач, во втором является частью планетарного редуктора заднего моста.

Конструкция планетарной передачи подразумевает использование шестеренок конической формы. Существуют и другие разновидности автомобильных редукторов – цилиндрические, конусно-цилиндрические и червячные.

Устройство дифференциала свободного типа предусматривает совмещение с главной передачей. Механизм заднего моста включает следующие детали:

  • хвостовик с конической ведущей шестерней, соединенный с карданным валом;
  • ведомая планетарная шестеренка;
  • корпус ведомой шестерни оборудован двумя проушинами, куда вставляются оси сателлитов;
  • сателлитные шестеренки конической формы;
  • ведомые шестерни полуосей;
  • подшипники;
  • корпус редуктора.

Устройство свободного дифференциалаВ легковых авто устанавливается 2 сателлита, на грузовиках – четыре.

Изучить принцип работы свободного дифференциала предлагается на примере:

  1. Пока машина едет прямо, колеса крутятся с одинаковой скоростью. Хвостовик вращает «планетарку» вместе с закрепленными на ней сателлитами, причем последние остаются неподвижными и передают равный крутящий момент обеим осям за счет давления на зубья.
  2. Автомобиль входит в поворот. Крутящиеся вместе с большой шестерней сателлиты начинают вращаться вокруг собственной оси, причем в разные стороны.
  3. Мощность на валу делится не пополам, а в зависимости от крутизны дуги. Благодаря комбинированному вращению сателлитов полуоси и колеса совершают разное число оборотов, машина успешно преодолевает поворот без проскальзывания и пробуксовки резины.

Дифференциал получил название свободного, поскольку передает больший крутящий момент на колесо, которое вращается легче. Понятно, что на повороте шина внутри дуги сопротивляется вращению, поэтому дифференциал отдает больше мощности другой оси – противоположное колесо крутится быстрее.

Примечание. Полноприводные авто и внедорожники оснащаются тремя дифференциальными разделителями мощности – межосевым (ставится в раздаточной коробке) и двумя межколесными.

Свободный механизм решает главную проблему, но создает побочную. Когда одна покрышка начинает контактировать со скользким покрытием – льдом, укатанным снегом, грязью, начинается пробуксовка. Причина – дифференциальный механизм, отдающий максимум мощности в сторону наименьшего сопротивления. Для предотвращения подобных ситуаций на многих автомобилях задействована временная блокировка дифференциала.

Разновидности механизмов

Чтобы избавиться от пробуксовок на скользком дорожном покрытии либо в условиях бездорожья, производители комплектуют транспортные средства дифференциальными устройствами следующих конструкций:

  • механизм свободного типа с принудительной блокировкой от привода;
  • частично блокирующийся дифференциал повышенного сопротивления;
  • самоблокирующаяся червячная передача типа Torsen.

В первом варианте применяется рассмотренный выше шестеренчатый узел, дополнительно оснащенный блокировочным устройством. Система функционирует просто: в случае необходимости водитель активирует привод, фиксирующий сателлиты в неподвижном состоянии. Крутящий момент начинает делиться ровно пополам, оси вращаются с одинаковой скоростью и транспортное средство успешно преодолевает проблемное место.

Механизм с принудительной блокировкойПринудительная блокировка межосевого дифференциала включается с помощью различных приводов:

  • механический – от рычага раздаточной коробки;
  • электрический;
  • пневматический;
  • гидравлический.

Аналогичные приводные элементы применяются для остановки и удержания сателлитов переднего либо заднего моста.

Автомобили дорогой комплектации производители оснащают антипробуксовочной системой. Она «обманывает» дифференциальное устройство другим способом: по сигналу датчика, фиксирующего быстрое вращение одного колеса, электроника отдает команду его притормозить. Тогда сателлитные шестеренки начинают передавать больше мощности на другую ось и авто прекращает «грестись» на месте.

Устройство повышенного сопротивления

Помимо сателлитов, ведущих и ведомых шестерен, дифференциал повышенного трения включает такие элементы:

  • корпус, жестко прикрепленный к планетарной шестеренке;
  • пакет фрикционных дисков, установленных на каждой полуоси;
  • стальные диски, чьи выступы зафиксированы в корпусе;
  • распорная пружина, вставленная между коническими шестернями полуосей.

Дифференциал повышенного тренияСтальные и фрикционные диски (похожие применяются в сцеплении) установлены поочередно, первые вращаются вместе с корпусом, вторые – с осями. Конусообразная шестеренка надета на шлицы оси и способна смещаться на определенное расстояние. Пружина поддавливает 2 противоположных осевых шестерни.

Частичная блокировка дифференциала происходит следующим образом:

  1. На прямолинейном сухом участке дороги сателлиты неподвижны, а диски вращаются друг относительно друга.
  2. При попадании одной шины на скользкий участок начинается пробуксовка. Благодаря конусной форме зубьев шестеренки со стороны остановившегося колеса начнут взаимно отталкиваться.
  3. Шестерня полуоси сдвинется и сожмет пакет дисков. Возникнет сила трения, заставляющая ось вращаться вместе с корпусом напрямую от «планетарки» в обход сателлитов.

Подобное устройство самостоятельно регулирует степень блокировки – чем медленнее крутится покрышка с хорошим сцеплением, тем сильнее сжимаются диски и подается больше крутящего момента.

Самоблокирующиеся передачи Torsen

Принцип работы данных механизмов базируется на одной особенности червячной пары: шестеренка способна передавать вращение сателлиту, но обратное действие невозможно. Все шестерни, включая сателлитные, сделаны в виде цилиндров с косыми дугообразными зубьями. Всего в механизме применяется 3 пары червячных сателлитов, установленных вокруг шестеренок полуосей.

Самоблокирующаяся передача TorsenСамоблокирующийся дифференциал работает так:

  1. Во время прямолинейного движения червячные сателлиты ведут себя аналогично конусным – не крутятся сами, но вращают оси от главной передачи.
  2. На повороте число оборотов одной полуоси вырастет и она придаст вращение парам сателлитов – мощность начнет распределяться по-разному.
  3. Поскольку каждая пара сателлитов связана между собой прямозубой передачей, пробуксовка одного колеса исключается. Ось способна крутить свой сателлит, тот вращает соседний, который уже не может поворачивать вторую полуось. Механизм блокируется автоматически.

Устройство Torsen – самое надежное и передовое, но слишком дорогое, поэтому ставится на машины максимальной комплектации. В остальных применяются более доступные механизмы повышенного трения.

В среде любителей экстремальной езды по бездорожью известен простейший способ избежать пробуксовок – блокировка заднего дифференциала с помощью сварки. Сателлиты намертво привариваются к осям и всегда находятся в неподвижном состоянии. Правда, подобные автомобили предназначены только для езды по грунту и снегу – эксплуатировать их на твердом покрытии чересчур неудобно и дорого.

Дифференциал подробно — Энциклопедия журнала «За рулем»

Дифференциал — механизм распределения крутящего момента входного вала между двумя выходными полуосями ведущих колес или, на автомобилях повышенной проходимости,для распределения крутящего момента между передней и задней ведущими осями.
Это часть трансмиссии, которая на автомобилях классической и переднеприводной компоновки обычно выполняется в виде единого блока с главной передачей,а на внедорожниках встраивается в раздаточную коробку
Свободный дифференциал всегда делит поступающий на него крутящий момент поровну — не зависимо от того, с равными или с разными скоростями вращаются ведущие колеса (или ведущие оси).

Назначение дифференциала

При движении автомобиля по криволинейным участкам дороги — например, в поворотах — колеса ведущей оси катятся по окружностям разной длины. Внешнее (по отношению к центру поворота автомобиля) колесо проходит больший путь, чем внутреннее. Эта разница тем больше, чем круче поворот. Аналогичная проблема возникает и в движении по прямой, если используются ведущие колеса разной размерности и т.п. Если в этих ситуациях колеса соединить жесткой осью,окажется, что одно колесо вращается быстрей, чем нужно для прохождения заданной траектории,а другое медленней. Значит, оба колеса будут пробуксовывать, испытывать повышенные нагрузки, сильней нагреваться и изнашиваться. Увеличится и расход топлива. Наконец, это нарушает курсовую устойчивость автомобиля и ведет к его заносу или сносу — особенно, на скользких дорогах.
Для компенсации разницы проходимого ведущими колесами пути используется особый механизм — дифференциал. Простейший, свободный дифференциал уравнивает крутящие моменты (или тяговые силы) обоих ведущих колес, и если скорости их вращения (или линейного движения) разные, то и мощности на них пропорциональны этой разнице. Колесо, вращающееся быстрей, тратит на это несколько большую мощность, чем то, которое вращается медленней.
Таким образом дифференциал предназначен для обеспечения вращения ведущих колес с разными угловыми скоростями при постоянно передаче крутящего момента на оба колеса ведущей оси. Эта же логика присутствует и в работе межосевого дифференциала.

Устройство и принцип действия

Дифференциал классической конструкции устроен просто. Например, на заднеприводном автомобиле вращение от ведомого вала коробки передач передается через карданный вал на ведущую коническую шестерню главной передачи, которая находится в постоянном зацеплении с ведомой шестерней главной передачи. Ведомая шестерня является одновременно корпусом дифференциала, в котором перпендикулярно оси ведомой шестерни закреплена ось сателлитов — малых конических шестерен. Последние вращаются вместе с корпусом дифференциала относительно оси ведомой шестерней главной передачи. Сателлиты находятся в постоянном зацеплении с коническими шестернями левой и правой полуосей ведущих колес.
При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей.
Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней,наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется,- ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

Применение дифференциалов

В автомобилях с одной ведущей осью устанавливается один дифференциал, объединенный с главной передачей. В автомобилях с двумя и более ведущими осями дифференциалы устанавливаются в каждую ведущую ось (например, в трехосном грузовике или автобусе с двумя задними ведущими осями дифференциалы установлены в среднюю и заднюю оси). В автомобилях с подключаемым полным приводом дифференциалы устанавливаются в каждую ведущую ось (у двухосного полноприводного джипа с подключаемым передним ведущим мостом два дифференциала — по одному в каждой ведущей оси), но эксплуатация этих машин с постоянно подключенной передней осью не рекомендуется по причине повышенного износа главных передач и колес из-за неравномерно распределяемой мощности между осями. В свою очередь в автомобилях повышенной проходимости с постоянно подключенными ведущими осями применяют три дифференциала — по одному в каждой ведущей оси и один межосевой, установленный в раздаточной коробке. Межосевой дифференциал распределяет мощность между ведущими осями в зависимости от длины проходимого колесами оси пути. К примеру, передние колеса могут преодолевать возвышение, задние еще двигаться по прямой — передние колеса описывают более длинный путь, чем задние, соответственно, межосевой дифференциал обеспечивает передачу большей части мощности двигателя на переднюю ось, чем на заднюю. На многоосных транспортных средствах с несколькими ведущими осями применяют межтележечный дифференциал.
Дифференциал не применяется на транспортных средствах с одним ведущим колесом — в частности, на мотоциклах и трициклах с двумя передними управляемыми колесами. Если трицикл построен по схеме с одним передним управляемым колесом и двумя ведущими задними, то на нем применяют автомобильный ведущий мост с дифференциалом. Обычно подобные трициклы строят по индивидуальным заказам на базе популярных тяжелых моделей (пример — кастомные трициклы на базе «Харлей-Дэвидсон»).
На гоночных автомобилях на основе серийных моделей (например, на раллийных или для кольцевых гонок) дифференциал перед гонками блокируют, поскольку повороты такие машины проходят на большой скорости и с заносом. В данном случае склонность автомобиля к заносу из-за отсутствия дифференциала считается преимуществом.

Недостаток дифференциала

Главным недостатком дифференциала классической конструкции является проблема пробуксовки колеса, потерявшего контакт с поверхностью дорожного полотна. Когда одно из ведущих колес вращается в вывешенном состоянии его скорость вдвое больше, чем была бы при этих же оборотах ведомой шестерни дифференциала при нормальном движении по прямой. Зато второе колесо вообще не вращается. Причина проста. Момент сопротивления вращению вывешенного колеса ничтожен, соответственно мал и подводимый к нему крутящий момент. Значит, столь же мал крутящий момент и на противоположном колесе — оно стоит. Если же одно из колес буксует — с повышенными оборотами, но с существенным сопротивлением (например, в грязи, песке и т.п.), то такой же крутящий момент поступает и на другое, не буксующее, колесо. В результате автомобиль может двигаться с небольшой скоростью. При этом на буксующее колесо подается более высокая мощность — она тратится на нагрев шины, дороги и т.д. Эффект пробуксовки снижает проходимость автомобиля со свободным дифференциалом. Для решения этой проблемы автомобили оснащают механизмами блокировки дифференциала — ручной или автоматической — различной конструкции.

Механизмы блокировки дифференциала

  • Ручная блокировка дифференциала

Самым простым способом блокировки дифференциала является применение механизма с ручным управлением. Этот вид блокировки применяется на автомобилях повышенной проходимости. Блокировка производится блокировочными муфтами, которые фиксируют сателлиты. Дифференциал отключается. К достоинствам данного типа блокировки можно отнести простоту и надежность конструкции, к недостаткам — необходимость точно оценивать дорожную обстановку и отключать блокировку дифференциала при движении по качественным дорогам во избежание поломок главной передачи и ведущего моста в целом.

  • Блокировка дифференциала с электронным управлением

На современных полноприводных легковых автомобилях повышенной проходимости с развитым компьютерным управлением работой агрегатов и механизмов устанавливают антипробуксовочную систему с электронным управлением. Как только бортовой компьютер автомобиля (или электронный блок антипробуксовочной системы) получает от датчика вращения сигнал о том, что одно колесо оси вращается значительно быстрей второго, свободное колесо притормаживается рабочим тормозом — благодаря свободному дифференциалу мощность передается на колесо, которое не утратило контакта с дорожным покрытием. Эта система требует наличия системы раздельного привода тормозов всех четырех колес и точной отладки датчиков.
Антипробуксовочные системы позволяют достаточно тонко регулировать распределение мощности в зависимости от состояния дорожного покрытия и избежать потерь мощности двигателя при срабатывании дифференциала. С другой стороны, управляющая система из датчиков и исполнительных приводов тормозов (на соленоидах) обладает инерционностью, поэтому работает с некоторым запозданием, что приходится учитывать водителю.
На гоночных автомобилях иногда применяются фрикционные дифференциалы с тормозными ленточными механизмами, управляемыми электроникой.

  • Автоматическая блокировка с применением фрикционной муфты

На спортивные автомобили, выпускаемые малыми сериями или по заказу, иногда устанавливают фрикционные самоблокирующиеся дифференциалы. На серийных машинах эти дифференциалы редкость, поскольку они требуют особого обслуживания и подвержены интенсивному износу.
Фрикционные муфты устанавливаются между полуосевыми шестернями и корпусом дифференциала. При прямолинейном движении автомобиля полуоси вращаются с одинаковой угловой скоростью — сила трения во фрикционных муфтах равна нулю, дифференциал распределяет мощность между колесами ведущей оси поровну. Как только одна из полуосей начинает вращаться быстрей, диски фрикционной муфты сближаются, за счет возникающих сил трения муфта притормаживает вращение свободной полуоси. Этот тип дифференциала отличается невысокой эффективностью при большой разнице в угловых скоростях ведущих колес (например, на поворотах с малым радиусом закругления).

* Дифференциал с вязкостной муфтой (вискомуфтой)

Вискомуфта работает подобно фрикционной муфте самоблокирующегося дифференциала, но имеет упрощенную конструкцию. В корпус главной передачи ведущего моста устанавливается вискомуфта, состоящая из двух пакетов перемежающихся перфорированных дисков, вращающихся в вязкой среде на основе силикона. Каждый пакет соединен с левой и правой полуосью. Когда угловая скорость полуосей одинакова, скорость вращения дисков пакета тоже одинакова. Как только один из пакетов, связанный с полуосью, начинает вращаться быстрей другого, вискомуфта начинает притормаживать этот пакет, стремясь выровнять угловые скорости дисков (и, соответственно, полуосей). За счет этого возникает эффект автоматической блокировки свободного колеса.
Этот тип автоматической блокировки имеет ряд недостатков. Во-первых, вискомуфта увеличивает размеры картера ведущего моста. Во-вторых, вискомуфта не отличается высокой эффективностью и не срабатывает при большой разнице угловых скоростей, то есть в условиях тяжелого бездорожья.
К преимуществам вискомуфты относят простоту конструкции. Иногда она применяется вместо дифференциала шестеренчатой конструкции — в паре с конической главной передачей. В большинстве случаев вискомуфта в ведущих мостах не применяется. Ее устанавливают в качестве механизма автоматической блокировки межосевого дифференциала в легковых автомобилях повышенной проходимости (в комфортабельных «паркетниках», не предназначенных для интенсивной эксплуатации в условиях бездорожья).

Другие типы самоблокирующихся дифференциалов

Помимо описанных механизмов автоматической блокировки дифференциала в автомобилях используются и другие типы блокировочных систем.
В военной технике получили распространение зубчатые или кулачковые самоблокирующиеся дифференциалы.
Существует конструкция гидророторного самоблокирующегося дифференциала, в котором использован принцип фрикционной муфты с гидроприводом. При возникновении разницы в угловых скоростях полуосей, муфта тормозит вращение одной из полуосей под воздействием поршня, сжимающего пакет фрикционных дисков. Поршень перемещается давлением масла, нагнетаемого гидронасосом.
На полноприводные автомобили Honda устанавливают блокировку дифференциала с двумя гидронасосами.
На современных легковых автомобилях повышенной проходимости и гоночных машинах все большее применение находят шестеренчатые самоблокирующиеся дифференциалы (осевые и межосевые), в которых использован эффект заклинивания червячной или косозубой передачи при достижении порогового значения разницы мощностей.

устройство и принцип работы, преимущества и недостатки, виды

Дифференциал – интересное механическое устройство, известное человечеству с давних времен. Несколько лет назад ученые считали, что первый механизм, работающий по типу дифференциала, был использован в антикитерском механизме – удивительной находке, поднятой со дна моря, и оказавшейся самым настоящим древним калькулятором для астрономических вычислений. Так что сама идея дифференциала не нова, однако настоящее признание она получила только с появлением первых автомобилей.

Что такое дифференциал и для чего он нужен?

Дифференциал в транспортном средстве – это механизм, отвечающий за распределение момента вращения и угловых скоростей от главной передачи на колёса (или на оси, если говорить про межосевой дифференциал). Зачем это нужно? Затем, чтобы дать возможность транспорту нормально поворачивать, не нарушая равномерного сцепления с дорогой каждого колеса.

Если попробовать развернуть на ходу любую повозку с жесткой осью, выяснится, что колесо, находящееся внутри радиуса поворота, пробуксовывает. Одновременно с этим другое колесо, которое находится на наружной дуге и должно двигаться быстрей, теряет сцепление с поверхностью. Другими словами, поворачивать вот так, с двумя колесами, насаженными на одну ось, очень сложно. Можно только посочувствовать лошадям, вынужденным таскать неповоротливые телеги…

Однако автомобиль – давно уже не телега, в том числе и потому, что во время поворота срабатывает дифференциал, который распределяет скорость вращения так, чтобы замедлить колесо внутри дуги поворота и ускорить второе, которое движется по внешней дуге. Всё это происходит без вмешательства водителя, только за счет механического распределения момента вращения.

Где находится дифференциал?

Расположение дифференциалов

Размещение дифференциала зависит от того, какой тип привода использован в автомобиле.

  1. В переднеприводных автомобилях установлен передний дифференциал, который находится внутри коробки передач.
  2. В заднеприводных моделях установлен в заднем мосту на ведущей оси.
  3. В полноприводных автомобилях с постоянным полным приводом ставится межосевой дифференциал в раздаточной коробке (он распределяет усилия между передней и задней осью) и межколесные на каждую ось.
  4. А вот подключаемый полный привод не требует межосевого распределителя, в таких автомобилях устанавливается межколесный дифференциал на каждую из осей.

Почему только на ведущую ось (внедорожников это тоже касается, у них обе оси ведущие)? Просто потому, что дифференциал предназначен для того, чтобы распределять момент вращения, идущий от двигателя, а значит, на ведущей оси.

Устройство и принцип работы

С технической точки зрения дифференциал устроен достаточно просто, но при этом он способен выдерживать огромные нагрузки. Что внутри этого узла и как он работает?

Устройство типового дифференциала

По своему типу это планетарный редуктор со всеми необходимыми элементами.

  1. Шестерня главной передачи – подает вращение от КПП на дифференциал.
  2. Ведомая шестерня связана и с главной передачей, и с шестернями-сателлитами.
  3. Сателлиты – закреплены в «чашке» ведомой шестерни, так что вращаются вместе с ней.
  4. Шестерни полуосей – соединены с сателлитами и не контактируют с остальными элементами дифференциала.

Как это работает?

Детально показано на видео-ролике, ниже.

Дифференциал подробно — Энциклопедия журнала «За рулем»

Дифференциал — механизм распределения крутящего момента входного вала между двумя выходными полуосями ведущих колес или, на автомобилях повышенной проходимости,для распределения крутящего момента между передней и задней ведущими осями.
Это часть трансмиссии, которая на автомобилях классической и переднеприводной компоновки обычно выполняется в виде единого блока с главной передачей,а на внедорожниках встраивается в раздаточную коробку
Свободный дифференциал всегда делит поступающий на него крутящий момент поровну — не зависимо от того, с равными или с разными скоростями вращаются ведущие колеса (или ведущие оси).

Назначение дифференциала

При движении автомобиля по криволинейным участкам дороги — например, в поворотах — колеса ведущей оси катятся по окружностям разной длины. Внешнее (по отношению к центру поворота автомобиля) колесо проходит больший путь, чем внутреннее. Эта разница тем больше, чем круче поворот. Аналогичная проблема возникает и в движении по прямой, если используются ведущие колеса разной размерности и т.п. Если в этих ситуациях колеса соединить жесткой осью,окажется, что одно колесо вращается быстрей, чем нужно для прохождения заданной траектории,а другое медленней. Значит, оба колеса будут пробуксовывать, испытывать повышенные нагрузки, сильней нагреваться и изнашиваться. Увеличится и расход топлива. Наконец, это нарушает курсовую устойчивость автомобиля и ведет к его заносу или сносу — особенно, на скользких дорогах.
Для компенсации разницы проходимого ведущими колесами пути используется особый механизм — дифференциал. Простейший, свободный дифференциал уравнивает крутящие моменты (или тяговые силы) обоих ведущих колес, и если скорости их вращения (или линейного движения) разные, то и мощности на них пропорциональны этой разнице. Колесо, вращающееся быстрей, тратит на это несколько большую мощность, чем то, которое вращается медленней.
Таким образом дифференциал предназначен для обеспечения вращения ведущих колес с разными угловыми скоростями при постоянно передаче крутящего момента на оба колеса ведущей оси. Эта же логика присутствует и в работе межосевого дифференциала.

Устройство и принцип действия

Дифференциал классической конструкции устроен просто. Например, на заднеприводном автомобиле вращение от ведомого вала коробки передач передается через карданный вал на ведущую коническую шестерню главной передачи, которая находится в постоянном зацеплении с ведомой шестерней главной передачи. Ведомая шестерня является одновременно корпусом дифференциала, в котором перпендикулярно оси ведомой шестерни закреплена ось сателлитов — малых конических шестерен. Последние вращаются вместе с корпусом дифференциала относительно оси ведомой шестерней главной передачи. Сателлиты находятся в постоянном зацеплении с коническими шестернями левой и правой полуосей ведущих колес.
При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей.
Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней,наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется,- ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

Применение дифференциалов

В автомобилях с одной ведущей осью устанавливается один дифференциал, объединенный с главной передачей. В автомобилях с двумя и более ведущими осями дифференциалы устанавливаются в каждую ведущую ось (например, в трехосном грузовике или автобусе с двумя задними ведущими осями дифференциалы установлены в среднюю и заднюю оси). В автомобилях с подключаемым полным приводом дифференциалы устанавливаются в каждую ведущую ось (у двухосного полноприводного джипа с подключаемым передним ведущим мостом два дифференциала — по одному в каждой ведущей оси), но эксплуатация этих машин с постоянно подключенной передней осью не рекомендуется по причине повышенного износа главных передач и колес из-за неравномерно распределяемой мощности между осями. В свою очередь в автомобилях повышенной проходимости с постоянно подключенными ведущими осями применяют три дифференциала — по одному в каждой ведущей оси и один межосевой, установленный в раздаточной коробке. Межосевой дифференциал распределяет мощность между ведущими осями в зависимости от длины проходимого колесами оси пути. К примеру, передние колеса могут преодолевать возвышение, задние еще двигаться по прямой — передние колеса описывают более длинный путь, чем задние, соответственно, межосевой дифференциал обеспечивает передачу большей части мощности двигателя на переднюю ось, чем на заднюю. На многоосных транспортных средствах с несколькими ведущими осями применяют межтележечный дифференциал.
Дифференциал не применяется на транспортных средствах с одним ведущим колесом — в частности, на мотоциклах и трициклах с двумя передними управляемыми колесами. Если трицикл построен по схеме с одним передним управляемым колесом и двумя ведущими задними, то на нем применяют автомобильный ведущий мост с дифференциалом. Обычно подобные трициклы строят по индивидуальным заказам на базе популярных тяжелых моделей (пример — кастомные трициклы на базе «Харлей-Дэвидсон»).
На гоночных автомобилях на основе серийных моделей (например, на раллийных или для кольцевых гонок) дифференциал перед гонками блокируют, поскольку повороты такие машины проходят на большой скорости и с заносом. В данном случае склонность автомобиля к заносу из-за отсутствия дифференциала считается преимуществом.

Недостаток дифференциала

Главным недостатком дифференциала классической конструкции является проблема пробуксовки колеса, потерявшего контакт с поверхностью дорожного полотна. Когда одно из ведущих колес вращается в вывешенном состоянии его скорость вдвое больше, чем была бы при этих же оборотах ведомой шестерни дифференциала при нормальном движении по прямой. Зато второе колесо вообще не вращается. Причина проста. Момент сопротивления вращению вывешенного колеса ничтожен, соответственно мал и подводимый к нему крутящий момент. Значит, столь же мал крутящий момент и на противоположном колесе — оно стоит. Если же одно из колес буксует — с повышенными оборотами, но с существенным сопротивлением (например, в грязи, песке и т.п.), то такой же крутящий момент поступает и на другое, не буксующее, колесо. В результате автомобиль может двигаться с небольшой скоростью. При этом на буксующее колесо подается более высокая мощность — она тратится на нагрев шины, дороги и т.д. Эффект пробуксовки снижает проходимость автомобиля со свободным дифференциалом. Для решения этой проблемы автомобили оснащают механизмами блокировки дифференциала — ручной или автоматической — различной конструкции.

Механизмы блокировки дифференциала

  • Ручная блокировка дифференциала

Самым простым способом блокировки дифференциала является применение механизма с ручным управлением. Этот вид блокировки применяется на автомобилях повышенной проходимости. Блокировка производится блокировочными муфтами, которые фиксируют сателлиты. Дифференциал отключается. К достоинствам данного типа блокировки можно отнести простоту и надежность конструкции, к недостаткам — необходимость точно оценивать дорожную обстановку и отключать блокировку дифференциала при движении по качественным дорогам во избежание поломок главной передачи и ведущего моста в целом.

  • Блокировка дифференциала с электронным управлением

На современных полноприводных легковых автомобилях повышенной проходимости с развитым компьютерным управлением работой агрегатов и механизмов устанавливают антипробуксовочную систему с электронным управлением. Как только бортовой компьютер автомобиля (или электронный блок антипробуксовочной системы) получает от датчика вращения сигнал о том, что одно колесо оси вращается значительно быстрей второго, свободное колесо притормаживается рабочим тормозом — благодаря свободному дифференциалу мощность передается на колесо, которое не утратило контакта с дорожным покрытием. Эта система требует наличия системы раздельного привода тормозов всех четырех колес и точной отладки датчиков.
Антипробуксовочные системы позволяют достаточно тонко регулировать распределение мощности в зависимости от состояния дорожного покрытия и избежать потерь мощности двигателя при срабатывании дифференциала. С другой стороны, управляющая система из датчиков и исполнительных приводов тормозов (на соленоидах) обладает инерционностью, поэтому работает с некоторым запозданием, что приходится учитывать водителю.
На гоночных автомобилях иногда применяются фрикционные дифференциалы с тормозными ленточными механизмами, управляемыми электроникой.

  • Автоматическая блокировка с применением фрикционной муфты

На спортивные автомобили, выпускаемые малыми сериями или по заказу, иногда устанавливают фрикционные самоблокирующиеся дифференциалы. На серийных машинах эти дифференциалы редкость, поскольку они требуют особого обслуживания и подвержены интенсивному износу.
Фрикционные муфты устанавливаются между полуосевыми шестернями и корпусом дифференциала. При прямолинейном движении автомобиля полуоси вращаются с одинаковой угловой скоростью — сила трения во фрикционных муфтах равна нулю, дифференциал распределяет мощность между колесами ведущей оси поровну. Как только одна из полуосей начинает вращаться быстрей, диски фрикционной муфты сближаются, за счет возникающих сил трения муфта притормаживает вращение свободной полуоси. Этот тип дифференциала отличается невысокой эффективностью при большой разнице в угловых скоростях ведущих колес (например, на поворотах с малым радиусом закругления).

* Дифференциал с вязкостной муфтой (вискомуфтой)

Вискомуфта работает подобно фрикционной муфте самоблокирующегося дифференциала, но имеет упрощенную конструкцию. В корпус главной передачи ведущего моста устанавливается вискомуфта, состоящая из двух пакетов перемежающихся перфорированных дисков, вращающихся в вязкой среде на основе силикона. Каждый пакет соединен с левой и правой полуосью. Когда угловая скорость полуосей одинакова, скорость вращения дисков пакета тоже одинакова. Как только один из пакетов, связанный с полуосью, начинает вращаться быстрей другого, вискомуфта начинает притормаживать этот пакет, стремясь выровнять угловые скорости дисков (и, соответственно, полуосей). За счет этого возникает эффект автоматической блокировки свободного колеса.
Этот тип автоматической блокировки имеет ряд недостатков. Во-первых, вискомуфта увеличивает размеры картера ведущего моста. Во-вторых, вискомуфта не отличается высокой эффективностью и не срабатывает при большой разнице угловых скоростей, то есть в условиях тяжелого бездорожья.
К преимуществам вискомуфты относят простоту конструкции. Иногда она применяется вместо дифференциала шестеренчатой конструкции — в паре с конической главной передачей. В большинстве случаев вискомуфта в ведущих мостах не применяется. Ее устанавливают в качестве механизма автоматической блокировки межосевого дифференциала в легковых автомобилях повышенной проходимости (в комфортабельных «паркетниках», не предназначенных для интенсивной эксплуатации в условиях бездорожья).

Другие типы самоблокирующихся дифференциалов

Помимо описанных механизмов автоматической блокировки дифференциала в автомобилях используются и другие типы блокировочных систем.
В военной технике получили распространение зубчатые или кулачковые самоблокирующиеся дифференциалы.
Существует конструкция гидророторного самоблокирующегося дифференциала, в котором использован принцип фрикционной муфты с гидроприводом. При возникновении разницы в угловых скоростях полуосей, муфта тормозит вращение одной из полуосей под воздействием поршня, сжимающего пакет фрикционных дисков. Поршень перемещается давлением масла, нагнетаемого гидронасосом.
На полноприводные автомобили Honda устанавливают блокировку дифференциала с двумя гидронасосами.
На современных легковых автомобилях повышенной проходимости и гоночных машинах все большее применение находят шестеренчатые самоблокирующиеся дифференциалы (осевые и межосевые), в которых использован эффект заклинивания червячной или косозубой передачи при достижении порогового значения разницы мощностей.

устройство и принцип работы, преимущества и недостатки, виды

Дифференциал – интересное механическое устройство, известное человечеству с давних времен. Несколько лет назад ученые считали, что первый механизм, работающий по типу дифференциала, был использован в антикитерском механизме – удивительной находке, поднятой со дна моря, и оказавшейся самым настоящим древним калькулятором для астрономических вычислений. Так что сама идея дифференциала не нова, однако настоящее признание она получила только с появлением первых автомобилей.

Что такое дифференциал и для чего он нужен?

Дифференциал в транспортном средстве – это механизм, отвечающий за распределение момента вращения и угловых скоростей от главной передачи на колёса (или на оси, если говорить про межосевой дифференциал). Зачем это нужно? Затем, чтобы дать возможность транспорту нормально поворачивать, не нарушая равномерного сцепления с дорогой каждого колеса.

Если попробовать развернуть на ходу любую повозку с жесткой осью, выяснится, что колесо, находящееся внутри радиуса поворота, пробуксовывает. Одновременно с этим другое колесо, которое находится на наружной дуге и должно двигаться быстрей, теряет сцепление с поверхностью. Другими словами, поворачивать вот так, с двумя колесами, насаженными на одну ось, очень сложно. Можно только посочувствовать лошадям, вынужденным таскать неповоротливые телеги…

Однако автомобиль – давно уже не телега, в том числе и потому, что во время поворота срабатывает дифференциал, который распределяет скорость вращения так, чтобы замедлить колесо внутри дуги поворота и ускорить второе, которое движется по внешней дуге. Всё это происходит без вмешательства водителя, только за счет механического распределения момента вращения.

Где находится дифференциал?

Расположение дифференциалов

Размещение дифференциала зависит от того, какой тип привода использован в автомобиле.

  1. В переднеприводных автомобилях установлен передний дифференциал, который находится внутри коробки передач.
  2. В заднеприводных моделях установлен в заднем мосту на ведущей оси.
  3. В полноприводных автомобилях с постоянным полным приводом ставится межосевой дифференциал в раздаточной коробке (он распределяет усилия между передней и задней осью) и межколесные на каждую ось.
  4. А вот подключаемый полный привод не требует межосевого распределителя, в таких автомобилях устанавливается межколесный дифференциал на каждую из осей.

Почему только на ведущую ось (внедорожников это тоже касается, у них обе оси ведущие)? Просто потому, что дифференциал предназначен для того, чтобы распределять момент вращения, идущий от двигателя, а значит, на ведущей оси.

Устройство и принцип работы

С технической точки зрения дифференциал устроен достаточно просто, но при этом он способен выдерживать огромные нагрузки. Что внутри этого узла и как он работает?

Устройство типового дифференциала

По своему типу это планетарный редуктор со всеми необходимыми элементами.

  1. Шестерня главной передачи – подает вращение от КПП на дифференциал.
  2. Ведомая шестерня связана и с главной передачей, и с шестернями-сателлитами.
  3. Сателлиты – закреплены в «чашке» ведомой шестерни, так что вращаются вместе с ней.
  4. Шестерни полуосей – соединены с сателлитами и не контактируют с остальными элементами дифференциала.

Как это работает?

Детально показано на видео-ролике, ниже.

  1. От КПП выходит вал главной передачи, от которого вращение передается на ведомую шестерню.
  2. Ведомая шестерня и скрепленная с ней «чашка» (водило) принимают крутящий момент.
  3. Вращаясь, ведомая шестерня и чашка приводят в движение шестерни-сателлиты.
  4. Сателлиты, в свою очередь, передают вращение на полуоси.
  5. При равной нагрузке на полуоси (когда автомобиль движется по прямой дороге с равномерным покрытием) сателлиты не вращаются. Работает только ведомая шестерня, в чашке которой закреплены сателлиты, и они описывают обороты вместе с ней, при этом не совершая вращения вокруг своей оси. Таким образом, момент вращения распределяется на полуоси поровну, 50:50.
  6. Когда автомобиль поворачивает и одно из колес должно замедлить, а второе – ускорить движение, сателлиты приходят в движение. За счет конической зубчатой передачи они, вращаясь, замедляют одну полуось и ускоряют вторую. Другими словами, перераспределяют момент вращения в нужной пропорции, вплоть до 0:100 без потери усилия.
  7. При пробуксовке одного колеса включается механизм блокировки, без которого на то колесо, которое вращается быстрее, ушел бы весь момент вращения. Без блокировки автомобиль останавливается при попадании хотя бы одного колеса на скользкую поверхность.

Преимущества и недостатки

Основное преимущество дифференциала – это то, что он дал возможность выполнять повороты. Скорость движения каждого колеса на ведущей оси подстраивается под дорожную ситуацию совершенно автоматически, без участия водителя, так что безопасность и маневренность транспортного средства выросли в десятки раз после внедрения этого механизма. Сегодня дифференциал той или иной конструкции используется во всех видах автомобильного транспорта.

Еще одно преимущество – довольно высокая надежность узла. Планетарная передача выдерживает большие нагрузки, а особенности некоторых типов дифференциала еще дополнительно повышают его мощность и стойкость к износу

Основным недостатком можно назвать необходимость использовать механизм блокировки, чтобы автомобиль мог двигаться и по льду, и по сложным дорогам. Ручная, автоматическая или электронная – любой тип блокировки должен применяться обязательно, а это означает, что появляется дополнительный механизм, который может выйти из строя.

И, конечно, нельзя забывать о контроле за техническим состоянием узла. Это еще один узел, в котором нужно менять масло, хоть и не часто, и отслеживать износ деталей. И, кстати, о необходимости этой процедуры многие автовладельцы забывают.

Виды дифференциалов

За годы эволюции это устройство менялось и совершенствовалось. Так что теперь в автомобилестроении используют различные виды дифференциалов, в зависимости от того, на какие нагрузки рассчитан автомобиль, для каких дорожных условий предназначен, какую цель ставили перед собой конструкторы.

  1. По особенностям конструкции различают конический, цилиндрический и червячный типы. Название зависит от того, какой тип передачи используется для вращения полуосей. В настоящее время самый распространенный вид – конический.
  2. По распределению усилия на полуоси различают симметричный и несимметричный. В первом случае количество зубцов на шестернях равное, получаем симметричное распределение вращения. При неравном количестве зубцов усилие распределяется несимметрично, что выгодно для внедорожников высокой проходимости.

Виды блокировки дифференциала. Система блокировки разрабатывалась для внедорожников, для которых пробуксовка любого колеса означает полную остановку автомобиля. На видео, ниже, подробно рассказано о системах блокировки.

Существует три основных типа блокировки.

  1. Ручная блокировка дифференциала – это система, при которой водитель самостоятельно включает и выключает блокировку по своему усмотрению. Возле водительского места находится рычаг или кнопка управления блокировкой, с помощью которых принудительно останавливается вращение сателлитов вокруг свой оси. Фактически, дифференциал начинает работать так же, как при движении по прямой, распределяя усилие на обе полуоси поровну. При этом ухудшается управляемость, ведь повороты с заблокированным дифференциалом выполнить крайне сложно.
  2. Автоматическая блокировка или самоблокировка – система, которая облегчает управление автомобилем, снимая с водителя необходимость самостоятельно блокировать дифференциал. Самоблокирующийся тип называют еще дифференциалом повышенного трения.
  3. Электронная блокировка – это, по сути, имитация работы дифференциала, используемая в антипробуксовочных электронных системах. При необходимости забуксовавшее колесо принудительно замедляется тормозом, после чего дифференциал перераспределяет усилие, давая больше нагрузки на вторую полуось, которая имеет лучшее сцепление с дорогой.

Самоблокирующийся делятся на два основных типа.

  1. Тип Torque – блокировка, срабатывающая от разницы крутящего момента на полуосях. При пробуксовке срабатывают гасители скорости, подтормаживающие ту полуось, скорость вращения которой выше.
  2. Тип Speed Sensitive – блокировка с помощью вискомуфты, которая срабатывает, если одна из полуосей движется быстрее другой.

На сегодняшний день существует несколько видов дифференциалов, используемых в современных автомобилях.

  1. Квайф (Quaife) – самая простая конструкция, главной особенностью которой является использование нескольких пар сателлитов, сцепляющихся между собой попарно. Благодаря возникающим силам трения механизм автоматически подстраивается под дорожные условия, правильно распределяя момент вращения при поворотах и пробуксовке.
  2. Вискомуфта – устройство блокировки, основанное на применении жидкости с переменной вязкостью. Чем выше скорость ее перемешивания (соотношение скоростей вращения левой и правой полуосей), тем выше вязкость жидкости, вплоть до полной блокировки контактных дисковых блоков. Вискомуфта устанавливается на кроссоверы и легковые автомобили, то есть она не рассчитана на условия жесткого бездорожья.

    Вискомуфта

  3. Дисковая блокировка – конструкция с дополнительными коническими шестернями, муфтами и дисками. При разнице в скорости вращения полуосей разъединяются стыки между шестернями и система блокируется, после чего скорости вращения полуосей выравниваются.

    Дисковая блокировка

  4. Полная блокировка (кулачковая) – это тип с ручной блокировкой из салона автомобиля. Несмотря на некоторые неудобства его продолжают использовать во внедорожниках и есть много поклонников именно этого типа блокировки.
  5. Торсен (Torsen) – агрегат комбинированного, коническо-червячного типа. Это один из самых мощных и надежных типов механизма, используемый для условий жесткого бездорожья. Принцип его работы подробно описан на видео, ниже.

 

Заключение

Сегодня дифференциал используется на всех без исключения автомобилях, что говорит о его незаменимости. Многие автовладельцы и не задумываются о том, что там у них под днищем автомобиля, а обо всех нюансах и тонкостях этого узла знают только поклонники автоспорта и сурового бездорожья. Но от того, насколько качественно выполняет свою работу этот узел, зависит уверенность в маневрах и безопасность на дороге.

Главная передача и дифференциал

Содержание статьи

Главная передача

Главная передача предназначена для увеличения крутящего момента, передаваемого к ведущим колесам. Устройство ее, на первый взгляд, весьма просто — две шестерни. Одна, размером поменьше, является ведущей, вторая, побольше — ведомой. Но от конструкции главной передачи во многом зависят тягово-скоростные характеристики автомобиля и расход топлива.

Гипоидная передачаГипоидная передача

На заднеприводных автомобилях применяется гипоидная главная передача, так как крутящий момент нужно передать на ведущие колеса под углом 90 градусов. Почему применяется более сложная в изготовлении гипоидная передача, а не простая коническая? Да потому что у конической передачи ее простота является единственным преимуществом. А недостатков больше: шумность, низкая несущая способность, высокое расположение карданного вала (а, следовательно, и трансмиссионного туннеля в кузове автомобиля). В гипоидной передаче ось ведущей шестерни смещена относительно оси ведомой на величину гипоидного смещения. Поэтому карданный вал располагается ниже, что позволяет уменьшить высоту трансмиссионного туннеля. При этом снижается центр тяжести автомобиля, тем самым улучшая его устойчивость.

Зубья шестерен выполняются косыми или криволинейными. Благодаря тому, что в гипоидной передаче одновременно находится в зацеплении больше зубьев, чем в конической, обеспечивается ее плавная и бесшумная работа, повышается нагрузочная способность. Однако, из-за более плотного прилегания зубьев увеличивается опасность заклинивания, особенно при изменении направления вращения. Поэтому гипоидные передачи требуют высокой точности регулировки и применения специального трансмиссионного масла. В масла для гипоидных передач добавляются противоизносные и противозадирные присадки.

В переднеприводных автомобилях, где нет необходимости изменять направление передаваемого момента, в главной передаче применяются простые цилиндрические шестерни. Конструктивно главная передача устанавливается в общем картере с коробкой передач. Цилиндрические передачи просты в изготовлении, недороги, опасность задиров низка. Поэтому для их смазки в большинстве случаев применяется не специальное трансмиссионное масло, а моторное.

Как влияет передаточное число главной пары на тягово-динамические характеристики? Чем оно выше, тем быстрее происходит разгон, но максимальная скорость ниже. И, наоборот, с уменьшением передаточного числа автомобиль разгоняется медленнее, но достигает большей максимальной скорости. Значение передаточного числа для конкретной модели автомобиля подбирается с учетом характеристик двигателя, размера колес, возможностей тормозной системы.

Дифференциал

Для тех, кто не изучал английский :-)
STRAIGHT – ПРЯМО
same speed – одинаковая скорость
pinion gears rotate with case – сателлиты вращаются вместе с корпусом
TURN – ПОВОРОТ
fast – быстро, slow – медленно
outer wheel faster – внешнее колесо быстрее
inner wheel slower – внутреннее колесо медленнее
pinion gears rotate on pinion shaft – сателлиты вращаются на своих осях

Дифференциал — это механизм, позволяющий (при необходимости) ведущим колесам автомобиля вращаться с разными скоростями. Для чего это нужно? При движении по прямой колеса проходят одинаковый путь, в повороте же внешнее колесо проходит путь больший, чем внутреннее колесо. Поэтому, чтобы «успеть» за автомобилем, внешнее колесо должно вращаться быстрее.

Устройство дифференциала несложное — корпус, ось сателлитов и два сателлита (шестерни). Корпус крепится к ведомой шестерне главной пары и вращается вместе с ней. Сателлиты входят в зацепление с шестернями полуосей, которые непосредственно вращают колеса.

В такой конструкции сателлиты передают больший крутящий момент на ту полуось, которая оказывает меньшее сопротивление вращению. То есть, с большей скоростью будет вращаться колесо, которое дифференциалу легче раскрутить. При движение по прямой колеса нагружены одинаково, дифференциал делит крутящий момент поровну, сателлиты не вращаются вокруг своей оси. В повороте внутреннее колесо нагружено больше, внешнее — разгружается. Поэтому сателлиты начинают вращаться вокруг оси, подкручивая менее нагруженное колесо, увеличивая тем самым скорость его вращения.

Но такая особенность дифференциала иногда приводит к весьма неприятным последствиям. Если, например, одно из колес попадет на скользкую поверхность, дифференциал будет вращать только его, полностью игнорируя колесо, имеющее нормальный контакт с дорогой. То есть, автомобиль будет «буксовать».

Для борьбы с этим явлением применяются блокировки дифференциала. Способов блокировок придумано множество — от простых механических до изощренных электронных.

Дифференциал с полной блокировкой

Применяется во внедорожниках. В такой конструкции валы полуосей жестко соединяются между собой, вращаясь, таким образом, с равными скоростями. Блокировка включается водителем вручную перед преодолением труднопроходимого участка, после чего ее необходимо выключать во избежание перегрузок трансмиссии, повышенного износа шин и снижения управляемости автомобиля. При движении в обычных дорожных условиях полную блокировку применять, естественно, нельзя.

Дифференциал с частичной блокировкой

В таких дифференциалах блокировка включается автоматически, поэтому их еще называют самоблокирующимися. При этом усилие блокировки нарастает постепенно, пропорционально разнице в скорости вращения или величине крутящего момента. По конструкции самоблокирующиеся дифференциалы можно разделить на четыре вида: вязкостные, дисковые, винтовые, электронноуправляемые.

ВискомуфтаВискомуфта

Вискомуфта (вязкостная муфта) представляет собой герметичный корпус, в котором размещены два пакета фрикционов. Пространство внутри корпуса заполнено силиконовой жидкостью, вязкость которой зависит от температуры. Один пакет фрикционов соединяется с корпусом дифференциала, второй — с одной из полуосей. В обычных условиях, когда полуоси вращаются с одинаковой скоростью, или с небольшой разницей, вискомуфта себя никак не проявляет. При пробуксовке одного из колес скорость вращения полуоси резко возрастает, жидкость при этом интенсивно нагревается, а ее вязкость повышается. В результате пакеты фрикционов «слипаются» – скорости валов выравниваются. При остывании вязкость снижается — валы снова вращаются независимо. Вискомуфта способна обеспечить лишь небольшой коэффициент блокировки, при длительной пробуксовке перегревается, срабатывает с запаздываниями (пока нагреется жидкость). Поэтому область ее применения — обычные городские автомобили, для преодоления бездорожья она не подходит.

Дифференциал с дисковой блокировкойДифференциал с дисковой блокировкой

Дисковые дифференциалы – это обычные дифференциалы, в которые дополнительно встраиваются один или два пакета фрикционов и распорная пружина, создающая преднатяг (сжатие пакетов). В пакете фрикционов часть дисков крепится к полуоси, вторая — к корпусу дифференциала. Когда колеса вращаются с одинаковыми скоростями, диски в пакете вращаются как одно целое. При разнице в скорости вращения между ними возникают силы трения, стремящиеся выровнять скорости. Таким образом осуществляется частичная блокировка дифференциала. Очевидны недостатки дисковой блокировки — постоянный, пусть даже и небольшой, момент трения, создаваемый преднатягом, ухудшает управляемость, быстрее изнашиваются шины, увеличивается расход топлива. Да и срок службы фрикционов сравнительно небольшой. По мере их износа снижается и степень блокировки, а после полного износа дифференциал работает уже как свободный. Отсюда вывод — чем чаще «буксуешь», тем быстрее «умирает» дифференциал. Дисковые дифференциалы требуют применения специального трансмиссионного масла.

Усилием преднатяга определяется степень блокировки и минимальный крутящий момент, передаваемый на колесо в любых дорожных условиях. Регулируя степень преднатяга подбирают нужный компромисс между проходимостью и управляемостью. Дисковые дифференциалы с малым преднатягом используются на обычных, дорожных автомобилях, с большим — на спортивных.

Более «продвинутой» версией дискового дифференциал является героторный дифференциал. В нем шестеренчатый масляный насос приводит в действие поршень, который сжимает пакет фрикционов. А производительность насоса зависит от разницы в скорости вращения полуосей. Чем больше эта разница — тем сильнее усилие сжатия, а, соответственно, и степень блокировки.

Дифференциалы Торсен и КвайфДифференциалы Торсен и Квайф

Червячные дифференциалы — используют для блокировки свойства червячных передач. Самыми распространенными являются дифференциалы Торсен и Квайф. Червячная передача состоит из червяка и червячного колеса. Червяк (сателлит) является ведущим звеном, колесо (шестерня полуоси) — ведомым. КПД передачи при прямом вращении намного больше, чем при обратном, и зависит от угла наклона витков червяка. Говоря проще, червяк легко вращает колесо, колесо же с трудом вращает червяк. При определенном угле витка червяка обратная передача становится вообще невозможной — то есть, колесо не сможет вращать червяк (происходит самоторможение). Таким образом, подбирая угол наклона витков червяка, регулируют степень блокировки дифференциала Торсен. Блокирующие свойства Торсена зависят также и от величины передаваемого крутящего момента. Существует три типа дифференциала Торсен. Типы Т1 и Т2 отличаются формой сателлитов и используются в качестве межколесных. Торсен Т3 используется в полноприводных автомобилях в качестве межосевого дифференциала.

В дифференциале «Квайф» сателлиты не посажены на оси, а свободно расположены в гнездах корпуса. При возникновении разницы в скорости вращения полуосей сателлиты, блокируясь, сдвигаются в гнездах и прижимаются к корпусу. Возникающая при этом сила трения пропорциональна разнице скоростей вращения. Степень блокировки регулируют, подбирая сателлиты с различным углом наклона витков.

Червячные дифференциалы по сравнению с дисковыми отличаются большей надежностью и коэффициентом блокировки, меньше боятся пробуксовки (но длительные и частые пробуксовки все равно не рекомендуются). Однако такие дифференциалы, в отличие от дисковых и вискомуфты, совершенно беспомощны против диагонального вывешивания.

Электронно управляемые дифференциалы. Электроника, активно внедряемая во все узлы и системы автомобиля, не обошла стороной и дифференциал. Типовая конструкция электронно управляемого дифференциала напоминает устройство обычного дискового дифференциала, но сжатие фрикционов осуществляется гидро- либо электроприводом по команде блока управления. Таким образом можно регулировать степень блокировки в самых широких пределах — от 0 до 100%. Все зависит от заложенной в блок программы.

Казалось бы, идеал достигнут! Но, нет пытливые японцы пошли дальше и сконструировали активный дифференциал — самый совершенный на данный момент. Обычный электронно управляемый дифференциал при пробуксовке только выравнивает скорости вращения полуосей. Активный же дифференциал может вращать полуоси с разными скоростями, в зависимости от дорожной ситуации. Например, в повороте добавить момент на внешнее разгруженное колесо, помогая автомобилю «довернуться».

Что такой дифференциал представляет собой конструктивно? Обычный свободный дифференциал дополнен двумя передачами — повышающей и понижающей. Включает передачи при помощи мокрых сцеплений блок управления. Величина передаваемого крутящего момента регулируется степенью сжатия сцеплений. Таким образом автомобиль с активным дифференциалом может и мастерски проходить крутые виражи, и на бездорожье не спасует. Другой вопрос, стоит ли овчинка выделки: цена дифференциала немаленькая. Поэтому и ограничивается его применение только мощными спортивными автомобилями.

Имитация блокировок. В последнее время большое распространение получили электронные системы, которые при возникновении пробуксовки подтормаживают буксующее колесо с помощью штатной тормозной системы, имитируя блокировку дифференциала. Для обычного городского автомобиля, не выезжающего на бездорожье — самое практичное решение. И на скользкой дороге поможет, и даже диагонального вывешивания не боится.

Преимущества и недостатки. Автомобиль с самоблокирующимся дифференциалом увеличивает тягу на колесах, тем самым повышая проходимость на бездорожье и на скользкой дороге (еще бы, а ради чего тогда было огород городить?). Также улучшается динамика разгона. Широко используются такие дифференциалы на мощных спортивных автомобилях и в тюнинге для более полной реализации мощности, прохождения поворотов в скольжении.

Но то, что хорошо для спортивного автомобиля, не всегда благо для обычного. Ведь самоблокирующийся дифференциал, повышая проходимость, ухудшает управляемость. Например, при разгоне на скользкой дороге автомобиль сложнее удержать на прямой. Если блокировки нет, автомобиль, проскальзывая, просто теряет ускорение. Если же срабатывает блокировка, не буксующее колесо (или колеса) продолжают толкать автомобиль вперед, тем самым уводя его с прямолинейной траектории.

Блокировки, установленные на передней оси, увеличивают недостаточную поворачиваемость (траектория в повороте стремится распрямиться), установленные в задней оси — повышают избыточную поворачиваемость (в повороте увеличивается склонность к заносу).

Самоблокирующиеся дифференциалы еще называют дифференциалами повышенного трения. А повышенное трение приводит к увеличенному расходу топлива, снижению срока службы шин и деталей трансмиссии.

Виды дифференциалов | Справочная информация

Дифференциал является частью трансмиссии – системы, которая связывает мотор с ведущими колесами автомобиля. Этот механизм участвует в передаче вращательных усилий (крутящего момента) от двигателя к колесам, но главная его функция состоит в том, что он обеспечивает вращение колес при повороте авто с различной угловой скоростью.

В отсутствие дифференциала колеса автомобиля при прохождении поворота вращаются с одной и той же скоростью, что приводит к пробуксовке колеса, которое перемещается по большему внешнему диаметру поворотной дуги. Такой эффект крайне отрицательно сказывается на управляемости авто и приводит к быстрому износу покрышек.

В современном автомобилестроении используется три варианта размещения дифференциальной коробки в блоке трансмиссии:

  • в авто с ведущими задними колесами (задним приводом) — в зоне задней оси;
  • в машинах с передним приводом — непосредственно в самой коробке перемены передач;
  • в полноприводных автомобилях (4WD) дифференциальное устройство может располагаться как в самой раздаточной коробке, так и в зонах обоих осей.

Устройство дифференциала

Базой конструкции дифференциального устройства является планетарный редуктор. В зависимости от того, какие зубчатые шестерни (передачи) используются для вращения колес, дифференциал делится на три разных вида:

  • конический;
  • цилиндрический;
  • червячный.

Наибольшее распространение получила коническая зубчатая передача и, соответственно, конический дифференциал. Он традиционно монтируется между двух осей автомобилей с полным приводом, а не между колесами, как это возможно с иными видами.

Основные элементы конструкции одинаковы у всех типов дифференциалов, поэтому рассмотрим строение узла на примере конического механизма.

Дифференциальный механизм конического типа состоит из следующих элементов:

  • планетарный редуктор;
  • шестерни с сателлитами;
  • корпус устройства.

На профессиональном сленге инженеров автомобилестроения и специалистов сервисных центров корпус дифференциального устройства называется «чашкой». Его основное назначение — принять вращательные усилия двигателя и передать их через сателлиты на шестерни. К поверхности чашки прикреплена ведомая шестерня ведущей передачи, а внутри чашки смонтированы оси, на которых перемещаются сателлиты. Собственно говоря, именно они и выполняют сцепление чашки (корпуса) и шестеренок. В легковых транспортных средствах традиционно применяется всего одна пара сателлитов, в грузовых — две, так как требуется передавать особенно высокий крутящий момент.

Получив энергию от сателлитов, шестерни начинают движение по оси и передают тот же крутящий момент без изменений на ведущую пару колес. В результате транспортное средство приходит в движение.

Шестерни, расположенные на осях, могут иметь равное или разное количество зубцов (шлицев). Если число зубцов равное, то шестерня образует симметричный дифференциал – крутящий момент распределяется по осям в равных соотношениях. Если же количество зубьев не равное, то происходит несимметричная раздача энергии на колеса, что обеспечивает повышенную проходимость в сложных дорожных условиях.

Функциональность дифференциального устройства

Симметричный дифференциал может функционировать в одном из трех доступных режимов.

Основной режим — это езда в направлении «прямо». В данном режиме колеса встречают одинаковую силу дорожного сопротивления и, соответственно, получают одинаковый крутящий момент.

При вхождении в поворот режим работы дифференциала изменяется. Даже незначительный поворот влево или вправо ведет к тому, что внутреннее колесо испытывает большее сопротивление, нежели внешнее. Чтобы сгладить этот дефект, внутренняя шестеренка замедляет свой ход и, тем самым, заставляет сателлиты двигаться в другом направлении, что увеличит амплитуду вращения наружной полуосевой шестерни. Из-за этого изменяется угловая скорость вращения двух ведущих колес, за счет чего осуществляется плавное вхождение в поворот

Третий режим в работе дифференциального устройства включается при езде по льду или иной скользящей поверхности. Одно из ведущих колес начинает испытывать сопротивление, а второе — нет. Дифференциал в таких случаях заставляет двигаться проскальзывающее колесо с максимальной скоростью, а на второе колесо подача крутящего момента приостанавливается. После прохождения препятствия требуется уравнять подачу энергии на колесную пару, для чего может потребоваться блокировка дифференциала.

Как отмечают специалисты в ГК Favorit Motors, сегодня крупные европейские и американские автопроизводители используют собственные разработки в области дифференциалов. Например, предлагаемые модели автомобилей Cadillac (система Controlled), Chevrolet (дифференциал Positraction) и Ford (механизмы Equa-Lock и Traction-Lok) применяют в трансмиссии исключительно свои модели распределяющих механизмов.

Виды современных дифференциалов

Это одно из самых конструктивно простых устройств, которое составлено из планетарного редукторного механизма (в плоском исполнении) и схемы со сдвоенными сателлитами, которые при работе сцепляются между собой. Используется косозубое сцепление, которое под большой нагрузкой выдает осевые мощности и передает их на пары сателлитов. Благодаря дополнительному вращению нужного ряда сателлитов при поворотах или пробуксовке на скользкой поверхности удается достигнуть торможения одного колеса и придать энергию другому.

Дифференциал Quaife подразумевает использование сразу пяти пар сателлитов для максимальной надежности сцепления косых зубьев между собой. Это, с одной стороны, позволяет эффективно использовать механизм в самых сложных дорожных условиях. А, с другой стороны, говорит о том, что со временем будет наблюдаться обширный износ всей конструкции в целом.

Тип дифференциального механизма Quaife был запатентован еще в 1965 году. Сегодня он преимущественно используется в гоночных или спортивных автомобилях, а также некоторых моделях переднеприводных машин.

Это довольно старый вид червячного дифференциального устройства, он был изобретен еще в 1950-х годах. На сегодняшний день автопроизводители используют 3 усовершенствованных разновидности дифференциала Torsen, однако все они имеют примерно одинаковый принцип работы. Шестерни, которые расположены на ведущих полуосях, образуют так называемую червячную пару с сателлитами. При этом, что существенно, на каждой полуоси располагаются свои сателлиты, которые парами сцепляются в некоторых положениях с сателлитами другой полуоси.

При движении вперед по прямой червячные пары находятся в остановленном положении, а при движении в повороте они проворачиваются. Очередной проворот по оси обеспечивает изменение угла колеса при поворотах и разворотах. Дифференциал Torsen считается самым мощным и износостойким, он работает при максимальной нагрузке и соотношениях крутящего момента.

  • Механизм с дисковой блокировкой

Этот вид дифференциального устройства состоит из симметричного планетарного редукторного механизма, который закреплен на шестеренках конической формы. Шестерни имеют две маленькие муфты той же формы и два диска. Частично диски могут цепляться за саму чашку дифференциала, а частично — соприкасаться со сцеплением, которое работает при воздействии ведомой шестеренки.

Суть блокировки дифференциала заключается в том, что при возрастании механической силы на шестерни появляются вторичные осевые мощности. Дополнительные силы стремятся разъединить стыки между шестернями. В тот момент, когда им это удается, выравнивается скорость каждого из колес в связи с тем, что угловые скорости приобретают одно и то же значение.

Дифференциал с дисковой блокировкой появился еще в конце 1930-х годов, однако после значительной модернизации используется и сегодня — обычно на внедорожниках и спорткарах.

  • Дифференциал кулачкового типа

Кулачковый дифференциал может иметь 2 варианта исполнения. Первый подразумевает расположение кулачковой муфты между двумя ведомыми шестеренками. В кулачковом механизме второго типа зубчатых колес нет в принципе – водилом здесь является сепараторное кольца, а функцию сателлитов выполняют «сухари» (специальные клинья). Ведомыми шестернями в этом случае являются кулачковые диски.

Принцип конструкции кулачкового дифференциала второго типа понятен из нижеприведенной схемы, где 1 – это корпус, 2 – обойма, 3 –сухарь, 4 и 5 – полуосевые звездочки. «Сухари» могут располагаться горизонтально (рисунок а) или радиально (рисунок б)

Суть блокировки дифференциального устройства заключается в том, что как только начинает наблюдаться разница между скоростными углами, кулачковая муфта (или кулачковые диски — во втором варианте исполнения) сразу же блокируют дифференциал.

Начальные разработки такого типа механизмов появились в 1940-х годах. В легковых транспортных средствах такой тип дифференциалов сегодня практически не используется. Основная сфера применения кулачкового типа — в военном автомобилестроении.

  • Вискомуфта (вязкостная муфта)

Дифференциал конструктивно имеет на одной из ведущих полуосей емкость, наполненную вязкой жидкостью. В ней находятся 2 дисковых блока, первый из которых соединен с ротором, а второй — с другой полуосевой. Соответственно, чем больше будет разница в наборе скорости между колесами, тем больше будет становиться разница и в скорости движениях блоков дисков. Из-за вращения вязкость жидкости увеличивается.

Это самая простая и в то же время бюджетная конструкция дифференциального устройства. По оценкам специалистов ГК Favorit Motors устройство преимущественно устанавливается на городские паркетники, так как в условиях бездорожья вискомуфта не может обеспечить требуемую управляемость и проходимость.

Два типа принудительной блокировки дифференциала

В современных транспортных средствах используется как ручной, так электронный вариант блокировки дифференциала. У каждого из них есть свои преимущества. Ручная блокировка дифференциального механизма осуществляется непосредственно из салона авто. По команде водителя ступорятся вращающиеся шестерни и колеса начинают двигаться в одном темпе.

Такой тип применим перед преодолением разного рода дорожных препятствий в виде глубокого снега, грязи, ям или горок. После прохождения сложных участков можно проводить разблокировку. Традиционно ручная блокировка дифференциального устройства применяется на вездеходных транспортных средствах и внедорожниках.

Если автомобиль снабжен новой системой TRC, то автоматика сама производит электронную блокировку. В том случае, если одно из ведущих колес начинает буксовать, то оно будет слегка подтормаживаться тормозом авто. Удобство такого типа неоспоримо, однако не всегда блокировка будет включаться в нужный момент.

Вне зависимости от того, какой именно тип дифференциального устройства установлен на вашем автомобиле, специалисты ГК Favorit Motors могут предложить диагностику и обслуживание машины с учетом конструктивных особенностей механизма блокировки. Грамотный подход сочетается с опытностью мастеров, а стоимость профессиональных услуг считается одной из самых привлекательных по Москве.

Самые распространенные симптомы неисправности дифференциала – повышенная шумность, посторонний стук и удары, появление подтеков масла. Мастера автосервиса Favorit Motors отмечают, что важно незамедлительно обратиться в техцентр, чтобы устранить проблемы в работе устройства и избежать его дальнейшего разрушения. Какой бы сложной ни была неисправность, мастера сервисного центра Favorit Motors обладают всем необходимым диагностическим оборудованием и огромным опытом работы, что позволяет быстро и качественно устранить поломку. Сотрудники регулярно проходят переобучение в учебных центрах автопроизводителей, что позволяет им выполнять ремонтно-восстановительные работы любой сложности.


Дифференциал с повышенным внутренним сопротивлением — Википедия

Дифференциал с повышенным внутренним сопротивлением (также: дифференциал ограниченного проскальзывания (LSD), дифференциал повышенного трения, самоблокирующийся дифференциал) — это дифференциал, механика работы которого за счёт конструктивно заложенного повышенного внутреннего сопротивления между некоторыми вращающимися деталями позволяет такому дифференциалу без каких-либо управляющих воздействий извне выравнивать самостоятельно угловые скорости ведущего и ведомых звеньев вплоть до полной их взаимной блокировки и превращения всего дифференциала в прямую передачу.

Следует иметь в виду, что в англоязычной литературе данные дифференциалы обозначаются как «LSD (Limited-Slip Differential)», т.е. дифференциал ограниченного проскальзывания, и данный термин не определяет физического принципа работы устройства, наличия управления им и т.д. Имеет значение лишь сама функция блокировки неконтролируемой разницы в угловых скоростях приводов («проскальзывания»). «Ограниченность проскальзывания» подразумевает некий заданный предел разницы угловых скоростей, при превышении которого начинает срабатывать блокировка.

Преимущества[править | править код]

Основное преимущество дифференциала с повышенным внутренним сопротивлением (далее — ДПВС) можно увидеть, рассмотрев случай с обычным (или «открытым») дифференциалом, у которого одно колесо вообще не имеет контакта с дорогой. В этом случае второе колесо, контактирующее с дорогой, будет оставаться неподвижным, и первое, не контактирующее с дорогой колесо, будет вращаться свободно — передаваемый крутящий момент будет равным на обоих колёсах, но не будет превышать порогового значения момента, необходимого для движения транспортного средства, и поэтому транспортное средство будет оставаться неподвижным. В обычных автомобилях, движущихся по асфальтовым дорогам, такая ситуация маловероятна, и поэтому для таких автомобилей обычный дифференциал вполне подойдёт. При вождении в более сложных условиях, например, при движении в грязи или по бездорожью, подобные ситуации случаются, и наличие дифференциала с повышенным внутренним сопротивлением позволяет не останавливать движение. За счёт ограничения разницы в угловых скоростях колёс полезный момент передаётся до тех пор, пока хотя бы одно из колёс имеет сцепление с дорогой.

Коэффициент блокировки[править | править код]

Коэффициент блокировки есть важнейшее оценочное свойство любого ДПВС. В информационных материалах о ДПВС этот коэффициент может выражаться двояко и несколько отличаться по смыслу толкования, хотя в обоих случаях подразумевать одно и то же, только с разных точек зрения.

В иностранной технической литературе КБ обычно выражается посредством процентного значения в десятках процентов в диапазоне от 20 % и выше. Цифра обозначает покрываемую конкретным ДПВС ширину диапазона относительного распределения крутящего момента между колёсами/осями от заложенного в дифференциала статического (с поправкой на его возможную несимметричность) до максимального уровня в 100/0, в пределах которого ДПВС может обеспечить взаимную блокировку. Данное определение подпадает под англоязычный термин Locking Effect («блокировочный эффект»). В русскоязычной технической литературе КБ выражается через число от 2 и выше (обычно, без десятичных дробей), обозначающее максимально возможную разницу в крутящих моментах (разницу в силе тяги) на колёсах/осях, в пределах которой данный ДПВС может обеспечить их взаимную блокировку. Данное определение КБ соответствует английскому термину Torque Bias («сдвиг момента»).

Показано соотношение между КБ в числовом и процентном значениях

Хотя оба понятия КБ предполагают под собой разные формулы подсчёта, абсолютно любой ДПВС может быть корректно оценён любым из них. При этом, каждое из двух значений КБ можно соотнести с общим оценочным показателем, а между обеими значениями всегда имеется взаимооднозначное соответствие. Так, например, значение КБ=50 % и КБ=3 означает в обоих случаях одно и то же: что ДПВС с указанными КБ допускает перераспределение крутящего момента между колёсами/осями в соотношении не более чем 75/25, что с одной стороны даёт 50 % полного диапазона возможного перераспределения эффективно используемого крутящего момента (75-25=50), а с другой стороны даёт 3-х кратную разницы в возможной силе тяги (75/25=3). Числовое (не процентное) значение КБ, возможно, здесь более интуитивно понятно, тем более, что помимо своего основного смысла, оно предполагает аналогичную разницу в допустимой силе сцепления колёс/осей с поверхностью, что в том же случае КБ=3 означает, что максимально эффективное использование мощности двигателя на этом ДПВС возможно только если сила сцепления каждого колеса с поверхностью дороги будет отличаться не более чем в три раза.

Простой (свободный) дифференциал не позволяет получить какую-либо разницу в эффективно-используемых крутящих моментах на ведомых звеньях, здесь разница между силой тяги обоих колёс/осей практически нулевая на любых режимах, КБ такого дифференциала равен 0 % или 1. Прямая передача или заблокированный дифференциал позволяют весь эффективно используемый крутящий момент реализовать на любом ведомом звене, здесь любое колесо/ось могут обеспечить всю тягу при нулевой уровне тяге на другом колесе/оси, а КБ в данном случае равен 100 % или бесконечности.

ДПВС может иметь два верхних значения КБ — по одному для каждой ветви мощности. Такое возможно в случаях несимметричного дифференциала, когда КБ получает поправку на несимметричность — то есть, верхние значения КБ для каждой из сторон отличаются друг от друга на разницу в соотношении раскладываемых крутящих моментов (например, в несимметричном заднем кулачковом межколёсном ДПВС грузового автомобиля ГАЗ-66, раскладывающим крутящий момент по колёсам в соотношении ≈(60/40), значения КБ для правого и левого колёс равны, соответственно, 3.1 и 2.1). И такое возможно в симметричных дифференциалах, когда это конструктивно допустимо механикой работы блокировки (например, в симметричном червячном ДПВС Torsen Type-1 разные значения КБ можно реализовать через разные углы нарезки зубьев в каждой паре сателлит-шестерня).

Обычно под КБ конкретного ДПВС подразумевается его максимальный КБ. При этом у любого ДПВС существует значение так называемого начального КБ, которое обычно не декларируется.

Преднатяг[править | править код]

Под этим термином подразумевается создание в ДПВС внутреннего сопротивления взаимному вращению ведомых звеньев в статике, то есть, при отсутствии подачи на дифференциал какого-либо самого минимального крутящего момента. Величина уровня преднатяга определяется усилием, необходимым для сдвига (поворота) любой ведомого звена дифференциала при неподвижном ведущем звене. В свободном дифференциале уровень преднатяга близок к нулю. Преднатяг, если он есть, «работает» всегда, независимо от того, нагружен ДПВС тяговым или тормозным крутящим моментом или не нагружен. Наличие преднатяга не есть обязательное условие работы ДПВС.

Так называемая «муфта преднатяга» предполагает под собой некое устройство внутри ДПВС, выполняющее вышеупомянутые функции и затрудняющее взаимное вращение ведомых шестерён дифференциала. Конструкция этого устройства не имеет универсального вида и на разных ДПВС может быть любой. Обычно это есть распорные пружины разной формы, дополненные дистанционными кольцами.

В пассажирских автомобилях как правило используются два типа ДПВС:

Дифференциалы обоих типов допускают наличие некоторой конструктивно запрограммированной разницы между крутящими моментами (в первом случае) или угловыми скоростями (во втором случае), но налагают механическое ограничение на возникновение большой их диспропорции.

Винтовая блокировка[править | править код]

Конструктивно дифференциалы с винтовой блокировкой могут быть выполнены на основе любого плоского однорядного или двухрядного планетарного механизма схем или с параллельными осями сателлитов, которые, в свою очередь, могут быть как одиночными, так и парными взаимозацепленными. Общем для любого вида исполнения будут две особенности: использование цилиндрических косозубых шестерён во всех парах зацепления и отсутствие фактических осей сателлитов как деталей. Винтовая передача, как таковая, здесь не используется, и широко употребимый термин происходит исключительно от визуального сходства сателлитов дифференциала с винтом, особенно на контрасте с его основными шестернями. А шестерни-сателлиты здесь вращаются не на осях, а в цилиндрических карманах, отфрезерованных в корпусе/водиле дифференциала. Идея блокировки основана на том, что в косозубом зацеплении под нагрузкой возникают осевые силы, стремящиеся раздвинуть по своим осям обе зацепленные шестерни в противоположные от плоскости контакта стороны, и здесь это свойство в первую очередь использовано в парах взаимозацепленных сателлитов, которые для этого получают некоторую осевую подвижность. Под тягой, при повороте или пробуксовке колеса, вращающиеся сателлиты расклиниваются в своих карманах, упираются торцами в корпус дифференциала, за счёт чего происходит их торможение и самовыравнивание угловых скоростей ведомых шестерён. Расклинивание сателлитов тем сильнее, чем выше передаваемый ими крутящий момент, но сам коэффициент блокировки определяется углом наклона зубьев зацепления и фрикционными свойствами пар контакта сателлит/корпус. Для усиления эффекта самоторможения в данных дифференциалах обычно применяют более чем минимально необходимые для плоского планетарного механизма три пары сателлитов — а именно, от четырёх до семи пар. И для усиления фрикционного эффекта в точках контакта торцов сателлитов с корпусом дифференциала могут применяться диски-прокладки из материала, создающего повышенное сопротивление при трении. В случае одиночных сателлитов работа дифференциала в принципе аналогична, с тем лишь отличием, что здесь в самоторможение вовлечены не только сателлиты, но и центральные шестерни дифференциала.

Ввиду того, что шестерни с косозубым зацеплением могут быть использованы на плоских планетарных механизмах любой схемы и формы, дифференциалы на их основе можно выполнить с практически любыми заданными передаточными отношениями в каждой паре звеньев ведущее-ведомое. Соответственно, такие дифференциалы могут быть как симметричные, так и несимметричные, и применяться в трансмиссии и как межколёсные и как межосевые. На этих дифференциалах активно используется преднатяг, а блокирующий момент здесь создаётся в тяговом режиме даже при отсутствии разницы в угловых скоростях на выходе. Но исключительно на косозубом зацеплении высокие значения коэффициента блокировки не доступны (обычно < 3), и для усиления эффекта такие дифференциалы могут дополняться фрикционными пакетами по типу дифференциалов с дисковой блокировкой.

Дифференциалы с винтовой блокировкой очень широко распространены по сей день. Основная их область применения — спортивные и гоночные автомобили. Также они применяются как тюнинговые для незначительного улучшения проходимости в дорожных автомобилях. Однако на истинно внедорожной технике они обычно не используются. Наиболее известны образцы от британской компании Quaife Engineering и американской Torsen NA Inc.. В первом случае дифференциал так и называется — Quaife. Во втором случае — это так называемые Torsen Type-2 и Torsen Type-3.

Червячная блокировка[править | править код]

Конструктивно все дифференциалы с червячной блокировкой выполнены на основе простых пространственных планетарных механизмов схемы с сателлитами на . Визуально пары зацепления солнце-сателлит здесь выглядят как червячная передача, в которой оси червячного колеса и самого червяка также перпендикулярны друг-другу и не пересекаются. В роли червяка и в роли червячного колеса здесь могут выступать как сателлиты, так и ведомые шестерни, и имеются разработки червячной блокировки с обеими вариантами распределения ролей между шестернями. Идея блокировки основана на том, что червячной передаче свойственно самоторможение в случаях направления мощности от червячного колеса к червяку, которое тем сильнее, чем больше угол наклона нарезки зубьев червяка к его оси вращения.

Хотя дифференциал с червячной блокировкой наиболее известен в варианте, разработанном американской Torsen NA Inc., — так называемый Torsen Type-1 — сама компания-разработчик почему-то избегает термина «червячная передача» при описании своего дифференциала. Зубчатая передача здесь декларируется как косозубая на перекрещивающихся осях, но не просто косозубая, а с некоей специфической, разработанной самой Torsen и запатентованной ими же формой зубьев Invex™, фактически являющейся частным вариантом эвольвентного зацепления. В русскоязычной инженерно-технической литературе считается, что в Torsen Type-1 роль червяков выполняют ведомые шестерни, а роль червячных колёс — сателлиты. Объяснение этому проистекает из разного угла наклона косозубой нарезки на ведомых шестернях и сателлитах. Необычная трёхрядная форма сателлита с прямозубым зацеплением по краям и косозубым в центре объясняется исключительно тем, что ввиду компоновки с перекрещивающимися осями конструктивно невозможно организовать через одну и ту же зубчатую нарезку одновременный зацеп как сателлитов с ведомыми шестернями, так и сателлитов между собой, и к повышению внутреннего сопротивления дифференциала эта особенность не имеет отношения. Обе ведомые шестерни здесь имеют сонаправленную нарезку зубьев и некоторую минимальную осевую подвижность, которая, как и в случае дифференциалов с винтовой блокировкой, необходима для сдвига обеих шестерён вдоль оси под нагрузкой, только в данном случае не для контакта с корпусом, а для их взаимного самоторможения друг о друга, что вносит существенный вклад в общее повышение внутреннего сопротивления. Дифференциал момент-чувствительный. Коэффициент блокировки в разных вариантах — 3-6. Дифференциал визуально и кинематически симметричен, и в случае межосевого использовался на модификациях AWD машин, изначально переднеприводных. Вообще, Torsen Type-1 есть один из наиболее известных моделей ДПВС. Он широко использовался в гоночных автомобилях WRC и Формулы-1 разных лет и в качестве межколёсного и в качестве межосевого. А на дорожных легковых автомобилях он стал совершенно однозначной ассоциацией с системами полного привода от Audi — Quattro — хотя в последних разработках Audi применяла и иные варианты. Среди внедорожных машин известным носителем данного ДПВС является Hummer h2.

Настоящими дифференциалами с червячной блокировкой и высокими (порядка 10 и даже выше) коэффициентами блокировки были американские и немецкие разработки для грузовых автомобилей повышенной проходимости. В данном случае конструкция планетарного механизма ДПВС предполагала тройные взаимозацепленные сателлиты, из которых два сателлита были червяками, а один — червячным колесом. Также, червячными колёсами были ведомые шестерни, а всего в дифференциале было 8 червяков и 6 червячных колёс двух типоразмеров. Основные попытки относительно массового применения этих ДПВС пришлись на предвоенные годы. В СССР этот тип ДПВС испытывался после войны, как в виде трофеев от Rheinmetall-Borsig AG, так и в виде домашних разработок «улучшенной» конструкции на основе немецкой. Данные по конкретным американским и немецким носителям отсутствуют, хотя считается, что дифференциалы с червячной блокировкой были широко распространены на различных грузовиках и тягачах для бездорожья и карьерных разработок. В СССР единственный более-менее массовый носитель — Урал-375Д. Современное использование — вероятно, нулевое.

Дисковая блокировка[править | править код]

Разобранный дифференциал с дисковой блокировкой

Конструктивно дифференциал с дисковой блокировкой всегда состоит из планетарного механизма схемы на конических шестернях, дополненного парой миниатюрных конических фрикционных муфт и парой многодисковых фрикционных пакетов, располагающихся по оси дифференциала с обеих его сторон между ведомыми шестернями и корпусом. Часть фрикционных дисков здесь зацеплена с корпусом дифференциала, а часть — с миниатюрным конусообразным сцеплением, которое сопрягается каждое со своей ведомой шестернёй (солнцем). Идея блокировки основана на том, что под нагрузкой в конических шестернях возникают осевые силы, стремящиеся раздвинуть зацепленные шестерни друг от друга, и в отличие от свободного дифференциала, где этот эффект стараются нивелировать, здесь именно за счёт него и происходит сжатие фрикционных пакетов между ведомыми шестернями и корпусом дифференицала, что в свою очередь приводит к выравниванию угловых скоростей. Помимо конических муфт и фрикционных пакетов для усиления эффекта здесь нередко используется распорная пружина, установленная между ведомыми шестернями. И для усиления эффекта эти дифференциалы обычно имеют не два, а четыре сателлита на крестообразном водиле.

Разработки подобных дифференциалов известны с довоенного периода — ими занимались американские фирмы LeTurno-Westinghouse и Borg Warner. Современный вид и дисковую блокировку дифференциалы приобрели в 60-х годах, когда появились относительно надёжные фрикционные материалы, что позволило делать всю систему компактной и пригодной для легковых автомобилей. Сегодня используются в качестве межколёсных в задних ведущих мостах как спортивных, так и внедорожных автомобилей. Надёжны, но могут требовать регулировки со временем.

Кулачковая блокировка[править | править код]

Кулачковый дифференциал Порше, применявшийся на KdF82

Конструктивно здесь возможны два варианта исполнения. В одном случае кулачковая муфта, состоящая из двух кулачковых дисков и промежуточного сепаратора с сухарями располагается между обеими ведомыми шестернями свободного дифференциала. Во втором случае, планетарная передача дифференциала вообще не имеет зубчатых колёс: эрзац-водилом дифференциала служит сепараторное кольцо, сателлитами являются сухари, а роль ведомых шестерён выполняют два кулачковых диска или кольца с волнообразным профилем сопряжённой с сепаратором поверхности. В обоих случаях идея блокировки основана на том, что при определённой разнице в угловых скоростях ведомых звеньев сухари расклиниваются между кулачковыми дисками/кольцами и практически моментально блокируют дифференциал. Блокировка здесь срабатывает только от разницы в угловых скоростях. До некоторого значения этой разницы дифференциал работает как свободный, по достижению — сразу блокируется, причём не важно, нагружен он крутящим моментом или нет. Какой-либо переходной режим частичной блокировки между свободным и заблокированным состояниями отсутствует.

Первые известные разработки кулачковых дифференциалов вероятно принадлежат Фердинанду Порше. Именно его дифференциал пошёл в серию на машинах KdF-Kübelwagen. Сегодня кулачковые самоблокирующиеся дифференциалы в основном используются как межколёсные в автомобилях повышенной проходимости и в военной технике (бронетранспортёрах и пр.).

Шариковая блокировка[править | править код]

Конструктивно дифференциалы с шариковой блокировкой представляют собой некий эрзац планетарной передачи симметричной схемы . Формально они не имеют ни шестерён, ни сателлитов в своей конструкции, но фактически, функции составляющих их деталей и общий принцип их работы идентичен конструкции и принципу работы любого настоящего планетарного дифференциала, а механика блокировки определяется повышением внутренного сопротивления работе, как и в остальных типах самоблокирующихся дифференциалов. В роли сателлитов здесь используются шарики, которые плотно набиты в закольцованные канавки в корпусе (водиле) дифференциала, и которые, как и настоящие сателлиты, контактируют одновременно друг с другом и с парой ведомых эрзац-шестерён (двумя солнцами). При небольшой разнице в угловых скоростях шарики, толкая друг-друга, перемещаются в закольцованной канавке в ту или другую сторону, обеспечивая дифференциальное вращение всей конструкции. При достижении некоего уровня разницы в угловых скоростях (пробуксовке) ведомых шестерён шарики не могут её (разницу) поддерживать, за счёт трения самотормозятся в своих канавках и тем самым создают блокировочный эффект.

Эта конструкция малоизвестна в мировом автопроме и всё её распространение, вероятно, ограничивается Россией и Украиной. Наиболее известные дифференциалы с шариковой блокировкой — это Автоматический Дифференциал Красикова и Автоматический Дифференциал Нестерова.

Дифференциал с вискомуфтой[править | править код]

Вязкостная муфта с открытым корпусом.

Конструктивно дифференциал состоит из простого планетарного механизма абсолютно любой схемы и вискомуфты, соединяющей два его любые звена (два любые вала подачи/снятия мощности). Вискомуфта может располагаться как внутри дифференциала и связывать два ведомых звена, так и снаружи и связывать ведущее и ведомое звено (на принципиальную работы всей системы расположение вискомуфты влияния не оказывает). Идея блокировки основана на свойствах вискомуфты выравнивать угловые скорости двух своих звеньев за счёт свойств дилатантной жидкости. Блокировка срабатывает только от разницы в угловых скоростях. Кратковременно допускается 100 % блокировка. Переходные режимы также активно используются.

Вязкостные ДПВС менее эффективны в сравнении с вышеупомянутыми механическими ДПВС, так как в них происходит рассеивание энергии. В частности, любая постоянная нагрузка, которая нагревает жидкость внутри муфты, приводит к неустранимым перманентным потерям «дифференциального эффекта».[1]

Данный ДПВС не стоит путать с использованием вискомуфты в системах так называемого полного привода по требованию.

Дифференциал с героторным насосом[править | править код]

В дифференциалах этого типа с одной стороны вращается корпус героторного насоса, а с противоположной стороны вращается вал, соединённый с зубчатым колесом, находящимся внутри насоса. Когда возникает разница в частотах вращения корпуса и зубчатого колеса, насос сжимает рабочую жидкость во внутренней полости насоса. Это обеспечивает передачу вращающего момента к колесу машины, имеющему более сильное сцепление. Системы, основанные на насосах, имеют верхнюю и нижнюю границы прикладываемого давления, и внутреннее демпфирование во избежание гистерезиса. Новейшие системы с героторными насосами имеют компьютерное регулирование выходной мощности, что обеспечивает более высокую подвижность и исключает колебания.

  1. Donnon, Martin et al. Zoom 67. — Express Motoring Publications, 2003. — P. 45–48. — «…the gel used can quite suddenly alter with massive temperature, and lose its ability to generate torque transfer.».
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *