РазноеПлавное включение светодиода – Светодиодное освещение — ASP-LED-L2-100 Плавный пуск и плавное выключение для светодиодов и светодиодных лент

Плавное включение светодиода – Светодиодное освещение — ASP-LED-L2-100 Плавный пуск и плавное выключение для светодиодов и светодиодных лент

Схема плавного включения и выключение светодиодов

На просторах интернета имеется множество схем плавного розжига и затухания светодиодов с питанием от 12В, которые можно сделать своими руками. Все они имеют свои достоинства и недостатки, различаются уровнем сложности и качеством электронной схемы. Как правило, в большинстве случаев нет смысла сооружать громоздкие платы с дорогостоящими деталями. Чтобы кристалл светодиода в момент включения плавно набирал яркость и также плавно погасал в момент выключения, достаточно одного МОП транзистора с небольшой обвязкой.

Схема и принцип ее работы

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. схема без настройки регулировкиВ начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала. схема розжига с регулировкойЛюбую из схем можно самостоятельно собрать на плате небольшого размера. печатная плата

Плата в файле Sprint Layout 6.0: plavnyj-rozzhig.lay6

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой. схема с управляющим минусом

Читайте так же

ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

В некоторых случаях от LED ламп или индикаторов требуется плавное включение и выключение. Естественно светодиод при обычной подаче питания включается мгновенно (в отличии от ламп накаливания), что требует применения в данном случае небольшой схемы управления. Она не сложная и в простейшем варианте представляет собой всего десяток радиодеталей, во главе с парочкой транзисторов.

Сборник принципиальных схем

Вначале идут общеизвестные схемы из Интернета, а далее несколько собранных лично и прекрасно работающих. Первая схема простейшая - при подаче питания диод постепенно увеличивает яркость (открывается транзистор по мере заряда конденсатора):

Делал вот такую схему плавного включения и выключения светодиодов, резистором R7 подбирается нужный ток через диод. А если вместо кнопки подключить вот этот прерыватель, то схемка сама будет разжигаться и затухать, только резистором R3 нужно установить нужный интервал времени.

Вот ещё две схемы плавного розжига и затухания, которые также лично паял:

Все эти конструкции относятся не к сетевым (от 220 В), а обычным низковольтным светодиодным индикаторам. Промышленные LED лампы с их неизвестными драйверами, чаще всего в разных плавных контроллерах работают непредсказуемо (или мигают, или включаются всё-таки резко). Так что управлять нужно не драйверами, а непосредственно светодиодами. Схемы предоставил senya70.

   Форум по LED

   Обсудить статью ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ


Плавное включение и выключение светодиодов

Есть случаи, когда необходимо обеспечить плавное включение светодиодов, применяемых для освещения или подсветки, а в некоторых случаях и выключение.

Плавный розжиг может потребоваться по разным причинам.

Во-первых, при мгновенном включении свет сильно «бьет по глазам» и заставляет нас жмуриться и прищуриваться, выжидая, пока глаза привыкнут к новому уровню яркости. Этот эффект связан с инерционностью процесса аккомодации глаза и конечно имеет место не только при включении светодиодов, но и любых других источников света.

Просто в случае со светодиодами он усугубляется тем, что излучающая поверхность очень мала. Если говорить научным языком – источник света имеет очень большую габаритную яркость.

Во-вторых, могут преследоваться чисто эстетические цели: согласитесь плавно загорающийся или гаснущий свет – это красиво. Схема питания светодиодов должна быть усовершенствована должным образом. Рассмотрим два различных способа плавного включения и выключения светодиодов.

Задержка RC-цепью

Первое что должно прийти в голову человеку, знакомому с электротехникой – введение задержки с помощью включения в схему питания светодиодов RC-цепочки: резистора и конденсатора. Схема приведена на рис.1. При подаче напряжения на вход – напряжение на конденсаторе, по мере его заряда, будет нарастать за время приблизительно равное 5τ, где τ=RC – постоянная времени. То есть, говоря простым языком, время включения света будет определяться произведением емкости конденсатора и сопротивления резистора. Соответственно, чем больше емкость и сопротивление, тем дольше будет происходить розжиг светодиодов. При отключении питания конденсатор будет разряжаться на светодиоды. Время, в течение которого будет происходить плавное затухание, также будет определяться τ, но в этом случае вместо R в произведение войдет динамическое сопротивление светодиодов.

К примеру, конденсатор на 2200 мкФ и резистор на 1 кОм теоретически «растянут» время включения на  2,2 секунды. Естественно на практике это значение будет отличаться от расчетного как за счет разброса параметров (у электролитических конденсаторов допуски на номинал обычно очень большие) RC-цепи, так и за счет параметров самих светодиодов. Не нужно забывать, что p-n-переход начнет открываться и излучать свет при определенном пороговом значении. Представленная простейшая схема хорошо позволяет понять принцип действия этого метода, но для практической реализации она мало пригодна. Для получения рабочего решения усовершенствуем ее введением нескольких дополнительных элементов (рис.2).
Работает схема следующим образом: при включении питания конденсатор С1 заряжается через резистор R2, транзистор VT1, по мере изменения напряжения на затворе, уменьшает сопротивление своего канала, тем самым увеличивая ток через светодиод. Выключение питания приведет к разряду конденсатора через светодиоды и резистор R1.

Включим «мозги»…

Если схема должна обеспечить большую гибкость и функциональность, например, не меняя «железо» мы хотим получить несколько режимов работы и задавать время розжига и затухания более точно, то самое время включить в схему микроконтроллер и интегральный драйвер LED  с входом управления. Микроконтроллер способен с высокой точностью отсчитывать необходимые интервалы времени и выдавать команды на управляющий вход драйвера в виде ШИМ. Переключение режимов работы можно предусмотреть заранее и вывести для этого соответствующую кнопку. Необходимо только сформулировать – что мы хотим получить и написать соответствующую программу. В качестве примера можно привести драйвер мощных светодиодов LDD-H, который выпускается с номинальными значениями токов от 300 до 1000 мА и имеет вход ШИМ. Схема включения конкретных драйверов обычно приводится в тех. описании производителя (data sheet). В отличие от предыдущего способа, время  на включение и выключение не будет зависеть от разброса параметров элементов схемы, температуры окружающей среды или падения напряжения на светодиодах. Но за точность нужно будет заплатить – это решение дороже.

Плавный розжиг и затухание светодиодов, схема

Простой электро тюнинг автомобиля с помощью плавно вспыхивающих и гаснущих светодиодов. Отечественные автомобили выпускаются с расчётом на среднего потребителя. Многих автолюбителей это не устраивает, поэтому такое авто стремятся доработать. Прежде всего, это касается подсветки приборной доски и салона.

Устройство плавной регулировки светодиодной подсветки можно собрать самому. В интернете легко найти интересную схему.

Без всякого сомнения, самой простой и надёжной является схема на полевом транзисторе.
Рассмотрим подробнее.

Подсветка приборки.

Плавный розжиг и затухание светодиодов, схема

Когда говорят о доработке приборной панели, то имеют в виду тюнинг электрики, который позволяет с помощью светодиодов сделать её уникальной.

Немного о работе схемы…..:

После включения зажигания, схема запитывается напряжением +12 V и переводится в режим ожидания.

При включении габаритов управляющее напряжение +12 V через цепочку, состоящую из диода D2 и резистора R1, поступает на транзистор КТ 503. Транзистор открывается. Электролитический конденсатор С1 заряжается.

Плавно растущее напряжение, подаётся на полевой транзистор VT1. Он плавно открывается, и постепенно увеличивает выходное напряжение, поступающее на светодиоды. Происходит их плавное загорание.

При выключении габаритов, снимается управляющее напряжение, и закрывается транзистор КТ 503.
Электролитический конденсатор С1 плавно разряжается через R3. Следовательно, уменьшается напряжение на транзисторе VT1, а значит и выходное напряжение.

По мере разрядки конденсатора гаснут светодиоды.

Когда конденсатор полностью разрядится, схема снова переходит в режим ожидания, при котором потребляемый ток почти отсутствует.

Нагрузкой транзистора VT1 может быть сборка на светодиодах LED или светодиодная лента.
Транзистор IRF 9540 может работать с нагрузкой до 140 Вт.

В схеме допускается производить регулировки:

• резистором R1 регулируется скорость загорания светодиодов. Чем больше номинал, тем дольше загорание;
• резистором R3 регулируется скорость гашения светодиодов. Чем больше номинал, тем дольше гашение;
• ёмкость С1 влияет на скорость загорания и гашения светодиодов. Чем больше номинал, тем скорость меньше.

Подсветка салона

Плавная подсветка салона имеет свои достоинства:

во-первых, при мгновенном включении света, глазам необходимо время, чтобы к нему привыкнуть. В отдельных случаях это вызывает болевые ощущения для глаз;

во-вторых, плавное изменение освещения положительно влияет на эстетику салона, и делает его более привлекательным.

Светодиодная подсветка включается после срабатывания на дверях концевых выключателей.

snimok2

Схема имеет вид:

snimok1

В отличие от предыдущей схемы, управляющим здесь является напряжение –12 V, поступающее с концевых выключателей.

По сравнению с предыдущей, в схеме убраны отдельные элементы: транзистор КТ 503, диод D2 и резистор R1, но принцип работы прежний.

Схемы в формате .lay  — скачать…

snimok3

Сборка схемы

Элементы схемы размещаются на печатной плате, которая изготавливается с определённой последовательностью:

snimok4snimok5

1. Готовим текстолитовую пластинку. Её размер зависит от количества элементов и их расположения. Вырезанную пластинку необходимо обработать мелкой наждачной бумагой и обезжирить.

2. Используя программу Sprint Layout, рисуем будущую плату. Для распечатывания рисунка, используется лазерный принтер в режиме высокой чёткости и качества изображения.

snimok6

В программе выбирается режим, при котором будет напечатан только слой с дорожками без обозначений.
Рисунок распечатывается на глянцевую страницу журнала или на фотобумагу.

snimok7

3. К нагретой пластинке текстолита прикладываем распечатку и прижимаем горячим утюгом. Держим утюг несколько минут.

Плавный розжиг и затухание светодиодов, схема

4. После остывания опускаем пластинку в холодную воду, и удаляем бумагу с поверхности.

snimok10

5. В приготовленное хлорное железо, опускаем пластинку, закреплённую на кусочек пенопласта. Во время вытравливания можно вынимать и контролировать плату.

snimok11

6. Протравленную пластинку отмываем в воде, и очищаем дорожки растворителем или наждачной бумагой.

snimok12

7. В готовой плате сверлим отверстия для монтажа элементов. Используются свёрла 0,6 мм.

snimok13

8. Облуживаем плату. Самый доступный способ — это кисточкой смазать плату флюсом, и пролудить паяльником. Важно не перегревать дорожки, чтобы они не отслоились.

snimok14

9. Устанавливаем на плату элементы схемы и пропаиваем.

snimok15

10. В конце работ необходимо очистить плату от остатков флюса. У чистой платы не будет замыканий между дорожками.

В итоге рассмотрения, надо отметить, что описанные схемы успешно используются не только для электро тюнинга автомобиля. Их часто используют с различными устройствами, где есть питание +12 V.

snimok16

Автор; Арсений          Санкт-Петербург, Россия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *