Простая схема регулируемого блока питания на транзисторах с защитой от перегрузки по току и КЗ. Пояснение принципа действия и работы данной схемы.
В этой статье предлагаю рассмотреть достаточно простую схему, классический вариант, блока питания с регулировкой выходного напряжения и тока срабатывания защиты от токовой перегрузки и короткого замыкания. Новичкам, которые первый раз видят данную схему наверняка будет не совсем понятен сам принцип действия и работа этого устройства. А что касается надежности этой схемы, то она уже проверена многими годами и многими радиолюбителями, электронщиками, которые в свое время обязательно должны были собирать этот регулируемый блок питания для своих различных электронных устройств. Так что схема проста, работоспособна и вполне надежна.
Давайте разберем эту схему. Вначале стоит обычный трансформаторный блок питания подходящей мощности. Поскольку в самой схеме регулятора напряжения стоит силовой транзистор КТ817, который может через свой переход коллектор-эмиттер пропустить до 3х ампер, то этим током пока и ограничимся. Итак, наш регулируемый блок питания будет выдавать на своем выходе постоянное напряжение от 0 до 12 вольт, с максимальной силой тока до 3 А. Следовательно максимальная рабочая мощность блока питания будет около 36 Вт (мы 12 В умножаем на 3 А). Поскольку трансформаторы такой мощности имеют КПД примерно равный 80%, то этот трансформатор у нас должен быть мощностью где-то 50 Вт.
Чтобы мы на выходе данного блока питания получили свои максимальные 12 вольт, то нужно чтобы наш трансформатор на вторичной обмотке выдавал переменное напряжение не менее 13,5 вольт. Почему так. Просто небольшая часть напряжения, а именно где-то 1,2 вольта потеряется на схеме стабилизатора напряжения. Ну об этом чуть позже. В итоге, нужно найти трансформатор мощностью около 45-60 Вт, вторичная обмотка которого может обеспечить ток до 3 ампер и напряжение 13,5-15 вольт. Ну, и желательно чтобы размеры этого трансформатора были подходящими, компактными, а это значит что лучше приобретать тор (круглая форма магнитного сердечника). В таких трансформаторах и размеры меньше и КПД выше. На входе первичной обмотке желательно предусмотреть плавкий предохранитель (на схеме обозначен как Z1), который в случае чего обезопасит схему блока питания от выгорания трансформатора.
Но как известно после диодного моста выходит пульсирующее напряжение, хотя оно уже и не меняет свою полярность. Чтобы эти пульсации убрать, или по крайней мере их свести к минимуму, то обычно для этого ставиться обычный фильтрующий конденсатор электролит. В схеме он обозначен как C1 и его емкость 500 микрофарад, хотя можно поставить и побольше, микрофарад так на 5000, будет только лучше. Учтите, что напряжение конденсаторов должно быть чуть больше того, которое на них подается в схеме при работе. Поскольку в противном случае возникает опасность выхода из строя данного конденсатора. Даже может бабахнуть.
Далее в регулируемом блоке питания, с защитой по току от КЗ и перегрузок, стоит сама схема, которая выполняет функцию регулируемого стабилизатора напряжения, и токовой защиты. В начале этой схемы стоит обычный параметрический стабилизатор напряжения, состоящий из стабилитрона VD1 и резистора R1.
На стабилитроне оседает опорное напряжение, то на какое рассчитан сам стабилитрон. В этой схеме нужен стабилитрон с напряжением стабилизации 13,5 вольт (14 В). Причем стоит заметить, выходное напряжение будет равно напряжению стабилитрона плюс 1,2 вольта, что потеряются на составном транзисторе, состоящем из VT1 и VT2 (на их базо-эмиттерном переходе).
Напряжение питание должно быть больше хотя бы на 0,5-2 вольта, чем напряжение стабилитрона. Именно эта добавленное напряжение и нужно для нормальной, стабильной работы стабилитрона (параметрического стабилизатора). Сам стабилитрон можно поставить например Д814Д, либо поставить несколько параллельно соединенных стабилитронов и диодов, общее напряжение стабилизации чтобы было равно 14 вольтам.
Параллельно стабилитрону подключен переменный резистор R2. Именно им осуществляется регулировка величины выходного напряжения. Со среднего вывода этого резистора, относительно минуса, напряжение снимается и подается на базу первого транзистора VT1 (составного). Этот составной транзистор состоит из VT1 и VT2 и включен по схеме с общим коллектором (эмиттерный повторитель). А как известно, при таком подключении транзисторов усиление происходит только по току, напряжение же остается практически неизменным, и даже чуть меньше. И получается, что какое напряжение будет выставлено на переменном резисторе, то такое напряжение (с вычетом 1,2 В) и будет на выходе регулируемого блока питания. Но при этом через составной транзистор будет проходит максимально возможный ток, ограничивается только величиной нагрузки и максимально допустимым током самих силовых транзисторов (напомню, что КТ817 может выдерживать до 3 ампера). Этот транзистор следует установить на радиатор для лучшего охлаждения.
Ну и теперь что касается функции защиты по току от короткого замыкания и чрезмерной перегрузки. Как видно на схеме коллекторно-эмиттерный переход транзистора VT3 подключен параллельно выводам переменного резистора, с которых снимается регулируемое напряжение. Следовательно, если этот транзистор защиты по току будет открываться, то тем самым он будет способствовать снижению выходного напряжения. А это, естественно, приведет и к снижению величины силы тока в нагрузке. Ну, а чтобы транзистор защиты начал открываться, нужно появление напряжения на его базо-эмиттерном переходе, который подключен к еще одному переменному резистору R3. Именно этим резистором можно регулировать силу тока перегрузки и КЗ. Этот переменный резистор подключен к еще одному резистору R4, который и выполняет роль датчика величины тока в цепи нагрузки.
Работа этого датчика тока проста. На рисунке под схемой (в нижнем, правом углу) можно увидеть три последовательно соединенных резистора, что соответствует сопротивлениям силового транзистора (коллекторно-эмиттерный переход), сопротивления самой нагрузки и сопротивления резистора R4. Если мы увеличим нагрузку, уменьшив ее сопротивления, то напряжение будет перераспределяется между другими сопротивлениями в этой цепи. Следовательно на резисторе R4 при перегрузке или коротком замыкании увеличится напряжение, что и приведет к открытию защитный транзистор VT3. Сопротивления датчика тока R4 можно подбирать под нужный диапазон тока перегрузки и его величина может быть от 0,1 до 10 Ом. При этом мощность этого сопротивления должна быть не менее 1 Ватта.
Ну и на выходе нашего блока питания стоит еще один конденсатор электролит, который еще лучше фильтрует возможные пульсации, делая выходное постоянное напряжении более стабильным и ровным. Его емкость может быть от 500 мкф до 2200 мкф и напряжением 16 или 25 вольт.
Видео по этой теме:
P.S. Эта схема проверена десятилетиями, и она собиралась и успешно использовалась многими электронщиками и радиолюбителями. Так что если Вы начинающий электронщик, обязательно попробуйте собрать эту схему. При чем она начинает работать сразу после сборки, ну а если что-то не получается, сначала попытайтесь понять сам принцип действия этой схемы, который я описал в данной статье. Ну, а на этом пожалуй и все, удачи и благополучия в делах.
РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ
У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.
Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:
Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:
На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.
Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:
Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:
Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.
Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:
Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:
На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:
Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.
Блок питания 1…20 В с защитой по току
При наладке различных электронных устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.
Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.
Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики:
Входное напряжение, В — 24…29
Выходное стабилизированное напряжение, В — 1…20 (27)
Ток срабатывания защиты, А — 0,03…2,0
Фото 2. Схема БП
Описание работы БП
Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки — резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.
Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.
Изготовление БП
1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.
Фото 3. Трансформатор и выпрямительный мост.
2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже. Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.
Фото 4. Заготовка корпуса БП
3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.
Фото 5. Монтажная плата
4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.
Фото 6. Узел управления БП
5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.
Фото 7. Микроамперметр, шунт и дополнительное сопротивление
Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:
Фото 8. Схема переключения режима контроля
6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.
Фото 9. Лицевая панель
7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.
Фото 10. Сборка БП без крышки
Фото 11. Общий вид БП.
Детали:
Операционный усилитель LM358N имеет в своем составе два ОУ.
Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 — пленочные или керамические. Оксидные конденсаторы: C1 — К50-18 или аналогичный импортный, остальные — из серии К50-35. Постоянные резисторы серии МЛТ, переменные — СП3-9а.
Налаживание блока питания — движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты — уменьшить сопротивление резистора R13 — датчика тока нагрузки.
Доставка новых самоделок на почтуПолучайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.БП НА LM317 С БЛОКОМ ЗАЩИТЫ
Блок питания — одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.
Детали для регулируемого блока питания
- Стабилизатор LM317 ТО-220 корпусе.
- Кремниевый транзистор, p-n-p КТ818.
- Резистор 62 Ом.
- Конденсатор электролитический 1 мкф*43В.
- Конденсатор электролитический 10 мкф*43В.
- Резистор 0,2 Ом 5W.
- Резистор 240 Ом.
- Подстроечный резистор 6.8 Ком.
- Конденсатор электролитический 2200 мкф*35В.
- Любой светодиод.
Схема блока питания
Схема блока защиты
Схема блока выпрямителя
Детали для построения защиты от КЗ
- Кремниевый транзистор, n-p-n КТ819.
- Кремниевый транзистор, n-p-n КТ3102.
- Резистор 2 Ом.
- Резистор 1 Ком.
- Резистор 1 Ком.
- Любой светодиод.
Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.
Для дополнительного охлаждения, был установлен кулер.
Печатная плата была нарисована в Sprint layout v6.0.
Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.
Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.
Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.
Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected]
Форум по БП
Обсудить статью БП НА LM317 С БЛОКОМ ЗАЩИТЫ
Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
РадиоКот >Схемы >Питание >Блоки питания >Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит. Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.
Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.
Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.
Требования к узлу защиты:
-минмиум деталей
-плата защиты должна занимать мало места
-работоспособной при больших токах нагрузки
-отсутствие реле
-высокая скорость срабатывания
Одним из заинтересовавших вариантов была такая схема, найденная в интерете:
При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.
Недостатки данной схемы:
1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.
2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.
В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:
После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2. Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.
Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг — вводим в нвшу схему защиту от переполюсовки клемм АКБ.
Схема с защитой от переполюсовки :
Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.
Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.
На этой волне я заканчиваю поиски защиты для своих простых иип. Работой своих схем доволен, надеюсь они пригодятся и вам.
Приятных вам экспирементов!
Файлы:
плата вид со стороны шунта
плата готовая
плата вид снизу
фото защита 1 вариант
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Схема защиты источника питания от перегрузки на КУ202
Добавил: Chip,Дата: 06 Фев 2015Схема защиты источника питания от перегрузки на КУ202
Для защиты блока питания при конструировании различных схем рекомендуется на выход БП добавить узел защиты от перегрузки по току. Простая схема устройства построена с применением тиристора в качестве управляющего элемента защиты по напряжению.
Пока напряжение питания на входе находится в пределах нормы, стабилитрон и тиристор закрыты, ток протекает в нагрузку. При превышении напряжения питания свыше 15,2В, открывается стабилитрон, и вслед за ним тиристор, так как между его катодом и управляющим электродом присутствует разность потенциалов, достаточная для его отпирания. Подключенный параллельно выходу источника питания тиристор VS1 при перегрузке обрывает плавкий предохранитель в течение нескольких микросекунд, если выходное напряжение окажется свыше допустимого. Порог открывания тиристора, а именно, срабатывания защиты, зависит от технических данных стабилитрона. При перегорании предохранителя включится пьезоизлучатель звука со встроенным генератором, который просигнализирует о внешней неисправности, который, так же, индицирует о возможном коротком замыкании в нагрузке. Сигнализатор будет звучать до тех пор, пока не будет отключено общее питание или устройство нагрузки.
Видео работы схемы защиты источника питания
Источник:chipdip.ru
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
Популярность: 20 610 просм.
Вы можете следить за комментариями к этой записи через RSS 2.0. Вы можете оставить свой комментарий, пинг пока закрыт.