РазноеШим для автомобильного генератора – Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Шим для автомобильного генератора – Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Содержание

ШИМ (PWM) — генератор

Широтно-Импульсная Модуляция (Pulse Width Modulation) используется весьма широко, в том числе для управления всякими автомобильными приводами, которые должны двигаться плавно.

* ВНИМАНИЕ! под катом видны грязные руки на фото и видео!

Суть состоит в том, что на некий например электромагнит подается не постоянный ток, а сигнал с некоторой частотой, при этом для плавного управления меняется соотношение высокого и низкого уровня за период. То есть если у нас 30% периода на привод будет подаваться питание, а 70% — нет, то он откроется меньше, чем если бы на него подавалось питание 70% времени, а 30% он отдыхал. За счет инерции привод не успевает полностью открыться либо закрыться, соответственно работает плавно. Данный принцип, повторюсь, используется весьма широко, везде где нужно обеспечить плавное регулирование. Два примера применения я покажу ниже.

Итак, данный девайс имеет размеры 79х43х24 (ШхВхГ), установочное отверстие 72х39, плюс выборки по бокам для защелок.

Клеммники не особо высокого качества, что и неудивительно; подписаны. 4 контакта: + и — питания, — и сигнал ШИМ. Минусы объединены. По питанию стоит диод.

Внутренний мир прост и незатейлив:

Тут у нас драйвер дисплея HT1621, микроконтроллер Nuvotek N76E003AT20, стабилизатор напряжения M5333B и выходной транзистор с маркировкой 1АМ — надо полагать это 3904.

На передней панели ЖКИ с на удивление неплохими углами обзора и 4 кнопки: частота+- и коэффициент заполнения +-

Посмотрим как оно работает.

Вот на самой низкой частоте для понимания принципов ШИМ-регулировки, кто не знает:

Индикация частоты следующим образом: герцы — без точки, килогерцы — с точкой, больше сотни килогерц — с двумя точками.Максимальная частота — 150кГц. Инкремент по 1% ШИМ и по единице младшего разряда, то есть 1Гц, либо 0.01кГц, либо 0.1кГц, либо 1кГц, либо 10кГц, в зависимости от частоты.

И сразу осциллки на высоких частотах, 20кГц, 50кГц, 100кГц, 150кГц.

Как видим сигнал не шибко красивый, но тут не может быль ничего другого, ибо выходная цепь — транзистор с парой резисторов.

А теперь осциллки на промежуточных частотах, если кому это интересно:


Ну вот такой, в общем, приборчик. Понравился, если честно. прям вот за 5 баксов, за которые я его взял — очень хорошо.

Ну а теперь — диайвай немножко рукоделия. Я придумал два применения данному генератору: проверка всеразличных соленоидов, например Регуляторов Холостого Хода, и промывка форсунок. При промывке форсунок в ультразвуковой ванне мне нравится загонять их в режим самопрокачки. Но аналоговый генератор не обладает достаточной стабильностью (а может дело и в форсунках — уходят характеристики при прогреве), так что я решил применить данный цифровой, в надежде на более высокую стабильность. Я в любом случае собирался делать еще один генератор, так что решил не заморачиваться и купил этот, сразу как только увидел.

Но у нас тут явно недостаточная мощность для управления форсунками, значит придётся ставить выходные ключи. Типа такого:

Возможно, придётся заменить выходной транзистор в самом устройстве, ну и надо подобрать силовые транзисторы получше, возможно мои любимые IRFZ44 — жаль, закончились. Собственно, на данном этапе устройство собрано на 50% — я впаял два первых попавшихся полевика, кажется IRF630 — ну потому что больше одинаковых нету у меня 🙁 чисто для проверки идеи и картинок/видосиков для обзора.

Далее нам понадобится корпус. Примерно такой:

Ну и 3Д-принтер для его изготовления. Плату делал по фоторезистивной технологии описанной в прошлом обзоре.

Ну и сразу результат.

Внутренности:

И наружа:

В боксе холодно, так что детали к сожалению не сильно хорошо прилипают к столу, так что качество корпуса получилось не ахти. Меня-то устроит, но в целом чувствуется недосказанность какая-то, поэтому файлы моделей не выкладываю, благо рисуется это всё быстро и просто.

Выключатели: верхний подает питание на всю схему, нижний отключает выходной каскад.

А теперь — примеры работы. проверка РХХ

И режим самопрокачки форсунки

Подытоживая: отличный генератор. Повторять конструкцию возможно и не стОит в том виде в котором она сейчас показана в обзоре, но в целом что-то подобное — однозначно маст хэв в каждом сервисе. Да и не только в сервисе. Так что берите идею, и ваяйте своё.

ШИМ-регулятор. Широтно-импульсная модуляция. Схема :: SYL.ru

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

схема шим регулятораБез выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

шим регулятор оборотов двигателяТеперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B … U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат – использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

шим регуляторЭта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат – значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы – доступность и простота элементов. Недостатки – сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

широтно импульсная модуляцияОбладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных источников питания для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

шим регулятор мощностиЧто ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно – делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь – опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.

Простой генератор ШИМ-сигнала | CUSTOMELECTRONICS.RU

Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.

Формирование ШИМ-сигнала

ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются  с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.

Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.

Формирование ШИМ-сигнала

На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.

 Схема

Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.

Схема генератора ШИМ

В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.

Печатная плата

Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.

Плата генератора ШИМ-сигнала

Сборка и работа схемы

Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.

 

Плата генератора ШИМ в сборе

Технические характеристики

  • напряжение питания, 5-15В
  • диапазон изменения скважности, от 1 до бесконечности
  • рабочая частота, 500Гц
  • потребляемый ток, не более, 2мА

Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.

Список элементов

  1. ИМС LM358N в корпусе SO8 (DA1), 1 шт.
  2. Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
  3. Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
  4. Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
  5. Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
  6. Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.

Видео работы

Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.

Файл печатной платы в формате Sprint Layout 5.0 можно скачать по ссылке.

Мы будем очень рады, если вы поддержите наш ресурс и посетите магазин наших товаров shop.customelectronics.ru.

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

 

В наше время весь мир крутится вокруг широтно-импульсной модуляции (ШИМ), да что и говорить, даже день и ночь – и те подвластны ШИМу (зимой день короче чем ночь и наоборот J ). ШИМ сейчас используется везде, где только можно представить его применение: регуляторы, стабилизаторы, преобразователи, блоки питания и прочие устройства. Учитывая тенденцию увеличения мощности, неуклонного роста используемых частот в силовой и преобразовательной технике, а также уменьшению массо — габаритных показателей, я решил что иметь у каждого в домашней лаборатории широкодиапазонный генератор ШИМ просто обязательно. Но это, конечно же, должен быть не просто генератор. Нужно что бы он имел регулировку частоты в широком диапазоне, регуляторы коэффициента заполнения, регуляторы DEAD TIME, однотактный и двухтактный выходы, а также инверсию выходов  для каждого. Инверсия выходов необходима для проверки мостового преобразователя. Да и мало ли чего ещё захочется исследовать. Но в тоже время он должен быть простым для сборки, наладки и повторения. В данном случае будет достаточно перекрыть диапазон частот в однотактном режиме от 60  кГц до 2 МГц, в двухтактном режиме  от 30 кГц до 1 МГц. Регулировать коэффициент заполнения в  однотактном режиме от 1 % до 99%, а в двухтактном режиме  от 2 % до 98%, с возможностью регулирования паузы DEAD TIME («мертвая зона»). Генератор должен иметь минимальное число переключателей по диапазонам. Все должно регулироваться плавно и без скачков. Желательно иметь настройку грубо и точно на каждый параметр регулирования.

С помощью  такого генератора можно проверять качество работы драйверов управления полевых транзисторов, скоростные показатели работы различных компонентов и многое–многое другое.

Чтобы не утомлять прочтением всей статьи, сразу покажу, какой сигнал получился на выходах в разных режимах и на разных частотах:

 

 

С помощью этого генератора я запускаю любой блок питания, в котором микросхема не дает импульсов на запуск, или уходит в защиту по непонятной причине. Плавно увеличивая коэффициент заполнения, смотрю, что происходит на выходе блока, или токовом шунте ключевого транзистора. Отыскание неисправности в любых импульсных блоках с этим генератором — просто сказка и занимает по времени считанные минуты. Откидываю, например, затвор силового транзистора от родной микросхемы, и цепляю его к своему генератору с драйвером. Для того что бы подключаться например по высокой стороне к двухтактникам, иногда такое надо, необходимо использовать оптодрайвер на 6N137 или любых других быстрых оптопарах.

Ещё можно проверять на что годны операционные и аудио усилители. Поскольку самые низкие искажения имеют только повторители напряжения, проверку буду производить именно в этом режиме. Приведу пример проверки самого распространенного операционного усилителя типа LM358. Тем самым ввергну в шок некоторых аудиофилов. Так вот, использовать LM358 в аудиоусилителях даже низкого класса категорически не рекомендую.

 

 

Ради прикола, беру самый первый советский операционник К140УД1Б и загоняю его на испытания. Показатели у него значительно лучше, чем у LM358.

 

 

Можно проверять время задержки в логических элементах и минимальную длительность импульса для триггеров.

 

 

Даже проверил, как себя поведет стабилитрон TL431 на частоте 1,3 МГц:

 

 

Желтым — вход, синим — выход.

А также испытать и проверить многое другое…….

Вот, вкратце, возможности моего генератора.

Когда я поставил перед собой задачу, попробовал погуглить и найти готовое решение. Поиски не увенчались успехом. В итоге было решено самому создать схему отвечающую запросам. Теперь я ознакомлю вас с результатами моих исследований длившихся около года

Мои исследования

 

   На первый взгляд самой привлекательной и простой схемой, найденной в даташитах и интернете, показалась схема на основе готового PULSE WIDTH MODULATION контроллера типа TL494 и её аналогах КА7500.  TL 494 и ее последующие версии — наиболее часто применяемая микросхема для построения двухтактных преобразователей питания.

 Но на деле это решение подходит под наши задачи только на 1/10 решения и её нельзя использовать на частотах более 100 кГц — в однотактном режиме и до 50 кГц — в двухтактном режиме.  Почему? Хотя по даташиту она может использоваться и до 300кГц, мне не понравилось, как она себя ведет на частотах выше 100 кГц.

Что гласит даташит:

Допустимы рабочие частоты от 1 до 300 кГц, рекомендованный диапазон Rt = 1…500кОм, Ct=470пФ…10мкФ. При этом типовой температурный дрейф частоты без учета дрейфа навесных компонентов +/-3%, а уход частоты в зависимости от напряжения питания — в пределах 0.1% во всем допустимом диапазоне.  Да только дело то не в уходе частоты, а в непостоянстве регулирования коэффициента заполнения в зависимости от частоты.

Я попробовал испытать её возможности, и хотел перекрыть нужный мне диапазон в 2 МГц, но на частоте выше 1 МГц она нормально так и не запустилась. Пришлось пока ограничиться только 1 МГц. Сделал пять диапазонов регулирования частоты, поставил стабилизатор напряжения на 12 вольт по питанию с блокировочными конденсаторами, чтобы не нарушалась чистота эксперимента и начал испытание.

 

Схема:

 

 

Макетная плата подопытной схемы:

 

 

 

Джамперы для выбора частоты:

 

 

Результаты проведенного испытания возможностей TL494:

Данная микросхема для моего требования к генератору не подходит, и никакие средства и ухищрения разогнать её на большую частоту так ни к чему и не привели. Предел мечтаний с ней это 100 кГц (с большой натяжкой 150 кГц). На более высокой частоте даёт о себе знать очень уж медленный компаратор, использующийся в схеме кристалла. Также мешает повышению частоты и встроенная коррекция. Читаем из даташита особенности данной микросхемы:

Для стабильной работы триггера — время переключения цифровой части TL494 составляет 200 нс. На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс. Так как в ней очень медленные усилители ошибки  (фактически, операционные усилители с Ку = 70..95 дБ по постоянному напряжению, Ку = 1 на 300 кГц), я их не использую в схеме испытания вообще, и они заблокированы. Эти усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах преобразователей напряжения частота среза цепи ОС выбирается порядка 2  — 10кГц.

    Замечания по работе микросхемы 494 на повышенной частоте, которые меня не устраивают:

1. Встроенный генератор пилообразного напряжения на большое время замыкает конденсатор, вследствие этого перед новым циклом заряда появляется площадка с нулевым потенциалом.

    Осциллограммы работы генератора на разных частотах:

     

     2. Сильная зависимость коэффициента заполнения от частоты, которая проявляется с нарастающим эффектом после прохождения частоты 100 кГц.

      Рассматривая осциллограммы работы ШИМ регулятора с TL494 на разных частотах, при максимальном и минимальном коэффициенте заполнения, чётко заметны изменения минимального и максимального коэффициента заполнения в зависимости от частоты.

       

       

       

      Как видно, изменение минимального коэффициента заполнения на частоте 50 кГц =5% и на частоте 1 МГц = 14,3% отличаются почти в три раза. А вот изменение максимального коэффициента заполнения, тут вообще удивляет: на частоте 50 кГц = 93% и на частоте 1 МГц = 60,7% отличаются на 32%!!!

         Вот почему эту простую и удобную схему я отложил в сторонку. Она мне еще пригодится в дальнейшем: я к ней все-таки вернусь, но уже на дискретных быстрых компараторах и нормальных быстрых триггерах.

       

       

         Дальше на пути у меня была схема на NE555 таймере, которую я использовал лишь только в качестве генератора пилообразного напряжения. Я и не предполагал, что он тоже окажется довольно медленным, но все же, немного лучше, чем предыдущая TL494. С ним можно подняться к частотам около 200 кГц в однотактном режиме. Только надо добавить компаратор и триггер с логикой ИЛИ-НЕ.

      Схема генератора на 555 таймере:

       

       

      Осциллограммы работы генератора пилообразного напряжения на 555 таймере на частотах  332 кГц и 462 кГц.

       

       

      Тут видно округление вершин и спада импульса. На частоте более 500 кГц пила становится неузнаваема.

       

      Разочаровавшись в готовых решениях только на аналоговых элементах, я пробовал синтезировать ШИМ чисто на цифровых логических элементах и счетчиках с триггерами, без использования аналоговых компонентов, но там меня подстерегали другие, куда более сложные проблемы. Выравнивание задержек распространения сигнала по элементам и т.п. Особенно большую проблему составляют триггеры и счетчики, которые совсем не хотят щелкать на малой длительности импульса и просто тупо пропускают счет. А это значит, что ключам, на которые будет работать генератор, очень скоро придет конец. Отказался от этой затеи через неделю боя с 561 логикой. Она, оказывается, ну уж очень медленная для таких частот — 20 МГц при делении ШИМа по 10 %. Ещё через две недели отказался и от 1533 тоже.

      Финальная схема генератора.

       

           После нескольких неудачных попыток воплотить мечту в реальность (иметь в своей домашней лаборатории генератор с 2 МГц ШИМа), недельку- другую отдохнул, подумал, набрался сил и снова приступил к решению проблемы. На этот раз без выкрутасов и лёгких путей, учитывая предыдущие наработки и ошибки. Из всех опробованных решений самое большее удобство пользования предоставляла схема на TL494 или на таймере. Поэтому было решено клонировать начинку NE555 и TL494 на быстродействующих компонентах и собирать некий «симбиоз» двух микросхем на отдельных  компараторах и логике. Компараторы с ТТЛ выходом я взял те, что были у меня в столе — КР597СА2, но можно и любые другие, главное быстродействующие и с ТТЛ выходом. Ну, если вдруг захочется позверствовать, то ЭСЛ будет куда круче (тогда и 20 МГц не предел), но мне пока не нужна такая большая частота (разве для преобразователя с индуктивностью без ферритового сердечника). Тогда надо ставить КР597СА1, и логику серии К500.

      После первого запуска схемы обнаружилось много казусов, но по мере отладки многие грабли были убраны, и схема заработала как часы.

       

      Схема:

       

       

       

            Схема состоит из генератора пилообразного напряжения (состоящего из стабилизатора тока на транзисторах VT1, VT2, VT3; двух компараторов DA1, DA2; триггера DD1 и разрядного транзистора VT4), схемы выделения прямоугольных импульсов (с шириной зависящей от порогового напряжения на DA3), двух стабилизаторов опорного напряжения (2,5в и 2,9в), формирователя двухтактного сигнала (на триггере DD2  и элементах DD3 DD4 2-ИЛИ-НЕ), повторителя и инвертора для однотактного выхода (на DD5, DD6).

      Фото макетной платы:

       

       

      Для облегчения процесса настройки я приведу осциллограммы напряжений в каждой важной точке схемы. Итак…

      Генератор пилообразного напряжения. Конденсатор заряжается через стабилизатор тока. Канал 1 – напряжение на конденсаторе С5, канал 2 – напряжение на базе разрядного транзистора VT4.

       

       

       

       

      По графикам заметен необъяснимый факт ухода напряжения в область отрицательных значений, но это работе не мешает, так как в схему выделения прямоугольных импульсов в задающее напряжение позже я также внесу небольшое отрицательное смещение с помощью делителя R6, R10 для охвата всего диапазона изменения напряжения «пилы». R1 подбирается для ограничения верхней максимальной частоты (я ограничился лишь 2 МГц, хотя вся схема нормально работает и до 5 МГц).

      Осциллограммы напряжений на выходах компараторов DA1, DA2 на разной частоте. Канал 1 – напряжение на компараторе DA1 вывод 14, канал 2 – напряжение на компараторе DA2 вывод 14:

       

       

       

      Для борьбы со «звоном» компаратора вблизи зоны переключения, в схеме выделения прямоугольных импульсов на DA3, я ввел резисторы ПОС (положительной обратной связи) R16, R15 на одноименных входах — выходах компаратора. ПОС нужна на частоте ниже 1 МГц. На частоте в 2МГц данная цепь не требуется и сама перестает участвовать в работе, что видно по осциллограммам.  Осциллограммы напряжений на входах компаратора DA3 на разной частоте. Канал 2 – напряжение на компараторе DA3 вывод 2 – задание порога переключения, канал 1 – напряжение на компараторе DA3 вывод 3 с генератора «пилы». Осциллограмма на частоте 96 кГц. Канал 2 увеличено. Видна волнистая линия синхронно переключению компаратора – это и есть работа ПОС для задания гистерезиса. Глубину гистерезиса можно было бы и уменьшить, но на карту поставлены ключи, которыми будет управлять генератор, поэтому оставим все без изменения.

       

       

       

      Далее схема выделения прямоугольных импульсов с шириной зависящей от порогового напряжения на DA3. На прямой вход компаратора подается пилообразное напряжение, а на инверсный вход – напряжение задания порога переключения компаратора. На выходе получается прямоугольный импульс. Смотрим осциллограммы, разбираемся и вникаем.

       

       

       

      Здесь все понятно. Только если нужен для работы двухтактный выход, то увлекаться очень малым (99%) коэффициентом заполнения не стоит. Так как триггер на малой длительности входного импульса не успевает переключаться, и будет просто пропускать периоды,  выдавая на выходе вместо двухтактных импульсов по очереди – два одинаковых, однотактных, а это чревато нехорошими последствиями, типа сквозного пробоя одновременно открытых ключей.

      Дальше я покажу, как переключается триггер, когда длительность импульса достаточна для его нормальной работы на разных входных частотах. Частота на выходе D триггера равна половине  частоты на входе, и всегда имеет коэффициент заполнения 50% независимо от коэффициента заполнения на входе. Все это видно ниже на графиках.

       

      А вот так хулиганит триггер при входных импульсах недостаточной длительности:

       

      Видно как сбивается развертка и просматривается тот самый пропуск импульса. А это приводит например в полумостовом преобразователе к сквозному «кототоку».

       

      Далее покажу, как формируется полтакта двухтактного импульса, пройдя компаратор,  триггер и логический элемент 2ИЛИ-НЕ:

       

      То, что получилось на выходных контактах, я поместил в первой картинке. Внимательно смотрим, изучаем.  Как видно из графиков, минимальная длительность импульсов на двухтактном выходе завышена до 5%, для того, чтобы триггер четко переключался при входной частоте 2 МГЦ. На частотах до 500 кГц её можно установить и 1 % не опасаясь за пропуски импульса.

      Основной нюанс по настройке генератора: самое главное – чтобы стояли блокировочные керамические конденсаторы типа КМ-5 по 0,1 мкф минимум, или SMD импортные, на каждом корпусе микросхемы. Без них схема работает очень неустойчиво.  Одна сторона платы используется для дорожек, а вторая  используется как экран, её нужно соединить с корпусом в нескольких точках.

      Блок питания каких–либо особенностей не имеет. Для канала +12в используется КРЕНка или 7812, а для канала – 6в используется 7906

      Об выходных драйверах на 2 МГц напишу позже, а то и так много читать надо. Можно использовать готовые микросхемы драйверов, можно собирать на дискретных элементах.

      Спасибо за внимание, и за терпение, и за то, что хватило сил дочитать до этой строки.

      Ещё поздравляю и желаю много валерианки!!!

       

       

      Макетная плата в Layout 5, видео работы генератора в разных режимах и картинки отдельно в файлах.

      Файлы:
      плата
      архив картинок
      видео

      Все вопросы в Форум.

      ЗАРЯДНОЕ УСТРОЙСТВО НА ШИМ-ГЕНЕРАТОРЕ

          Завалялся у меня тороидальный трансформатор на 30 ватт, с выходным напряжением 20 вольт. Решил сделать на его основе приличиное зарядное устройство и вот что получилось. Максимальный ток зарядки получился 1А, но его легко можно увеличить, если поставить более мощный источник напряжения — трансформатор на 100 ватт и более. Принципиальная схема в своей основе имеет ШИМ-генератор — микросхему-таймер NE555 (КР1006ВИ1), импульсы с которой поступают на затвор полевого транзистора, коммутирующего нагрузку — аккумулятор. Другой мощный транзистор отключает АКБ при аварийных ситуациях.

          Схема выгодно отличается от других тем, что имеет простую и надёжную защиту от короткого замыкания выходных щупов и переполюсовки, при этом отключает заряд и включает светодиод. Так как светодиод немного подсвечивал, (тот который защита) он у меня оказался на 1.8 вольт, я решил что бы не мучится, не подбирать под разные светодиоды, поставить подстроечник.

      САМОДЕЛЬНОЕ ЗАРЯДНОЕ УСТРОЙСТВО НА ШИМ-ГЕНЕРАТОРЕ

         Печатную плату сделал по быстрому, просто взял и объединил две платы — генератор и защита. Зарядное устройство собрано и успешно проверено — работает великолепно! Для наглядности, снабдил зарядку ампер- и вольтметром, чтобы отслеживать процесс заряда в любой момент.

      ЗАРЯДНОЕ УСТРОЙСТВО НА ШИМ

         В схему можно ставить любой N-канальный полевой транзистор на нужный ток. Аккумулятор, подключаемый к ЗУ, может быть никель-кадмиевый, свинцовый гелевый, никель металл-гидридный или литий ионный. Однако в последнем случае учтите, что на нём не должен быть контроллер (как в АКБ от мобильного телефона), так как заряд происходит импульсами большого напряжения. С другой стороны такой метод заряда приветствуется, ведь эти импульсы разрушают окисел, покрывающий внутренние пластины аккумулятора, производя десульфатацию. В общем получилась простая, надёжная и функциональная схема зарядки, под многие виды аккумуляторов.

         Форум по данному зарядному устройству

         Обсудить статью ЗАРЯДНОЕ УСТРОЙСТВО НА ШИМ-ГЕНЕРАТОРЕ


      Стартер генератор карбюратор автоэлектрика –Различные схемы автомобильных генераторов

      Схемы с внешним регулятором напряжения

      Схемы со встроенным регулятором напряжения

      Схемы с питанием обмотки возбуждения от выхода генератора

      Схемы генераторов с дополнительными диодами

      Схемы с многофункциональными регуляторами напряжения

      Общие описания

      Схемы с питанием обмотки возбуждения от выхода генератора 

      Автомобильный генератор возбуждается от аккумулятора.  Как только включается зажигание, выходной транзистор регулятора открывается и через него идет  ток  возбуждения ,  генератор возбуждается. Когда генератор заработал, возбуждение происходит уже от самого генератора по той же цепи, через замок зажигания. При включенном зажигании в таких схемах плюс аккумулятора всегда остается подключенным к  обмотке возбуждения.

      Регулятор напряжения может быть внешним и встроенным. Внешний регулятор это отдельная коробочка, которая соединяется с генератором проводами и стоит в стороне от генератора. Встроенный регулятор, входит в состав генератора, крепится внутри или снаружи корпуса, обычно, встроенный регулятор сделан вместе со щетками.

      Это схема с внешним регулятором напряжения, с заземленной щеткой. По такой схеме сделан генератор Г 221, для автомобиля «Жигули» ВАЗ 2101,02, 03, 06, и ранней «Нивы»

      Работа схемы автомобильного генератора (это описание применимо для всех последующих схем)

      Схема генератора состоит из обмотки генератора, выпрямителя (Диодного моста), обмотки возбуждения в роторе, регулятора напряжения, аккумулятора и подключенных к генератору приборов электрооборудования. Аккумулятор и генератор работают совместно.  Когда генератор не работает все электрооборудование питается от аккумулятора. Когда генератор возбуждается, все начинает работать от генератора,  и  аккумулятор заряжается. Аккумулятор создает первоначальный ток, для возбуждения генератора, то есть, намагничивает ротор. Аккумулятор для генератора нужен обязательно. Если нет аккумулятора, генератор можно крутить сколько угодно, он не заработает.

      При включении зажигания, ток от плюса аккумулятора идет в ротор через щетки. Этот ток проходит через открытый транзистор регулятора напряжения. Ток  обмотки ротора намагничивает железные полюса с клювами. Двигатель заводится,  ротор раскручивается, и обмотка статора начинает испытывать резкие изменения магнитного поля от мелькающих клювов ротора. В обмотке статора возникает Электродвижущая сила (ЭДС). В цепи обмотки появляется переменный ток. Этот ток проходит через диодный мост, становится выпрямленным, близким по форме к постоянному.

      Обмотка и ротор

      Диодный мост

      На всех приборах автомобиля и на аккумуляторе начинает действовать напряжение генератора. Напряжение генератора становится выше ЭДС аккумулятора, и он начинает заряжаться.

      Когда генератор работает, ток возбуждения в ротор идет уже не от аккумулятора, а от самого генератора.  Регулирование напряжения генератора происходит изменением тока возбуждения.. 

      Проблема возникает в том, что, ЭДС генератора значительно превышает необходимое значение напряжения, для работы электрооборудования.  Для того, чтобы поддерживать напряжение на заданном уровне 13, 8 – 14, 2 Вольта, к генератору подключен регулятор напряжения, он ограничивает напряжение генератора..

      Регулирование напряжения

      При включении, регулятор обязательно открыт, чтобы пропустить ток возбуждения, который намагничивает ротор. Когда генератор раскручивается, ЭДС сильно вырастает, регулятор, подключенный в выходу генератора, чувствует, что напряжении становится выше и закрывается, ток возбуждения уменьшается, напряжение генератора падает. Регулятор чувствует, что напряжение стало ниже и снова открывается, появляется ток возбуждения и напряжение растет, регулятор снова закрывается, и т. д. Напряжение пилообразно изменяется и в среднем поддерживается на заданном уровне.

      С увеличением количества включенных приборов, мощность которую отдает генератор растет, а значит, напряжение на выходе генератора снижается, регулятор напряжения отслеживает это снижение и поддерживает напряжение генератора, пока хватает его мощности.

      Регулятор поддерживает заданное напряжение на выходе генератора при изменениях числа оборотов и изменениях нагрузки. Это обеспечивает правильную зарядку аккумулятора, и нормальную работу всего электрооборудования.

      Схема с внешним регулятором с заземленным транзистором, используется для многих типов устаревших генераторов. 1631,  192,  и.т..п. для автомобилей Волга и Газель с двигателем 402. На многих американских автомобилях, вплоть, до 90 годов, применялись генераторы с внешним регулятором напряжения. Например автомобили «Газель» с двигателем «Крайслер» были сделаны по такой схеме.

       

      Схема генератора со встроенным регулятором напряжения

      В этом случае регулятор напряжения смонтирован в единый узел со щеточным узлом, и установлен на генератор.

          

      По такой схеме сделаны генераторы 58.3701, для автомобиля «Москвич» и все генераторы для автомобилей УАЗ, ЗиЛ, ГАЗ  80 -х — 90-х годов выпуска.

      Все три схемы — это  схемы с питанием обмотки возбуждения от выхода генератора. Первоначальное возбуждение происходит от аккумулятора, а после запуска  ток возбуждения берется с выхода генератора, то есть с той же самой точки.

      Недостаток  Схемы с питанием обмотки возбуждения от выхода генератора.

      Цепь возбуждения работает через замок зажигания, поэтому работа генератора зависит от состояния контактов замка зажигания, провода цепи возбуждения получаются очень длинными и, в целом, надежность  схемы недостаточно высокая.

      Аккумулятор всегда подключен к плюсовому выводу генератора, это необходимо для того, чтобы генератор и аккумулятор могли работать как источники заменяя друг друга — двигатель не работает — источник аккумулятор, двигатель заработал — источник генератор, и все работает от него, а аккумулятор заряжается. Когда генератор не работает, аккумулятор, прямо  подключенный к нему, не может  бесполезно разряжаться через диодный мост потому, что диодный мост не пропускает ток в обратном направлении, но, через обмотку возбуждения в роторе, аккумулятор может разрядиться.

      Если двигатель не завелся и генератор не заработал, а зажигание осталось включено, то идет ток ротора от аккумулятора (а это 3 – 5 Ампер) и разряжает его. По разным причинам такие ситуации иногда возникают и тогда, через несколько часов невыключенного зажигания, двигатель не заведется. Такие схемы, в которых ротор запитан от выхода генератора и, значит, подключен непосредственно к аккумулятору, могут привести к неожиданной разрядке аккумулятора.

       

      Схемы генераторов с дополнительными диодами

      Можно сделать схему возбуждения генератора более короткой и надежной. Ток возбуждения  проходит только внутри генератора и не проходит во внешнюю цепь через замок зажигания. Для этого ток возбуждения берется  с обмоток генератора, выпрямляется отдельным маленьким выпрямителем и отправляется сразу в обмотку возбуждения.

      Схема с дополнительными диодами позволяет защитить аккумулятор от случайного разряда через обмотку возбуждения. В такой схеме обмотка возбуждение, на прямую, не подсоединена  к выходу генератора и аккумулятора. Ток возбуждения протекает не от выхода диодного моста, соединенного с аккумулятором, а  прямо от своих обмоток  в обмотку возбуждения, через дополнительный выпрямитель.

      Для первоначального возбуждения приходится использовать аккумулятор. Ток первоначального возбуждения, при включении замка зажигания, проходит в обмотку возбуждения через лампочку. Лампочка имеет большое сопротивление, поэтому ток в цепи возбуждения протекает маленький (лампочка светится), такого тока вполне достаточно для подмагничивания ротора. Как только ротор подмагнитился, генератор начинает вырабатывать напряжение и появляется ток в обмотках, этот ток идет через дополнительные диоды в обмотку возбуждения и намагничивание ротора возрастает, так генератор, практически сразу, возбуждается, получив первоначальный толчок маленьким током через лампочку. Дальше генератор работает уже самостоятельно, потребляя необходимый ток возбуждения через дополнительные диоды.  

      Цепь внешнего возбуждения остается подключенной, она используется снова при следующем запуске двигателя. Лампочка, фактически, разделяет цепь первоначального возбуждения генератора и цепь рабочего возбуждения. Ток обмотки  возбуждения может достигать 5-и Ампер, но чтобы обмотка возбуждения не могла  потреблять такой ток от аккумулятора,  в цепи первоначального возбуждения и стоит лампочка ограничивающая этот ток. На первый взгляд проблема остается — если ротор генератора не крутится, а зажигание включено, то аккумулятор разряжается, но разражается очень маленьким током через лампочку (лампочка горит).  Ток лампочки может гореть несколько дней и это не приведет к полному разряду нормального аккумулятора. 
      Очень важное преимущество такой схемы состоит в том, лампочка  не только ограничивает ток разрядки аккумулятора через обмотку возбуждения, но то, что она становится очень полезным индикатором состояния системы генератор — аккумулятор и позволят контролировать процесс зарядки аккумулятора и исправность — неисправность генератора.

       Схема генератора с дополнительными диодами и регулятором напряжения  типа L (D+)

      Схема генератора с возбуждением типа L.  Такая схема широко применялась на автомобилях выпуска 90-х годов. ВАЗ 2108-09, ВАЗ 2107 — 05, ВАЗ 2110, 11, 12, «Газель», «Волга» с двигателем 406, Генераторы 372.3701,  9402,3701, 9422, 3701, и многие другие. Генераторы BOSCH, VALEO 

      У регуляторов типа L, на точку L подключается выход лампочки для первоначального возбуждения, а когда генератор заработал, то на эту точку приходит напряжение самого генератора, через дополнительный выпрямитель. Такой регулятор считает, что напряжение на выходе дополнительного выпрямителя — это и есть напряжение бортовой сети, поэтому он поддерживает напряжение на выходе генератора, «опираясь» на значение напряжения на точке L. Это получается недостаточно точно.

       Такие регуляторы применялись на многих генераторах 90-х годов для автомобилей Mitsubishi, и их корейских клонах.

      У регуляторов SL два входа. Точка L имеет такое же подключение, выполняет туже функцию, но, контрольное  напряжение, относительно которого нужно поддерживать заданное напряжение поступает на точку S. Это вход с высоким сопротивлением, который тока не потребляет. Он подключается на силовой выход генератора, где напряжение, действительно мало отличается от напряжения бортовой сети. Таким образом, регуляторы SL поддерживают напряжение на выходе генератора более точно, так как контролируют напряжение на самом выходе.  На точке S  при выключенном зажигании должно быть 12 Вольт (связь с аккумулятором). Если цепь оборвана, что иногда бывает, то генератор работает, но держит напряжение примерно на 1 Вольт выше нужного значения и требуется восстановление проводки, чтобы защитить аккумулятор от перезаряда.

      Разрядка аккумулятора по цепи S невозможна так как вход S регулятора имеет очень большое сопротивление.

      На Российском регуляторе SL  типа 1702.3702 (для  ВАЗ 2108)  неподключение или обрыв точки S, полностью отключает регулятор.

      Такое решение использовали BOSCH, Mitsubishi, DELCO COR.  Генераторы БАТЭ для ВАЗ 2110 и для 406-го  двигателя 3202, 3222, были выполнены по этой схеме.

      Обмотка, намотанная звездой, имеет среднюю точку, если ее подключить к выпрямителю, то с выпрямителя можно снять больший ток. Для выпрямления тока от средней точки нужно дополнительное плечо диодного моста, то есть нужно еще 2 диода. Таким образом, в том же корпусе и с той же обмоткой, можно получить генератор, который будет мощнее на 10 — 15 процентов, только нужен другой диодный мост, на 8 диодов. Такой генератор поддерживает работу большего числа потребителей, что актуально с увеличением числа электронных схем управления в современных автомобилях.

       

       

      Лампочка

      Лампочка не только ограничивает ток, но становится простым и очень полезным сигнализатором.

      При включении зажигания лампочка загорается, через нее идет ток первоначально возбуждения, это значит, что цепь возбуждения целая и генератор готов к работе.

      После запуска двигателя лампочка гаснет – это значит, что генератор заработал.

      Если при включении зажигания лапочка не загорелась, то значит, цепь возбуждения не включилась и генератор не заработает.

      Если лампочка загорелась, а после запуска двигателя не погасла, то значит, что цепь возбуждения целая, но генератор не заработал, надо искать неисправность, иначе, через два часа машина безнадежно встанет.

      Если лампочка загорелась на ходу, то, то значит, генератор перестал работать (например, порвался ремень), двигатель продолжает работать, пока аккумулятор заряжен, но ехать нужно туда, где отремонтируют генератор.

      Лампочка так действует потому, что с одной стороны, она подключается к плюсу аккумулятора, а с другой стороны к обмотке возбуждения. При включении замка зажигания, пока генератор стоит, появляется ток через обмотку возбуждения на минус и лампочка горит, показывая, что цепь возбуждения генератора целая. То есть, плюс питания подводится, лампочка целая, проводка до генератора целая, щетки на месте, контакт на кольцах хороший, обмотка ротора целая, регулятор целый, контакт на массу хороший. Как только генератор закрутился, и на выходе дополнительно выпрямителя, появляется плюс, который подействует на лампочку с другой стороны и лампочка погаснет (от плюса к плюсу ток не идет), это и означает, что генератор заработал.

      Тусклое свечение лампочки может быть потому, что плохо затянут контакт плюсового вывода генератора, или неисправен диодный мост

      Познакомимся с функцией контрольной лампочки генератора более подробно

       

       

      Схема генераторов  DENSO, которые применялись на автомобилях Тойота

      Схема генератора с регулятором напряжения  типа S IG L

      Регуляторы такого типа применялись на генераторах фирмы Денсо для автомобилей Тойота

      Регулятор представляет собой микросхему с несколькими навесными элементами.

      Силовой транзистор Т2, который работает в ключевом режиме, включает и отключает ток возбуждения.

      Транзистор Т1 управляет лампочкой контроля зарядки.

      Микросхема работает по более сложной программе, чем регулятор на дискретных элементах, что позволяет упростить схему самого генератора.

      Регулятор напряжения имеет разъем S IG L, для внешнего подсоединения, и клеммы для внутреннего подсоединения к цепям генератора B, P, F, E

      Назначение выводов внешних

      S – подвод напряжения с выхода генератора и аккумулятора для контроля уровня напряжения.

      IG- питания цепей регулятора после включения замка зажигания

      L — подключение лампочки контроля заряда

      Назначение выводов внутренних соединений регулятора

      B — подвод тока возбуждения от выхода генератора

      P — подвод переменного напряжения с фазы генератора

      F — отвод тока возбуждения от ротора

      E – земля

       

      Работа схемы

      В выключенном состоянии к точке В подведен плюс от аккумулятора, но транзистор Т2 полностью закрыт и тока по цепи возбуждения нет. Плюс действует на точке S, но это вход с очень высоким сопротивлением и тока не потребляет.

      При включении зажигания плюс от аккумулятора попадает на точку IG и на точку L через лампочку.

      Микросхема DD получает питание по цепи IG. Транзистор Т1 открывается и лампочка загорается, сигнализируя о том, что генератор готов к работе, но еще не работает.

      Микросхема DD переводит транзистор Т2 в импульсный режим, с такой скважностью, что среднее значение тока оказывается достаточным для подвозбуждения генератора. От плюса, через точку В, в обмотку возбуждения идет ток  через транзистор Т2. Ток очень маленький и противодействие ротора вращению двигателя получается очень слабым, что облегчает запуск двигателя и создает более щадящий режим для аккумулятора и стартера.

      Стартер начинает раскручивать двигатель. Ротор вращается и подмагниченный начальным током возбуждения, начинает генерировать в обмотке генератора переменное напряжение.

      Возникшее переменное напряжение, с одной из обмоток попадает на точку Р регулятора, и на соответствующую ножку микросхемы. Сигнал о появлении переменного напряжения, означает, что двигатель завелся и можно включать генератор. Микросхема переводит  транзистор Т2, на такую длительность импульсов при которой ток возбуждения  становится достаточно большим, чтобы генератор вышел на рабочее напряжение и начал отдавать достаточную мощность. Ток возбуждения (показано стрелками) от плюса, через точку В, идет в обмотку возбуждения, и через транзистор на Т2 на массу.  Ротор сильно намагничивается и генератор начинает работать. Транзистор Т1 получает от микросхемы команду на закрытие и лампочка гаснет, что подтверждает нормальный режим работы генератора.

      Далее задача регулятора состоит в поддержании рабочего уровня напряжения на выходе генератора.

      Генератор все время поднимает напряжение и стремится превысить его нормальный уровень. Регулятор ограничивает напряжение на заданном уровне. Микросхема DD обеспечивает широтно – импульсное управление (ШИМ – регулятор). Среднее значение тока, протекающего в обмотку зависит от длительности импульса открытого состояния ключевого транзистора Т2. Когда напряжение на выходе генератор возрастает, то микросхема, получая значение этого напряжения на точку S, уменьшает длительность открытого состояния транзистора, и среднее значение тока возбуждения снижается, напряжение на выходе генератора снижается, далее, длительность импульсов вновь увеличивается и напряжение возрастает, таким образом, поддерживается заданный уровень выходного напряжения с достаточно высокой точностью — около 14, 4 Вольта

      Диод, шунтирующий обмотку возбуждения, как обычно, создает контур для ЭДС самоиндукции, при резком размыкании тока возбуждения, что снижает импульс высокого напряжения, которое может пробить выходной транзистор Т2

       

      Схема генератора не нуждается в дополнительном выпрямителе для питания обмотки возбуждения.

      Схема регулятора напряжения защищает аккумулятор от разрядки через обмотку возбуждения, в случае если зажигание включено, а двигатель не работает.

      Как и в схеме с дополнительным выпрямителем, схема потребляет ток на свечение лампочки – сигнализатора разрядки и еще потребляет небольшой ток через обмотку возбуждения, необходимый для первоначального возбуждения, этот ток определяется импульсным режимом транзистора Т2 , его среднее значение оказывается достаточно мало, чтобы не оказывать существенное влияние на разрядку аккумулятора, поэтому в автомобиле, который не завелся, долгое время может быть включено зажигания без риска разрядки аккумулятора через генератор.

       

      На данном рисунке показана схема генераторов на 100 и 110 Ампер, для генераторов меньшей мощности достаточно обычного диодного моста с шестью диодами.

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      Самодельный регулятор напряжения — MotoRegulator.com

      Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла.
      Для начала отмечу, что нижеследующий текст является популистским и предназначен для людей, слабо разбирающихся в электронике, поэтому изобилует не совсем корректными сравнениями и упрощениями. Не надо тыкать мне в лицо учебником электротехники и учить меня законам Кирхгофа. Началось все с того, что ребята из дружественного мото-сервиса попросили меня срочно решить «проблемку с РР». Отказать ребятам было нельзя — свои, и я принялся изучать вопрос. Сначала выяснилось, что мотоциклетное РР — это совсем не то, что автомобильное.
      Отличий два и все они очень серьёзны.
      1) Авто — это стабилизатор.
      Мото — это выпрямитель + стабилизатор .
      2) Авто — регулирует напряжение на обмотке возбуждения генератора .
      Мото — регулирует выходное напряжение генератора .
      Есть мотоциклы с генераторами автомобильного типа, но их немного.
      Вот тут надо сделать небольшое отступление на тему «что такое сила тока, напряжение, и стабилизатор напряжения». Электрический ток, как известно из школьного курса физики, это «направленное движение электронов». Вдаваться в подробности сейчас не будем, важно уяснить главное — у электрического тока есть множество параметров, но нам наиболее важны два из них — сила тока и напряжение. Ток измеряется в Амперах, а напряжение измеряется в Вольтах. Чтобы понять что это такое, представьте, что ваш провод это канал, а ток — вода текущая по нему. Так вот сила тока это скорость потока воды, а напряжение — уровень воды в канале. Для понимания дальнейшего текста этого хватит.
      Теперь о стабилизаторах.
      Заморачиваться на выпрямителях мы пока не будем — диод он диод и есть. Задача любого стабилизатора напряжения — получить напряжение, понизить его до заданного уровня и удерживать на этом уровне. По принципу действия стабилизаторы делятся на импульсные, линейные и шунтирующие. Шунтирующий стабилизатор «пускает лишнее напряжение мимо потребителя».
      Простейший шунтирующий стабилизатор собирается из двух деталей — резистора и стабилитрона.

      Стабилитрон, это такой забавный штук, который, когда напряжение меньше чем нужно, прикидывается что его (стабилитрона) нет (то есть якобы провод оборван), а когда напряжение больше, чем нужно, прикидывается проволочкой (то есть начинает свободно проводить ток). Представьте себе клапан с пружиной, вот принцип тот же. Работает это так. Вот напряжение, меньше чем нужно, стабилитрон ток не проводит, весь ток уходит потребителю. Воды мало, клапан закрыт. Вот напряжение почему-то повысилось и стало больше чем нужно. Стабилитрон начинает проводить ток, и все лишнее «проваливается» мимо потребителя через стабилитрон на массу. Воды много, клапан открылся и слил лишнюю воду. Таким образом, наше напряжение, наш «уровень воды» все время находится примерно на одном значении. Все бы ничего, но не бывает стабилитронов на большие токи. Этот клапан может быть только маленького диаметра. Поэтому сделать стабилизатор для большой силы тока только на стабилитроне — невозможно. Как с этим справляются расскажу позже.
      Линейный стабилизатор действует по принципу: «при повышении напряжения ему создаются дополнительные трудности для прохождения». Лучшее сравнение — унитазный бачок. Уровень в бачке маленький — клапан открыт — вода наливается, уровень поднимается — поплавок тащит вверх, клапан закрывается, отверстие всё уже, уже, уже…. Уровень достиг нужного — клапан закрылся. Спустили воду — уровень упал — вода полилась, и всё по новой. Только быстро.
      Приделываем к нашему стабилитрону транзистор.

      Транзистор это и есть тот самый клапан в бачке. Напряжение маленькое — стабилитрон отключен (говорится «закрыт») — ток открывает транзистор — ток идет через транзистор к потребителю, напряжение повысилось — стабилитрон открылся — ток слился на массу — транзистор открывать уже нечем — он закрылся — отключил источник от потребителя. Ваша любимая «КРЕНка» и есть такой вот линейный стабилизатор, только схема внутри нее посложнее. И все бы ничего но, сам принцип линейного стабилизатора подразумевает «преобразование лишнего тока в тепло». Шунтирующий стабилизатор «пропускает через себя только лишнее». А линейный — всё. Поэтому греется он гораздо больше. И если заставить его стабилизировать большие токи, то
      греться он будет быстрее чем остывать. И быстро сгорит. И никакие радиаторы не помогут. А в мотоциклах очень большие токи (я говорю о японцах). Поэтому тот кто советует «сделать РР для мотоцикла на КРЕНке» — бредит. Импульсный стабилизатор действует по похожему принципу, только у него нет промежуточных состояний. Он либо подключает, либо отключает источник от потребителя. Подробности в википедии.
      Теперь вернёмся к нашим мотоциклам.
      Итак для начала я попробовал собрать классический линейный стабилизатор. Да, да, я наступил на все грабли, на которые можно было наступить. 20-ти амперный тошибовский транзистор шарахнул так, что слышно было на улице. Тогда вместо классического «биполярного» транзистора я применил так называемый «полевой». Полевые транзисторы свободно оперируют большими токами не особо при этом нагреваясь.
      Моя первая схема имела следующий вид.

      Транзистор VT0 выполняет функцию «чем больше напряжение питания, тем меньше напряжение он выдаёт», микросхема DA1 — «дёргает напряжение, управляющее полевым транзистором, чем меньше напряжение на входе, тем реже дёргает» микросхема DA2 — усиливает напряжение, управляющее полевым тразистором, а то ему с DA1 мало, ну а полевой транзистор VT1 уже выполняет роль того самого клапана в бачке унитаза и питает весь мотоцикл. И ничего. Не перегревается. Эту схему я изготовил в единственном экземпляре, и она работала. О дальнейшей ее судьбе мне ничего не известно. Но судя по тому, что рекламаций мне не высказали, наверно работала она удовлетворительно. Однако это получается импульсный стабилизатор. И у него есть главный недостаток импульсного стабилизатора — большие пульсации. Грубо говоря, напряжение на его выходе не 13 вольт, как надо, а «то много, то мало, а в среднем то что надо». Если мой друг Вася выпил при мне две бутылки пива, а мне не дал ни одной, то теоретически, мы вместе выпили по бутылке пива каждый, а практически Васе пора бить морду. Я показал эту схему лишь для того, чтобы обозначить «этапы большого пути».
      Но эту схему собирать не надо.
      Именно из-за пульсаций. Мой коллега предложил аналогичную схему с меньшим количеством деталей, но работающую по тому же принципу.

      Её тоже сделали. И она тоже работала. Но и это импульсный стабилизатор со всеми своими пульсациями, поэтому от этой схемы так же отказались. Что ж, я стал искать дальше. Очень скоро я обнаружил, что производители японских мотоциклов используют шунтирующие стабилизаторы, но ревностно хранят тайну их устройства.
      Вот все что мне удалось найти, листая официальную документацию.

      Содержимое «Integrated Circuit» остаётся загадкой. Однако главный принцип ясен — роль шунтирующего стабилизатора (то есть «клапана, сливающего лишнюю воду»), выполняет деталь под названием «тиристор». Это мощный электронный «клапан», который открывается, если на его управляющий контакт пустить ток, а закрывается когда ток через него падает до нуля(почти). Именно этим и занимается Integrated Circuit, осталось додуматься что же у него внутри? Поискав еще, я обнаружил, что не один я заморачиваюсь этой проблемой, и, в общем повторяю путь других людей. Вот только большинство людей остановились на одном и том же этапе — прицепили к тиристору стабилитрон. Попутно изыскатели еще и наделали других ошибок.
      Так что я продолжаю показывать схемы, которые собирать не надо :
      В этой схеме к стабилитрону зачем-то прилеплен конденсатор большой ёмкости.

      Конденсатор большой ёмкости замедляет процесс «переключения напряжения туда-сюда», в линейном стабилизаторе он нужен, здесь же он только мешает стабилитрону нормально работать. Кроме того в этой схеме есть та же проблема, что и в следующей.
      В этой схеме на первый взгляд все неплохо. Но тут уже начинается физика с математикой.

      Как я уже говорил раньше «стабилитрон это клапан который не может быть слишком большим». Добавлю: слишком маленьким тоже. То есть — вот у вас стабилитрон который должен открываться при напряжении 13 вольт. Но кроме напряжения у нас есть понятие силы тока. Так вот у любого стабилитрона есть минимальный ток, меньше которого он еще не работает, и максимальный ток, больше которого он уже горит. Такой же параметр есть и у тиристора. И они не совпадают. Среднестатистический стабилитрон начинает работать с 5-ти миллиампер и сгорает, если ток выше 30-ти миллиампер. А тиристору, чтоб открыться нужно миллиампер 15. Одному. Но генератор мотоцикла трёхфазный — выдаёт ток с трёх точек. Поэтому тиристоров-то у нас три!
      А в этой схеме вообще применены «более другие клапана» под названием «симистор». Симистору, чтоб открыться, в зависимости от модели, нужно от 30-ти до 70-ти миллиампер. Одному. Дальше все зависит от резистора под стабилитроном — если он маленький — стабилитрон сгорит. Если большой — тиристоры не будут нормально открываться. Есть стабилитроны которые держат до 100 миллиампер. Но они начинают работать только с 50-ти. Дело в том, что мотоциклетный генератор выдаёт очень большой разброс напряжений. На холостых это вольт 10, зато на полном газу — 60 вольт не предел. Вспоминаем закон ома «чем больше напряжение, тем больше сила тока». Считаем. 10 вольт генератора делим на 330 ом резистора — получаем 30 миллиампер тока. Обычный стабилитрон уже на пределе. Мощный еще даже не приготовился работать. 60 вольт генератора делим на те же 330 ом — получаем 180 миллиампер. Оно конечно, тиристоры сразу же, за микросекунду «уронят» напряжение обратно, но все же… все же… Может увеличить сопротивление ? Давайте попробуем.
      60 / 1200 = 50 миллиампер.
      Вроде нормально. Но 10 / 1200 = ?
      То-то и оно.
      Кроме того в этой схеме есть лишние детали. Следующую схему помещаю просто для коллекции — в ней та же проблема.
      К тому же на ней честно написано «Не для сборки !»

      А вот эта схема на первый взгляд лишена всех вышеперечисленных недостатков.

      Тиристору надо 20 миллиампер ? Стабилитрон работает в разбросе 5-30? Пожалуйста — каждому тиристору свой стабилитрон. Все довольны. Но только вот какая засада — даже если детали сделаны на одном заводе, в один день и на одном станке, они все равно чуть-чуть разные. Вы купите три стабилитрона на 13 вольт, а реально получите один на 12.9 второй на 13 третий на 13.1 вольт. Та же история будет с резисторами — их сопротивление будет отличаться ом на 5-10 в разные стороны. Кроме того генератор изготовлен тоже людьми. И поэтому выдает не абсолютно одинаковые напряжения на каждой точке а чуть-чуть да разные. В итоге какой-то из трёх стабилитронов будет открываться чуть раньше остальных. И открывать тиристор. И на этот тиристор ляжет основная нагрузка. Большая часть «лишнего» напряжения будет «сливаться» через один тиристор и он быстро сдохнет от перенагрузки. То есть эта схема вполне работоспособна при условии максимальной одинаковости деталей. Иначе она будет сильно греться и быстро сгорит. Делаем вывод — стабилитрон должен быть один, общий, и рулить всеми тремя тиристорами одновременно, но между ним и тиристорами должно быть что-то еще, усиливающее ток.
      Через некоторое время я нашел вот эту схему.

      В принципе ее можно делать. Она будет работать как надо. Но я ее делать не стал. Я перфекционист. Транзисторы, предлагаемые тут, держат ток 100 миллиампер, причём тиристорами-симисторами управляет только один из них — правый — Q2. Если использовать симисторы — 90 миллиампер «съедаться» ими, еще немного уходит на взаимодействие со вторым транзистором, сколько остаётся запаса? Не люблю я так, чтоб впритык. А если взять транзисторы по мощнее, то стабилитрон их «не раскачает» как следует. Опять же — деталей в схеме много, паять ее долго и муторно. Надо двигаться дальше. Надо сказать что тогда я много спорил с автором одной из выше расположенных схем — Dingosobak-ой именно на счёт стабилитрона, и вот я, плюнув на всё, начинаю разрисовывать свой собственный вариант, но тут, Dingosobaka присылает мне схему которую получил от GogiII

      Здесь все нормально, за исключением некоторых номиналов резисторов — резисторы R1 и R2 надо уменьшить килоОМ так до трёх, а то на опять-таки многострадальный стабилитрон идёт слишком маленький ток. (Схема требует пересчета многих номиналов, но ввиду её невостребованности делать это никто не собирается — поэтому относитесь к ней как к экспонату в музее). В этой схеме маленький стабилитрон «качает» маленький транзистор, маленький транзистор «качает» транзистор побольше, а большой транзистор «рулит» мощными симисторами — он свободно держит ток в 1000 миллиампер. То есть 1 ампер. Вот это я называю «запас» ! К тому времени схем накопилось много и надо было их как-то друг от друга отличать. Этой схеме я присвоил название исходная .
      Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. На этом бы успокоиться, но — нет. Схема-то, для тех, кто «не в теме», сложная. И я стал искать пути упростить изготовление схемы без потери функциональности. Сначала я вознамерился приспособить автомобильное РР к мотоциклу. Исходил я из того что автомобильное РР по сути выполняет ту же функцию, что и Integrated Circuit, с той лишь разницей, что автомобильное РР управляет обмоткой возбуждения, а мотоциклетное — тиристорами-симисторами. Вот что в итоге у меня получилось:
      Сначала собираем блок тиристоров-симисторов.

      Затем берем автомобильное РР, выкусываем детальки, зачёркнутые крестиками, и впаиваем новые, отмеченные синим.
      Внимание ! Нужно реле зарядки под названием 121.3702 . Всяческие 121.3702 -01 , 121.3702 -02 и 121.3702 -03 не годятся !

      В зависимости от типа применяемых тиристоров-симисторов придётся подобрать тот резистор, что справа (как считать-подбирать резистор написано в конце статьи). По сути, мы просто собираем предыдущую схему GogiII-Dingosobaka, только с минимальными трудозатратами и максимальным использованием готовых изделий. Настроение было игривое, поэтому эта схема получила название брутальная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Дальше я стал делать ту же схему но задался целью найти готовый Integrated Circuit не в виде «РР от жигулей», а в виде готовой законченной микросхемы. И нашёл. Аж три штуки.
      Схема приобрела вот такой вид.

      За красоту и аккуратность схема получила название гламурная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но тут-то и возник парадокс. Почти у каждого из вас есть дома такая микросхема. В музыкальном центре. Она управляет светодиодными индикаторами. Но кто-нибудь хоть раз видел магнитофон у которого сдох светодиодный индикатор ? Ну не горит она, эта микросхема. Не с чего ей гореть. А раз не горит, значит ее не покупают. А раз не покупают, значит не везут !
      Копеечную микросхему купить практически невозможно ее нет в магазинах. Но именно эту схему я собрал себе как запасную. Родное РР у меня пока (тьху-тьху-тьху) живо. И я стал думать дальше. Во всех предыдущих схемах используются тиристоры. Можно использовать и симисторы. Но именно можно а не обязательно. Напомню принцип работы тиристора — на «палочку» подключили массу, на «треугольничек» — плюс, если на управляющий контакт подать плюс — тиристор откроется, если минус — закроется. Только так и никак иначе. Поэтому я не могу использовать с тиристорами очень распространённую микросхему TL431 (она же КРЕН19) — тиристоры, чтобы открыть их, надо подключать к плюсу, а TL431 подключает к минусу. Сначала я пошёл по проторённому пути, и воткнул между TL431 и тиристорами переходной транзистор.

      Продолжая модную тогда тему «падонкаффскаго езыка» я назвал схему готичная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но (!) больше я этого делать не буду. Смысл ? Опять много деталей. Меняем шило на мыло. Ну раньше было два транзистора, теперь одна трёхногая микросхема и один транзистор. Разницы-то? Хотя в этой схеме можно вместо стабилитрона с резистором поставить один переменный резистор, тогда появится возможность плавно регулировать напряжение, но переменный резистор это ненадёжная деталь. Особенно в условиях мотоцикла. Спустя почти год (я сделал эту схему в июле 2007-го) ребята из Саратова практически повторили эту схему, применив хоть и другие, но аналогичные детали.

      Схема хороша, но сохраняет главный недостаток — много деталей. Микросхема, которую применили саратовчане (так называемый «супервайзер»)держит совсем уж мизерный ток, поэтому они усилили ее дополнительным транзистором. (Вот что непонятно — неужели в Саратове микросхема TL431 это большая проблема чем применённая ими PST529 ?) Когда я начинал, я смотрел в сторону PST529 и подобных, но отказался от них потому что они требуют большого количества дополнительных деталей. А моя задача была — свести количество деталей к минимуму, сохранив достойную функциональность. Вот тут видно как мне предлагают микросхему типа «супервайзер» а я от неё отказываюсь.
      Через несколько лет Dyn предложил свой вариант «готичной»:

      И успешно её изготовил. Деталей опять много, но ему было не лень.(да, чего уж там — на две три детали то больше… Если кого то интересует изготовление этой схемы — по ссылке выше описание и там же указаны номиналы деталей. Только я немного ошибся — R6 R7 надо поменять местами. Dyn)
      Ну а пока я, с подачи Dyn-a, стал изучать симисторы. И обнаружил принципиальное их отличие от тиристоров. А именно — им совершенно не обязательно «на палочку подключили массу, на треугольничек — плюс, открывать плюсом». Им вообще пофиг какая полярность куда подключена. Это резко меняло дело и открывало новые горизонты. Еще раз напомню — все предыдущие схемы рассчитаны под тиристоры . В них можно использовать симисторы, но не обязательно. А я сделал схему, которая будет работать только с симисторами. И в ней симисторы работают в удобном для себя режиме.
      В итоге схема приняла такой вид.

      В уже сложившейся традиции схема была названа зач0тная. Ещё раз отмечу — с этим вариантом Integrated circuit можно использовать только симисторы, тиристоры использовать нельзя ! И включаются эти симисторы не так как на всех предыдущих схемах.
      То есть взять эту схемку и пришпилить к ней «силовой блок» из прeдыдущих схем — нельзя! Запас по току правда не очень велик — TL431 держит всего 150 миллиампер, но все же это вполне допустимо. Но, как уже отмечалось, я — перфекционист и всё люблю делать с запасом, поэтому я заменил TL431 на классический нижний ключ ULN2003. (Так же можно использовать аналог TD62083). Эта микросхема есть в продаже, работает в этой схеме в своём нормальном режиме и держит ток 500 миллиампер. C этой деталью схема упростилась уже до полного безобразия, а так как принцип не поменялся, получила название зач0тная-2. Эти схемы я делал и делаю до сих пор. И они работают. Их делают и другие люди. И у них эти схемы так же работают.



      Некоторое время назад товарищ Poner предложил использовать вместо ключа оптореле.
      Собраный им образец показал свою работоспособность, хотя и чуть худшие характеристики.


      От себя добавлю, что не вижу причин, почему бы не использовать в качестве ключа любой подходящий полевой МОП транзистор (MOSFET) .

      После прочтения всей этой моей писанины, у вас наверняка накопились вопросы. Постараюсь на них ответить.
      Многие спрашивают, почему я пишу «тиристоры» а на схемах рисую симисторы BTA26 ?
      Причина проста — из-за лени. Большинство тиристоров-симисторов нельзя использовать без прокладок и неметаллических винтов! А вот симисторы BTA16-24-26-41 — можно. Если же использовать другие тиристоры-симисторы (25TTS, BT152, BT225 и т. д.) то приходится ставить каждый на прокладку, да прикручивать его неметаллическим винтом, да следить, чтоб не замкнуло, это так лениво.
      Так же многие спрашивают какие можно еще применять тиристоры-симисторы. Да в общем-то любые, рассчитанные на ток не меньше 20-ти ампер. Вот прям прийти в магазин и сказать «дайте мне три тиристора или симистора ампер на двадцать.» Вообще-то можно и меньше (10-15 ампер), но как уже отмечалось — лично я люблю все делать с запасом. Кроме того, чем на меньше ампер рассчитан тиристор-симистор тем больше он будет греться.
      Только если использовать симисторы, то для схем «исходная», «гламурная», «брутальная» и «готичная» годятся не любые симисторы а только четырёхквадрантные (4Q). Ещё бывают трёхквадрантные (3Q или hi-com) и они для вышеназванных схем не годятся.
      А вот для схем «зач0тная» и «зач0тная-2» не только подходят любые симисторы — и 4Q и 3Q, но 3Q даже предпочтительнее, так как будут меньше нагреваться.
      Но самый лучший симистор для наших целей это конечно BTA26 (он же ВТА24 в другом корпусе). Он подходит ко всем схемам, надёжен и недорог.
      К тому же выпускается в двух вариантах BTA26бла-бла-бла B это 4Q, а BTA26бла-бла-бла W это 3Q.
      Кроме того, под неизвестно-какие тиристоры-симисторы потребуется пересчитать номиналы резисторов, иначе тиристоры-симисторы будут сильно греться и в итоге сгорят.
      Разберём этот момент на примере симисторов BTA140.
      Открываем даташыт (ссылка)
      Ищем в таблицах параметр I GT (Gate Trigger Current) видим максимальное значение 35 миллиампер.
      Чуть-чуть «откатываемся назад» от максимального значения, чтобы не грузить симистор, и считаем:
      14 вольт / 0.03 ампер = 470 ом.
      То есть в управляющем контакте одного симистора BTA140 должно быть 470 ом.
      То есть если взять схему «зачотная», то все резисторы между микросхемой и симисторами должны быть по 470 ом.
      Если взять схему «брутальная» — по 360 а общий резистор в переделанном РР от жигулей — 110 ом.
      Единственно чего нельзя делать — это ставить один общий резистор на все три тиристора-симистора, а их управляющие контакты собирать в один пучок. Тогда между тиристорами-симисторами возникнут паразитные связи и всё пойдёт в разнос. У каждого тиристора-симистора должен быть свой «персональный» резистор хотя бы ом на 70, а остальное может быть общим.
      Короче, купив тиристоры-симисторы, уточняйте все эти моменты по документации на сайте оллдаташыт !
      Часто меня спрашивают какой стабилитрон нужно применять в схеме.
      Стабилитронов много, и многие годятся, но нужно учитывать следующие моменты:
      Стабилитрон нужен на правильный ток. То есть минимальный ток стабилитрона должен быть не больше 5-ти миллиампер, а максимальный — не меньше 15-ти. Причём эти токи взаимосвязаны, рабочий участок стабилитрона обычно равен 20-30 миллиампер, то есть если у стабилитрона максимальный ток 50 миллиампер, то его минимальный ток будет миллиампер 50-30=20, то есть такой стабилитрон не годится. В магазинах частенько обозначают стабилитроны по мощности, например «13 вольт 0.5 ватта».
      Это значит, что максимальный ток стабилитрона 0.5W / 13v = 30 миллиампер. Значит у этого стабилитрона минимальный ток будет около 1 миллиампера, и такой стабилитрон подойдёт.
      Стабилитрон нужен на правильное напряжение, то есть на 14 вольт. Вольт туда — вольт сюда на стабилитроне, аукнется полутора вольтами на выходе схемы. Если стабилитрона на 14 вольт под руками нет, можно набрать его из нескольких стабилитронов в сумме (7+7 6+8) или добавить нужное количество любых маломощных кремниевых диодов в прямом включении, из расчёта, что 1 диод добавляет к стабилитрону 0.7 вольта. Например к стабилитрону на 13 вольт нужен 1 диод вроде 1N400*, КД521 , КД522 , КД509 , КД510 итд. C тем же успехом вместо диода можно использовать второй такой же стабилитрон. С точки зрения сборки это даже предпочтительнее — взял два стабилитрона на 13 вольт, спаял метками друг к другу, воткнул в схему любой стороной, и вопрос закрыт.

      Теперь пару слов о той части мотоциклетного РР о которой мы еще не говорили — о выпрямительной. Токи потребляемые мотоциклом исчисляются десятками ампер, поэтому диоды надо применять мощные. Если объем двигателя кубиков 400-600, то вполне хватит 30-ти амперных диодов. Я обычно применяю готовый 36-ти амперный диодный мост (сборка на 6 диодов) 36MT. Но если объём двигателя большой — 36МТ не справится. Зависимость проста — большой двигатель труднее крутить стартером, значит стартер ставится более мощный, чтоб его крутить нужен мощный аккумулятор, значит он потребляет большой ток при зарядке. Для того чтоб не рисковать надо использовать 40-ка а то и 50-ти амперные диоды. Например 40CTQ 50HQ 52CPQ и т. д.
      Вот например вариант «зач0тной-2» на трёх 50-ти амперных мостах KBPC5006 (они же MB506) и трёх симисторах BTA41 (все резисторы по 300 ом).

      Про себя я называю этот вариант Ever Est что в переводе с латыни означает «вечный». Еще одно замечание — по той же причине (большие токи) провода, которые используются, должны быть очень толстыми. Иначе будет «чота я спаял а оно не работает». Я использую провода сечением 2-3 миллиметра.
      Ещё один важный момент — радиатор. Лучший радиатор — крышка канализационного люка прикрученная на траверсу. Радиатор от старой РР не годится — он маленький. В родных РР бескорпусные детали приварены к радиатору, этим достигается лучший тепловой контакт. Прикручивая обычные детали к неровной поверхности «родного» радиатора вы не добьётесь такого же хорошего теплового контакта. Поэтому радиатор должен быть большой (я использую примерно 8см на 10см с высотой рёбер 2см) и иметь хотя бы одну идеально ровную поверхность (туда вы прикрутите детали). Ну и о проверке — проверять схему можно только полностью подключенной! Если вы прицепите три провода от генератора, а плюс и минус никуда не подключив будете мерить тестером — вы ничего не увидите. Схема работает только в полном подключении (впрочем так же себя ведут и «родные» РР). Если вы боитесь за мотоцикл то проверяйте на заменителе (аккумулятор плюс лампочка).

      Никогда, ни при каких обстоятельствах, категорически НЕЛЬЗЯ сдёргивать клемму с аккумулятора на работающем мотоцикле ! Это верный способ убить мозг! (если вы это уже делали и мозг до сих пор жив, вам просто повезло)
      Пара фоток как это выглядит в реале:
      (Но я вас умоляю — не надо делать РР по фоткам ! РР надо делать по схемам. А фотки я помещаю исключительно для подтверждения, что всё написанное выше не теоретические измышлизмы, а вполне реальная практика)



      После сборки и проверки обязательно залить эпоксидкой! Иначе от вибрации у деталей поотваливаются «ножки». Причем быстро. В течение дня-двух. Вот собственно и всё.
      Если будут вопросы — задавайте в разделе ниже, тот который «обсуждения». P.S. Как вы заметили, я постоянно обновляю этот постинг. Дело в том, что некоторые подробности, которые я сперва не описывал, для меня само-собой разумеющееся, а вот для многих читателей оказались непонятны. Поэтому как только я получаю вопрос — ответ на него я вношу в этот постинг. Так что не стесняйтесь, спрашивайте.
      Часто задается вопрос родной регулятор мотоцикла шести контактный, все схемы пятиконтактные — как поступить?
      В некоторых мотоциклах сделано так, что управляющая схема регулятора запитывается от замка зажигания. То есть при выключенном замке зажигания нет утечки тока через регулятор и аккумулятор через него не разряжается.
      Таким образом на регулятор приходит шесть проводов. Три фазы (обычно желтых) из генератора. Минус (он же корпус мотоцикла). Плюс аккумулятора и плюс с замка зажигания.
      Варианта два.
      Либо плюнуть на все умности и оставить провод с замка зажигания не при делах. Только его изолировать от реальности тщательно. И поставить пятиконтактный регулятор. Это на случай , например, установки не родного регулятора.
      Либо если вы сами собрали схему, то руководствуясь приложенным рисунком сделать разрыв между точками А и В. Точку А подать на провод идущий к замку зажигания. Точку В подать на провод идущий к аккумулятору.
      Если же вас интересует обратный процес — установка шестиконтактного регулятора (купленного по случаю) в мотоцикл где на регулятор приходит лишь пять проводов, тогда все так же три фазы на генератор, затем найдите минус (прозвоните тестером — минус звонится на корпус регулятора накоротко),остальные два провода скрутить и на плюс.

      Еще часто бывает что выходные провода дублируются. из регулятора выходит два минуса и два плюса. Это легко понять по одинаковому цвету пар проводов. Это другая история — не перепутайте.

      Источник: moto-electro.ru
      Текст отредактирован, орфография и пунктуация сохранены, все оригинальные ссылки сохранены.


      Ниже вы можете оставить свой комментарий или поделиться опытом с другими читателями.

      Комментарии публикуются после модерации, оскорбления, ссылки и спам будут удалены.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *