Электрический генератор
Электрический генератор — электрическая машина, предназначенная для преобразования механической энергии в энергию электрического поля. Источниками механической энергии может быть вода, пар, ветер, двигатель внутреннего сгорания и другие.
История
Первыми электрическими генераторами были – электростатические генераторы. Принцип их действия был основан на явлении статического электричества. Но широкого применения в промышленности эти генераторы не получили, так как они развивали высокое напряжение при малом токе. Ярким примером таких генераторов стал генератор Ван де Граафа. Этот генератор был изобретен Робертом Ван де Граафом в 1929 году и в основном служил для ядерных исследований.
Затем люди начали предпринимать попытки по созданию электромагнитных генераторов, то есть генераторов, работа которых основана на явлении электромагнитной индукции. Одним из первых в этом направлении стал гениальный физик Майкл Фарадей, который как раз и открыл явление электромагнитной индукции.
В 1832 году Ипполит Пикси построил первую динамо-машину. Она представляла из себя машину, в которой имелся статор, создающий постоянное магнитное поле и нескольких обмоток, которые в нем вращались. Ток снимался с помощью механического коммутатора. По сути это был первый генератор постоянного тока.
Потом развитие промышленности пошло вверх, и были изобретены генераторы переменного тока, асинхронные и постоянные двигатели.
Принцип действия
Принцип действия электрического генератора основан на взаимодействии проводника и магнитного поля, в котором он движется. Как всегда приводится классический пример с рамкой в магнитном поле. Когда рамка вращается, её пересекают линии магнитной индукции, при этом в рамке образовывается электродвижущая сила. Эта ЭДС заставляет ток течь по рамке и с помощью контактных колец попадать во внешнюю цепь. Примерно так устроен простейший электрический генератор.Подробнее пример с рамкой разобран в статье – переменный синусоидальный ток.
Применение
Применение электрических генераторов обширно. Они применяются практически везде, где это только возможно. Снабжают
наши дома электроэнергией, заряжают аккумуляторы в автомобилях, используются в промышленности и многое другое.
В настоящее время стали популярны автономные бензиновые и дизельные электрогенераторы, которые могут служить источниками электрической энергии при её отключении, либо вообще при её отсутствии. Такие генераторы используются в быту и в строительстве, так как форма тока имеет искажения, то без применения специального инвертора, подключать к ним какие-то электронные устройства не целесообразно, так как они могут выйти из строя.
Принцип работы генератора переменного и постоянного тока
Как известно, при прохождении тока через проводник (катушку) образуется магнитное поле. И, наоборот, при движении проводника вверх-вниз через линии магнитного поля возникает электродвижущая сила. Если движение проводника медленное, то соответственно возникающий электрический ток будет слабым. Значение тока прямо пропорционально напряженности магнитного поля, числу проводников, и соответственно скорости их движения.
Простейший генератор тока состоит из катушки, изготовленной в виде барабана, на которую намотана проволока. Катушка крепится на валу. Барабан с проволочной обмоткой еще называют якорем.
генератор токаДля снятия тока с катушки, конец каждого провода припаивается к токособирающим щеткам. Эти щетки должны быть полностью изолированы друг от друга.
Электрический моторГенератор переменного тока
генератор переменного токаПри вращении якоря вокруг своей оси происходит изменение электродвижущей силы. Когда виток поворачивается на девяносто градусов сила тока максимальная. При следующем повороте падает к значению нуля.
генератор переменного токаПолный оборот витка в генераторе тока создает период тока или, другими словами, переменный ток.
Генератор постоянного тока
Генератор постоянного токаДля получения постоянного тока используется переключатель. Он представляет собой разрезанное кольцо на две части, каждая из которых присоединена к разным виткам якоря. При правильной установке половинок кольца и токособирающих щеток, за каждый период изменения силы тока в устройстве, во внешнюю среду будет поступать постоянный ток.
Генератор постоянного токаКрупный промышленный генератор тока имеет неподвижный якорь, именуемый статором. Внутри статора вращается ротор, создающий магнитное поле.
Обязательно прочитайте статьи про автомобильные генераторы:
В любом автомобиле есть генератор тока, работающий при движении машины для питания электрической энергией аккумулятора, систем зажигания, фар, радиоприемника и т. д. Обмотка возбуждения ротора является источником магнитного поля. Для того чтобы магнитный поток обмотки возбуждения подводился без потерь к обмотке статора, катушки помещают в специальные пазы стальной конструкции.
автомобильный генератор токаТаким образом, генератор тока является современным устройством, способный преобразовывать энергию механического движения в электрическую.
Оцените качество статьи:
Электрический генератор. Основное оборудование электрических станций и подстанций.
Основное оборудование электрических станций и подстанций
Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
История изобретения генератора электрического тока
Русский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной.
В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.
При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением.
В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.
В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.
До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.
Заряды вырабатывались, используя один из двух механизмов:
- Электростатическую индукцию
- Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков
По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.
Принцип работы любого электрического генератора
Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э. Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.
Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.
Синхронный электрогенератор
Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.
Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».
Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.
Асинхронный электрогенератор
Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.
Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.
Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т. д.
Устройство генератора
Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.
Составные части генератора:
- коллектор,
- щетки,
- магнитные полюса,
- витки,
- вал,
- якорь.
Принцип действия генератора
Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.
Виды генераторов
- электрогенераторы,
- бензогенераторы,
- дизельгенераторы,
- инверторные генераторы.
Применение
Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику.
Как работает генератор переменного тока?
Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки {рисунок справа). Электроны {голубые шарики) перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.
Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита {дальний рисунок справа), т. е. когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.
Принцип действия генератора переменного тока
Простейший генератор переменного тока состоит из проволочной рамки, вращающейся между полюсами неподвижного магнита. Каждый конец рамки соединен со своим контактным кольцом, скользящим по электропроводной угольной щетке (рисунок над текстом). Индуцированный электрический ток течет к внутреннему контактному кольцу, когда соединенная с ним половина рамки проходит мимо северного полюса магнита, и, наоборот, к внешнему контактному кольцу, когда мимо северного полюса проходит другая половина рамки.
Трехфазный генератор переменного тока
Одним из наиболее экономически выгодных способов выработки сильного переменного тока является использование одного магнита, вращающегося относительно нескольких обмоток. В типичном трехфазном генераторе три катушки расположены равноудалено от оси магнита. Каждая катушка вырабатывает переменный ток, когда мимо нее проходит полюс магнита (правый рисунок).
Изменение направления электрического тока
Когда магнит вдвигается в проволочную катушку, он индуцирует в ней электрический ток. Этот ток заставляет стрелку гальванометра отклоняться в сторону от нулевого положения. Когда магнит вынимается из катушки, электрический ток изменяет свое направление на противоположное, и стрелка гальванометра отклоняется в другую сторону от нулевого положения.
Переменный ток
Магнит не будет индуцировать электрический ток до тех пор, пока его силовые линии не начнут пересекать проволочную петлю. Когда полюс магнита вдвигается в проволочную петлю, в ней индуцируется электрический ток. Если магнит прекращает движение, электрический ток (голубые стрелки) также прекращается (средняя диаграмма). Когда магнит вынимается из проволочной петли, в ней индуцируется электрический ток, текущий в противоположном направлении.
Устройство Генератора Переменного Тока и Принцип Действия
Мощный тяговый генератор переменного тока – строение
Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.
Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.
Теоретическая часть
Основной принцип работы альтернатора
Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.
Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.
Базовые принципы
Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.
- Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
- Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.
Строение простейшего электромагнитного генератора
- Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.
Генератор переменного тока — как устроен
- Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
- Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
- Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
- Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.
Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.
Переменный ток
В его честь была названа частота тока
Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.
Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.
Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.
Мощнейшие генераторы, установленные на Пушкинской ГЭС
Строение генератора переменного тока
Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.
Основные рабочие части и их подключение
Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины, а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.
За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.
Устройство и принцип действия генератора переменного тока
- Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
- Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
- В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.
Трехфазные генераторы переменного тока и устройство их
Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.
- Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
- Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме
Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.
- Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.
Синхронный генератор электрического тока и принцип действия этого устройства
- При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
- Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
- Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).
Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.
Вращать легче центральную часть
Виды генераторов переменного тока
Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.
Трехфазные генераторы
Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.
Схема трехфазного генератора
- Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
- Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.
Смещение синусоид на 1/3 такта
- Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
- Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
- Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
- Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.
Варианты соединения обмоток у трехфазного генератора
- Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
- Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
- В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
- Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.
Принципиальная схема генератора тока
Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.
Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.
Различие по виду
Отличаются генераторы и по виду, которых существует 2:
Синхронный генератор
- Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.
Принцип действия и устройство синхронного генератора.
- Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
- На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
- Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
- К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
- Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
- К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
- Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.
Асинхронный электрический двигатель
- Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
- Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
- Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.
Способы возбуждения обмотки
Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.
Тут можно выделить 4 типа:
- Питание на обмотку подается через сторонний источник.
- Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
- Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
- Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.
Применение генераторов переменного тока на практике
Промышленное производство мощных генераторов
Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.
Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.
Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.
Автомобильные генераторы
На фото — электрический генератор для автомобиля
Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.
Принципиальная схема автомобильного генератора
Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.
Для выпрямления трехфазного тока используется несколько диодов.
Генератор на жидком топливе
Бензиновый генератор
Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.
Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.
Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.
Панель управления генератора
На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…
На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.
Как устроен генератор — все об устройстве электрогенераторов постоянного и переменого тока
Принцип работы генерирующего устройства
Работа электрогенерирующего оборудования основывается на принципе конвертации механической энергии, получаемой из внешнего источника, в электроэнергию. Иными словами, устройство не вырабатывает самостоятельно электричество. Происходит усиление движения возникающих в проводах его обмотки электрических зарядов, которые проходя через внешнее кольцо циркуляции, отдают свою энергию. В результате на выходе образуется электрический ток, который и поступает в сеть от электростанции.
С научной точки зрения принцип называется «магнитной индукцией» и был обнаружен Майклом Фарадеем в 19 веке. Ученый физик установил, что перемещением электрического проводника в магнитном поле рождается поток зарядов. Между двумя концами проводника, в частности, провода, создается разность напряжений, который усиливает движение зарядов, превращая их в электричество.
Перейти в каталог генераторного оборудования:
Основные элементы электростанции
Как устроен генератор переменного тока?
Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.
Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:
- индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
- постоянными магнитами, используемыми в малых генераторах;
- с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.
Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.
Факторы, влияющие на эффективность работы синхронного генератора:
- металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
- шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
- в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.
Двигатель
С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя:
- вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
- верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
- чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.
Система подачи топлива
Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.
Характеристики системы:
- соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
- вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
- сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
- топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
- топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
- инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.
Регулятор напряжения AVR
Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:
- регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
- возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
- вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
- ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.
Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.
При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.
В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>
Установка выхлопа и охлаждения двигателя электростанции
Включает в себя:
- Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
- Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.
Система смазки
Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.
Зарядное устройство
Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.
Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры. Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку. Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.
Панель управления
Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.
Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.
Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.
Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.
Рама / Корпус
Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.
Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>
Принцип действия генератора электрического тока в кране
Категория:
Электрическое оборудование
Публикация:
Принцип действия генератора электрического тока в кране
Читать далее:
Принцип действия генератора электрического тока в кране
Электрической машиной называется устройство, служащее для преобразования механической энергии в электрическую или, наоборот, электрической энергии в механическую. В первом случае машина называется электрическим генератором, во втором — электродвигателем. Принцип действия электрических машин основан на законах электромагнитной индукции и действия электромагнитных сил. Для работы любой электрической машины необходимо наличие магнитного поля и проводников, по которым протекает ток.
Одна и та же электрическая машина может быть генератором, тока или двигателем. Рассмотрение устройства машин постоянного тока удобнее начать с генераторов, т. е. машин, которые производят электрический ток. Любой генератор состоит из устройства, служащего для создания магнитного потока, и электрической обмотки, в которой наводится ЭДС. У генераторов постоянного тока обмотка обычно размещается на вращающейся части, называемой якорем. Якорь располагается между полюсами, создающими магнитное поле. При вращении якоря механическим двигателем в этом магнитном поле в обмотке наводится ЭДС, которая прямо пропорциональна частоте вращения и магнитному потоку. С помощью коллектора и щеток ток подается во внешнюю цепь.
Аналогично устроены и генераторы переменного тока, только у них основная обмотка, как правило, размещается на неподвижной части машины — статоре, а магнитное поле создается магнитными полюсами, расположенными на вращающейся части — роторе.
Рекламные предложения на основе ваших интересов:
Генераторы постоянного тока вырабатывают по сути дела переменное напряжение, которое выпрямляется особым устройством — коллектором. Рассмотрим работу простейшего генератора переменного тока (рис. 3.1), который приводится во вращение каким-либо механическим двигателем и преобразует механическую энергию в электрическую.
Рис. 3.1. Схематическое устройство простейшего генератора переменного тока
Будем считать, что якорь вращается с постоянной скоростью в направлении против часовой стрелки. Так как проводники аЬ и ей находятся в одинаковых условиях относительно полюсов С и Ю, то достаточно рассмотреть процесс создания ЭДС только в одном проводнике, например в проводнике аЪ.
Направление наводимой ЭДС определяется по правилу правой руки. Ладонь правой руки надо расположить в магнитном поле так, чтобы магнитные силовые линии были направлены в ладонь, а большой палец был отведен на 90° в плоскости ладони и направлен в сторону движения проводника. Тогда остальные пальцы руки покажут направление наведенной в проводнике ЭДС (рис. 3.2). Напомним, что принято считать магнитные силовые линии исходящими из северного полюса.
Рис. 3.2. Правило правой руки
Из рис. 3.3 видно, что каждая щетка соединена через кольцо только с одним проводником: щетка А — с проводником ab, а щетка В — с проводником cd. Значит, на зажимах внешней цепи имеется переменное во времени напряжение и по ней течет переменный ток частотой /. Итак, внутри машины получается переменный ток, но во внешнюю цепь можно выдавать постоянный или выпрямленный ток. Для этого применяют специальное устройство — коллектор, по сути дела являющийся механическим выпрямителем.
Принцип действия его состоит в следующем. Концы витка ab-cd присоединяются не к двум кольцам, как было сделано вначале, а к одному кольцу, разрезанному по диаметру, обе половинки которого изолированы друг от друга и от вала, на который они насажены. На эти полукольца или пластины коллектора наложены щетки А и В, к которым присоединяется внешняя цепь. Только теперь положение щеток на пластинках не безразлично, как на рис. 3.1, а имеет существенное значение.
С целью выпрямить переменный ток надо поставить щетки так, чтобы наводимая в витке ЭДС была равна нулю в момент перехода щетки с одной пластины на другую (рис. 3.3).
Рис. 3.3. Схема простейшего генератора постоянного тока
Тогда ток во внешней цепи будет протекать только в одном направлении — от щетки А к щетке В. Здесь происходит выпрямление наводимой в витке ab-cd переменной ЭДС в пульсирующую ЭДС, и ток во внешней цепи будет также пульсирующим, т. е. меняющимся по величине в течение периода в соответствии с изменением ЭДС, но направление его остается неизменным. Щетка А, от которой отводится ток во внешнюю цепь, является положительной и обозначается знаком плюс, а щетка В, через которую ток возвращается в машину — отрицательной и обозначается знаком минус. Чтобы пульсирующий ток стал постоянным током, необходимо сделать не две коллекторные пластины, а значительно больше, а также следует уложить на якорь обмотку, состоящую из большого числа проводников. Витки обмотки соединены с коллекторными пластинами по определенному закону.
Итак, мы ознакомились с устройством машины постоянного тока, являющейся генератором или источником электрической энергии. Но генератор может быть легко обращен в электрический двигатель. Для этого необходимо дать такое же напряжение постоянного тока на зажимы машины, какое она вырабатывала в качестве генератора. Это свойство электрических машин носит название обратимости. При работе такой машины в качестве двигателя коллектор попеременно посылает в секции обмотки якоря ток определенного направления.
Каждая машина постоянного тока состоит из следующих основных частей: неподвижной части станины, т. е. статора, предназначенного для создания магнитного потока; вращающейся части, или якоря; двух подшипниковых щитов. На статоре укреплены основные полюсы, служащие для создания основного магнитного потока, и добавочные полюсы, выравнивающие магнитный поток при работе машины, что необходимо для подавления искрения на коллекторе.
Рис. 3.4. Основной полюс
Якорь представляет собой цилиндрическое тело, вращающееся в пространстве между полюсами. Якорь имеет пазы, в которые уложены проводники обмотки. На одном валу с якорем насажен коллектор, к пластинам которого припаяны выводы от обмотки якоря. Зазор между якорем и неподвижной частью машины колеблется в пределах 0,7—3 мм для машин мощностью до 50 кВт, а в машинах большей мощности может достигать 10 мм. Сердечник 1 основного полюса (рис. 3.4) выполнен из листовой электротехнической стали толщиной 1 мм. Со стороны, обращенной к якорю, сердечник имеет полюсный наконечник 2, служащий для равномерного распределения магнитного потока через воздушный зазор. На сердечник полюса надета катушка обмотки возбуждения 3, по которой проходит постоянный ток. Катушка наматывается на каркас 4, выполняемый из листовой стали толщиной 1—2 мм, пластмассы или картона. Полюсы крепятся к статору 6 при помощи болтов 5.
Добавочные полюсы, так же как и основные, состоят из сердечника, оканчивающегося полюсным наконечником, и надетой на сердечник катушки. Добавочные полюсы устанавливают строго посередине между основными полюсами и крепят к станине болтами.
Станиной или статором называют неподвижную часть машины, к которой крепятся основные и добавочные полюсы и при помощи которой машина крепится к фундаменту или другому основанию. Станину делают из чугуна или стали с разъемом или без него в зависимости от типа и мощности машины. К станине крепятся подшипниковые щиты, поддерживающие подшипники, в которых вращается якорь.
Якорь машин постоянного тока представляет собой барабан с пазами, выполненный из листовой стали толщиной 0,5 мм. Частота перемагничивания якоря составляет 20—60 Гц. Листы набираются в осевом направлении и для уменьшения потерь от вихревых токов изолируются друг от друга лаком или бумагой толщиной 0,03— 0,05 мм. Листы якоря спрессовывают с обеих сторон нажимными приспособлениями, которые крепят на валу или стягивают болтами. Для улучшения охлаждения на вал якоря насаживают вентилятор.
Секции обмотки якоря изготовляют на шаблонах и укладывают в пазы якоря. Обмотку якоря присоединяют к коллектору, который выполняют из медных пластин трапецеидальной формы, изолированных друг от друга и от корпуса посредством слюды или миканитовых прокладок. Коллекторные пластины закрепляют на ласточкиных хвостах. После запрессовки коллектор обтачивают на станке, чтобы его поверхность имела правильную цилиндрическую форму. Концы секций якоря впаиваются в пластины коллектора.
Для подвода тока к вращающемуся коллектору и отвода от него тока применяют щеточный аппарат, состоящий из щеткодержателей, укрепленных на щеточных пальцах, и щеток, установленных в щеткодержателях. Все щеточные пальцы крепятся на общей траверсе, устройство которой показано на рис. 3.5.
Рекламные предложения:
Читать далее: Принцип действия двигателя трехфазного тока
Категория: — Электрическое оборудование
Главная → Справочник → Статьи → Форум
Electric Generator: Основное введение в принцип работы генераторов, их особенности и применение
Как работают электрические генераторы?Электрогенератор — это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или может подаваться непосредственно в дома, магазины, офисы и т. Д. Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа.Катушка проводника вместе с ее сердечником называется якорем. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может быть обеспечена двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или за счет возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д. Когда змеевик вращается, он разрезает магнитное поле, которое лежит между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.
Характеристики электрогенераторов
- Мощность: Электрогенераторы с широким диапазоном выходной мощности легко доступны. Требования к низкой, а также высокой мощности могут быть легко удовлетворены путем выбора идеального электрического генератора с соответствующей выходной мощностью.
- Топливо: Для электрогенераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный нефтяной газ и т. Д.
- Портативность: На рынке доступны генераторы, на которых установлены колеса или ручки, чтобы их можно было легко перемещать с одного места на другое.
- Шум: Некоторые модели генераторов имеют технологию снижения шума, которая позволяет держать их в непосредственной близости без каких-либо проблем с шумовым загрязнением.
Применение электрогенераторов
- Электрогенераторы полезны для домов, магазинов, офисов и т. Д., Которые часто сталкиваются с перебоями в подаче электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное электропитание устройств.
- В отдаленных районах, где нет доступа к электричеству из основной линии, электрические генераторы действуют как основной источник питания.
- При работе на проектных площадках, где нет доступа к электричеству из сети, электрические генераторы могут использоваться для питания машин или инструментов.
Обратитесь к ближайшим к вам ближайшим к вам ближайшим дилерам по производству генераторов и получите бесплатные расценки
(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и анализ по GST, экспорту, финансированию, политике и управлению малым бизнесом.)
Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.
Как генератор вырабатывает электроэнергию? Статья о том, как работают генераторы
Генераторы— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций.Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.
Как работает генератор?Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.
Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.
Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле. Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.
Основные компоненты генератораОсновные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:
- Двигатель
- Генератор
- Топливная система
- Регулятор напряжения
- Системы охлаждения и выхлопа
- Система смазки
- Зарядное устройство
- Панель управления
- Основной узел / рама
Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.
(а) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном виде) или природный газ. Меньшие двигатели обычно работают на бензине, в то время как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.
(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:
• Компактная конструкция
• Более простой рабочий механизм
• Прочность
• Удобство в эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов
Однако OHV-двигатели также дороже других двигателей.
(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.
Генератор Генератор переменного тока, также известный как «генератор», является частью генератора, который вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.
(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле одним из следующих трех способов:
(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.
Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.
При оценке генератора переменного тока необходимо учитывать следующие факторы:
(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.
(b) Шариковые подшипники по сравнению с игольчатыми подшипниками — шариковые подшипники предпочтительнее и служат дольше.
(c) Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.
Топливная системаТопливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае небольших генераторных установок топливный бак является частью опорной рамы генератора или устанавливается наверху рамы генератора. Для коммерческого использования может потребоваться установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.
Общие характеристики топливной системы включают следующее:
(a) Соединение трубопровода от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.
(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.
(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.
(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.
(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.
(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.
Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.
(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.
(2) Обмотки возбудителя: преобразование постоянного тока в переменный — обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.
(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.
(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.
Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, ровно столько, чтобы поддерживать выходную мощность генератора на полном рабочем уровне.
Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.
Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.
Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.
Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.
(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент невозможно переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.
Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно прикрепляются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.
Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.
Зарядное устройство
Генератор st e работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства устанавливается на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.
Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.
(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.
(b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.
(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.
(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.
Основной узел / рамаВсе генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.
Electric Generator: Основное введение в принцип работы генераторов, их особенности и применение
Как работают электрические генераторы?Электрогенератор — это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или может подаваться напрямую в дома, магазины, офисы и т. Д.Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа. Катушка проводника вместе с ее сердечником называется якорем. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может быть обеспечена двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или с помощью возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д.Когда катушка вращается, она разрезает магнитное поле, которое находится между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.
Характеристики электрогенераторов
- Мощность: Электрогенераторы с широким диапазоном выходной мощности легко доступны. Требования к низкой, а также высокой мощности могут быть легко удовлетворены путем выбора идеального электрического генератора с соответствующей выходной мощностью.
- Топливо: Для электрогенераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный нефтяной газ и т. Д.
- Портативность: На рынке доступны генераторы, на которых установлены колеса или ручки, чтобы их можно было легко перемещать с одного места на другое.
- Шум: Некоторые модели генераторов имеют технологию снижения шума, которая позволяет держать их в непосредственной близости без каких-либо проблем с шумовым загрязнением.
Применение электрогенераторов
- Электрогенераторы полезны для домов, магазинов, офисов и т. Д., Которые часто сталкиваются с перебоями в подаче электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное электропитание устройств.
- В отдаленных районах, где нет доступа к электричеству из основной линии, электрические генераторы действуют как основной источник питания.
- При работе на проектных площадках, где нет доступа к электричеству из сети, электрические генераторы могут использоваться для питания машин или инструментов.
Обратитесь к ближайшим к вам ближайшим к вам ближайшим дилерам по производству генераторов и получите бесплатные расценки
(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и анализ по GST, экспорту, финансированию, политике и управлению малым бизнесом.)
Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.
Что такое генератор? Принцип работы, типы и компоненты
Что такое генератор? Для чего его используют? Как это работает? Есть ли у него разные типы? Если да, то какие? Каковы различные компоненты генератора и для чего они нужны? Это вопросы, на которые нужно ответить, прежде чем покупать генератор? Если вам нужен генератор и вы собираетесь его купить, у нас для вас хорошие новости, потому что мы собираемся ответить на все эти вопросы в этой статье исчерпывающе и творчески.
Чтобы точно знать, что такое генератор, вам необходимо знать, что он делает, где используется, каков его принцип работы, сколько типов он имеет и из каких компонентов состоит. Linquip собрал всю необходимую информацию, и в этой статье мы подробно рассмотрим каждую из этих тем. Поэтому прочтите следующие разделы, чтобы получить все ответы, которые вам нужно знать.
Что такое генератор?
Генераторыпредставляют собой полезные устройства, которые обеспечивают подачу электроэнергии во время отключения электроэнергии и предотвращают прерывание дневных и ночных дел и действий или нарушение работы в различных условиях и местах.Все, что делает генератор, — это преобразование механической энергии, поступающей из внешнего источника, в электрическую, чтобы обеспечить достаточное количество энергии для других устройств. Он работает на основе закона электромагнитной индукции Фарадея.
Этот закон гласит, что везде, где проводник помещен в изменяющееся магнитное поле, индуцируется электромагнитный поток. Существуют различные электрические и физические конфигурации генераторов. Такое разнообразие конфигураций предназначено для использования в различных приложениях.В следующих разделах мы подробно рассмотрим, как работает генератор, какие у него разные типы и из каких частей состоит генератор. Читайте дальше, чтобы познакомиться с миром этого удивительного устройства.
Принцип работы генератора
Прежде всего, имейте в виду, что генератор — это не устройство, вырабатывающее электричество. Генератор использует предоставленную механическую энергию и заставляет поток существующих электрических зарядов внутри провода своих обмоток.Этот поток электрических зарядов заставляет выходной электрический ток использоваться для различных целей.
Чтобы понять, что выдает генератор, лучше рассмотреть водяной насос. Водяной насос создает поток воды, но не создает воду, протекающую через него. Проще говоря, генераторы вырабатывают электрическую энергию, улавливая энергию движения и превращая ее в электричество, заставляя электроны внешних источников проходить через электрическую цепь. Генераторы аналогичны электродвигателям, но работают в обратном направлении.
Как упоминалось ранее, генератор работает на основе принципа электромагнитной индукции, введенного Майклом Фарадеем в 19 веке. Этот закон гласит, что, когда проводник движется внутри магнитного поля, создаются электрические заряды, и их можно заставить течь. Опять же, простыми словами, генератор — это просто пара вращающихся проводов рядом или внутри магнита или магнитного поля, которое вызывает электрический ток. Пример водяного насоса — лучший способ понять, что делает генератор.
Теперь, когда вы знаете, что делает генератор и как он работает, вы ближе к ответу на вопрос «что такое генератор». Чтобы завершить определение генератора, давайте посмотрим, сколько у него типов и насколько они различны. В следующем разделе мы поговорим о различных типах генераторов. Оставайтесь с нами.
Типы генераторов
Генераторы делятся на два различных основных класса или категории: генераторы переменного тока (переменного тока) и генераторы постоянного тока (постоянного тока).
Генератор переменного тока
Генераторы переменного тока или, как их еще называют, генератор переменного тока, являются одним из наиболее важных устройств для обеспечения электроэнергией в нескольких условиях нашей жизни. AC работают по принципу электромагнитной индукции. Генераторы переменного тока подразделяются на две категории: индукционные генераторы и синхронные генераторы. Поскольку в генераторах этого типа нет щеток, обслуживание практически бесплатное. размер переменного тока меньше по сравнению с постоянным током.Итак, они используются чаще. И наконец, что делает этот тип более популярным, так это то, что потери переменного тока меньше, чем потери постоянного тока.
Генератор постоянного тока
Генераторы этого типа обычно используются в автономных системах. В зависимости от того, как магнитное поле создается в статоре, DC классифицируются на три основные категории: генераторы на постоянных магнитах, генераторы с раздельным возбуждением и генераторы с самовозбуждением. Некоторые преимущества DC: они просты в дизайне.Обычно они используются для управления крупными двигателями и электрическими устройствами, требующими прямого управления. Постоянный ток уменьшает описываемые флуктуации, сглаживая выходное напряжение через регулярный набор катушек вокруг якоря для некоторых приложений в установившемся режиме.
Компоненты генераторов
Итак, мы ознакомились с принципом работы и различными типами генераторов и постепенно приближаемся к ответу на вопрос «что такое генератор?» В этом разделе мы познакомим вас с основными частями генератора.Помимо мэйнфрейма, генератор состоит из 6 основных компонентов: двигателя, топливной системы, генератора, системы охлаждения, выхлопа и смазки. Мы разбили эти 6 частей на 4 основные категории. Продолжайте читать, чтобы узнать больше об этих компонентах.
Двигатель
Возможно, самая важная часть каждой машины — это двигатель. Обычно это часть всей системы, которая преобразует топливо в полезную энергию и помогает ему двигаться или выполнять свою механическую функцию.Таким образом, двигатель иногда называют первичным двигателем машины. В генераторе источником топлива для двигателя может быть бензин, дизельное топливо, природный газ, пропан, биодизель, вода, сточный газ или водород. Двигатель использует один из этих видов топлива для создания механической энергии, которую генератор преобразует в электричество. Некоторые двигатели, обычно используемые в конструкции генераторов, включают поршневые, паровые, турбинные и микротурбинные.
Топливная система
Все генераторы, работающие на одном из различных типов топлива, упомянутых ранее, имеют систему, которая собирает и перекачивает топливо в двигатель.Топливная система содержит бак, в котором хранится достаточно топлива для питания генератора в течение эквивалентного количества часов. Также имеется труба, соединяющая бак, а затем и двигатель, а обратная труба соединяет двигатель с топливным баком для возврата топлива.
Есть топливный насос, который перекачивает топливо из бака через топливопровод, а затем в двигатель. Другая часть топливной системы — это топливный фильтр, задача которого — отфильтровать любой мусор из топлива, прежде чем он попадет в двигатель.Последний компонент топливной системы — топливная форсунка. Работа топливной форсунки состоит в том, чтобы распылять топливо, а затем впрыскивать топливо непосредственно в камеру сгорания двигателя.
Генератор и регулятор напряжения
Можно сказать, что основная работа генератора — это генератор переменного тока. Этот компонент превращает механическую энергию, производимую двигателем, в электрический ток. Генератор представляет собой статор, неподвижную часть набора катушек, и ротор или якорь, которые создают вокруг статора стабильное вращающееся электромагнитное поле.В целом, генератор вырабатывает электрическое напряжение, которое необходимо регулировать для получения постоянного тока, подходящего для практического использования.
Системы охлаждения, выпуска и смазки
Имеется система охлаждения для предотвращения перегрева и регулирования температуры компонентов генератора во время использования. В некоторых генераторах используется вентилятор, охлаждающая жидкость или и то, и другое, чтобы контролировать рабочую температуру генератора. Поскольку камера сгорания генератора преобразует топливо, генератор также будет создавать выхлоп.Вредные газы, выделяемые генератором во время использования, удаляются выхлопными системами. Последняя часть — это смазочная система. Поскольку генератор состоит из множества движущихся частей, и каждая из них требует смазки для плавного движения, должна быть система смазки, которая обеспечивает хорошее смазывание и плавность работы генератора.
Заключение
В этой статье мы постарались показать вам, что именно делает генератор. Чтобы ответить на вопрос «что такое генератор?» мы проанализировали принцип работы генератора и принцип его работы.Мы объяснили правила, которым следует генератор для превращения механической энергии в электрическую. После этого мы перешли к различным типам генераторов и поговорили о двух основных типах генераторов.
Мы обсудили различные основные части генератора. Если у вас есть опыт использования различных типов генераторов, мы будем очень рады услышать ваше мнение в комментариях. Кстати, если у вас есть какие-либо вопросы по этой теме, и если у вас все еще есть неясности в отношении генераторов, вы можете зарегистрироваться на нашем веб-сайте и дождаться, пока наши эксперты в Linquip ответят на ваши вопросы.Надеюсь, вам понравилась эта статья.
Как работают генераторы | Электрогенераторы
Какие части электрического генератора?
Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего нужна. Составные части генератора:
- Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
- Генератор .Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит как движущиеся, так и неподвижные части, которые вместе создают электромагнитное поле и движение электронов, генерирующих электричество.
- Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод.Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
- Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии. Это также помогает преобразовать электричество из переменного тока в постоянный, если необходимо.
- Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения предотвращает перегрев машины. Выхлопная система направляет и удаляет дымовую форму во время работы.
- Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа. Уровни смазки следует проверять регулярно, каждые 8 часов работы.
- Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство для батареи — это полностью автоматический компонент, который обеспечивает готовность батареи к работе в случае необходимости, подавая на нее постоянное низкое напряжение.
- Панель управления . Панель управления контролирует все аспекты работы генератора от скорости запуска и работы до выходов. Современные устройства даже способны определять падение или отключение электроэнергии и могут автоматически запускать или выключать генератор.
- Основной узел / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.
Какое топливо нужно для электрогенераторов?
Современные электрические генераторы доступны во многих вариантах заправки.Дизель-генераторы — самые популярные промышленные генераторы на рынке. К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, в то время как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива и работают как на бензине, так и на дизельном топливе.
Топливные баки генератора
Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания.Без топлива не может происходить горение, и генератор не может преобразовывать механическую энергию в электрическую. Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу, когда это необходимо.
В зависимости от типа генератора и его применения топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак.Топливо для генератора хранится в баках разной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности. Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.
Наземные и подземные резервуары для хранения топлива генератора — лучший выбор для нужд большой емкости. Подземные резервуары для хранения более дороги в установке, но они, как правило, служат дольше, поскольку защищены от непогоды.У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения. Топливные баки генераторов и топливные системы генераторов должны соответствовать нескольким требованиям и допускам, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.
Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, — это Кодексы и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.
Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор. В случае кратковременных или редких отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам нужно будет наполнять резервуар чаще, чем вам нужно будет пополнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым перебоям в подаче электроэнергии.
Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится. Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы лучше понять стоимость и логистику, связанные с приобретением топлива для генератора.
Выхлопные системы и средства контроля выбросов генератора
Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генераторов снижают и отводят тепло различными способами:
- Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
- Водород. Водород — очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, которые часто расположены в больших местных градирнях.
- Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.
Дымовые газы, выделяемые генераторами, аналогичны выхлопным газам других бензиновых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо отфильтровать и удалить из выбросов. Выхлопная система генератора справляется с этой задачей.
Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.
Помимо выхлопных систем, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.
В целом, аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:
- Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) — для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
- New Source Performance Standards (NSPS) — Стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
- Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 Свода федеральных правил, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.
Хорошая новость заключается в том, что многие новые генераторы уже соответствуют стандартам выбросов от генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — поговорить с продавцом или производителем генератора.
Для более глубокого изучения нормативов выбросов, прочтите этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».
Панель управления генератора и автоматический переключатель резерва (ATS)
Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка, в которой вы будете получать доступ и управлять работой генератора.
Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, ATS сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.
В дополнение к круглосуточному мониторингу панель управления генератором предоставляет менеджерам сайта обширную информацию:
- Датчики двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель, когда обнаруживает проблему с уровнями жидкости или другими аспектами работы генератора.
- Генераторные датчики предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.
Какой вид обслуживания требует генератор?
Генераторыпредставляют собой двигатели и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы используются для обеспечения резервного питания в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и проверки своих генераторов, чтобы гарантировать, что машина будет работать по мере необходимости, когда это необходимо.
Лучшая процедура технического обслуживания генератора — это та, которую рекомендует производитель, но, как минимум, все планы технического обслуживания генератора должны включать регулярное и текущее:
- Осмотр и снятие изношенных деталей.
- Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
- Осмотр и чистка аккумуляторной батареи.
- Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
- Проверка панели управления на точность показаний и индикаторов.
- Замена воздушного и топливного фильтров.
- Осмотр системы охлаждения.
- Смазка деталей по мере необходимости.
Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнивать с будущими записями и использовать для помощи в обнаружении отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.
Генераторымогут прослужить десятилетия при правильном обслуживании. Эти простые небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора. Если техническое обслуживание генератора не является делом, которым вы можете управлять самостоятельно, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать генератор в отличном состоянии год за годом. Это время и деньги, потраченные не зря, если они могут поддерживать ваш бизнес в рабочем состоянии при отключении электроэнергии.
Электрогенератор— конструкция, работа, типы и применение
Электрогенератор был изобретен до того, как была обнаружена корреляция между электричеством и магнетизмом. Эти генераторы используют электростатические принципы для работы с помощью пластин, движущихся лент, которые заряжаются электрически, а также дисков, переносящих заряд к электроду с высоким потенциалом. Генераторы используют два механизма для генерации заряда, такие как трибоэлектрический эффект, иначе электростатическая индукция.Таким образом, он генерирует низкий ток, а также очень высокое напряжение из-за сложности изоляционных машин, а также их неэффективности. Номинальная мощность электростатических генераторов низка, поэтому они никогда не использовались для выработки электроэнергии. На практике этот генератор используется для подачи питания на рентгеновские трубки, а также в ускорители атомных частиц.
Что такое электрический генератор?
Альтернативное название электрического генератора — динамо-машина для передачи, а также распределения энергии по линиям электропередач для различных применений, таких как домашнее, промышленное, коммерческое и т. Д.Они также применимы в самолетах, автомобилях, поездах, кораблях для выработки электроэнергии. Для электрического генератора механическая мощность может быть получена через вращающийся вал, что эквивалентно крутящему моменту вала, который умножается с использованием угловой скорости или скорости вращения.
Механическая энергия может быть получена из различных источников, таких как гидравлические турбины на водопадах / плотинах; паровые турбины, газовые турбины и ветряные турбины, в которых пар может генерироваться за счет тепла от воспламенения ископаемого топлива, в противном случае — за счет ядерного деления.Газовые турбины могут сжигать газ непосредственно внутри турбины, в противном случае — дизельные двигатели и бензин. Конструкция генератора, а также его скорость могут изменяться в зависимости от характеристик механического первичного двигателя.
Генератор — это машина, преобразующая механическую энергию в электрическую. Он работает по принципу закона Фарадея электромагнитной индукции. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется ЭДС, и эта индуцированная ЭДС равна скорости изменения потоковых связей.Эта ЭДС может возникать при изменении относительного пространства или относительного времени между проводником и магнитным полем. Итак, важными элементами генератора являются:
- Магнитное поле
- Движение проводника в магнитном поле
Характеристики
Основные характеристики электрических генераторов включают следующее.
Мощность
Выходная мощность электрогенератора находится в широком диапазоне.Выбрав идеальный генератор, можно легко удовлетворить требования высокой и низкой мощности за счет одинаковой выходной мощности.
Топливо
Для электрогенераторов доступны несколько вариантов топлива, таких как бензин, дизельное топливо, сжиженный нефтяной газ, природный газ.
Портативность
Электрические генераторы портативны, потому что у них есть ручки и колеса. Таким образом, их можно легко перемещать из одного места в другое.
Шум
Некоторые генераторы включают технологию шумоподавления, что позволяет снизить шумовое загрязнение.
Конструкция электрогенератора
Конструкция электрогенератора может быть выполнена с использованием различных частей, таких как генератор переменного тока, топливная система, регулятор напряжения, система охлаждения и выпуска, система смазки, зарядное устройство, панель управления, рама или основной узел.
Генератор
Преобразование энергии, которое происходит в генераторе, известно как генератор переменного тока. Это включает в себя как неподвижные, так и движущиеся части, которые работают вместе, чтобы генерировать электромагнитное поле, а также поток электронов для выработки электричества.
Топливная система
Топливная система в генераторе используется для выработки необходимой энергии. Эта система состоит из топливного насоса, топливного бака, возвратного патрубка и патрубка, который используется для соединения двигателя и бака. Топливный фильтр используется для удаления мусора до того, как он достигнет двигателя, а форсунка заставляет топливо течь в камеру сгорания.
Двигатель
Основная функция двигателя — подавать электроэнергию в генератор. Диапазон мощности, генерируемой генератором, может определяться мощностью двигателя.
Регулятор напряжения
Этот компонент используется для управления напряжением вырабатываемого электричества. При необходимости он также преобразует электричество переменного тока в постоянный.
Системы охлаждения и выхлопа
Обычно генераторы выделяют много тепла, поэтому для уменьшения тепла от перегрева машины используется система охлаждения. Выхлопная система используется для устранения дыма во время ее работы.
Система смазки
В генераторе есть несколько небольших, а также движущихся частей, которые необходимы для их достаточной смазки с использованием моторного масла, чтобы можно было добиться плавной работы, а также защитить от чрезмерного износа.Уровни смазки следует часто проверять каждые 8 часов процесса.
Зарядное устройство для аккумуляторов
Аккумуляторы в основном используются для питания генератора. Это полностью автоматический компонент, используемый для обеспечения готовности батареи к работе в случае необходимости, обеспечивая ее стабильным низким напряжением.
Панель управления
Панель управления используется для управления всеми функциями генератора во время работы от начала до конца. Современные устройства способны определять, когда генератор включается / выключается автоматически.
Рама / основной узел
Рама — это корпус генератора и часть, в которой конструкция удерживает все на месте.
Работа электрического генератора
Генераторы в основном представляют собой катушки электрических проводников, обычно из медной проволоки, которые плотно намотаны на металлический сердечник и установлены с возможностью поворота внутри экспоната из больших магнитов. Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, чтобы вызвать поток электрического тока внутри него.
Электрический генераторПроводящая катушка и ее сердечник называются якорем, соединяя якорь с валом механического источника энергии, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по отношению к магнитному полю.
Точка, когда якорь генератора сначала начинает вращаться, а затем в железных полюсных наконечниках возникает слабое магнитное поле. Когда якорь вращается, он начинает повышать напряжение. Часть этого напряжения поступает на обмотки возбуждения через регулятор генератора.Это впечатляющее напряжение создает более сильный ток обмотки, увеличивает силу магнитного поля.
Расширенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря. В это время признаки обуви зависели от направления протекания тока в обмотке возбуждения. Противоположные знаки заставят ток течь в неправильном направлении.
Как электрический генератор вырабатывает электричество?
На самом деле электрические генераторы не производят электричество; вместо того, чтобы создавать, они меняют энергию с механической на электрическую или с химической на электрическую.Это преобразование энергии может быть выполнено путем захвата энергии движения и преобразования ее в электрическую форму путем выталкивания электронов из внешнего источника с помощью электрической цепи. Электрогенератор в основном работает в обратном направлении по отношению к двигателю.
Некоторые генераторы, которые используются на плотине Гувера, будут обеспечивать огромное количество энергии за счет передачи энергии, создаваемой турбинами. Генераторы, которые используются как в коммерческих, так и в жилых помещениях, очень малы по размеру, но для выработки механической энергии они зависят от различных источников топлива, таких как газ, дизельное топливо, а также пропан.
Эту мощность можно использовать в цепи для наведения тока.
После того, как этот ток был создан, он направляется с помощью медных проводов для питания внешних устройств, в противном случае — машин целых электрических систем.
Современные генераторы используют принцип электромагнитной индукции Майкла Фарадея, потому что он обнаружил, что когда проводник вращается в магнитном поле, могут образовываться электрические заряды для создания тока. Электрический генератор связан с тем, как водяной насос нагнетает воду с помощью трубы.
Типы электрогенераторов
Генераторы классифицируются по типам.
- Генераторы переменного тока
- Генераторы постоянного тока
Генераторы переменного тока
Их также называют генераторами переменного тока. Это наиболее важный способ производства электроэнергии во многих местах, поскольку в настоящее время все потребители используют переменный ток. Он работает по принципу электромагнитной индукции. Они бывают двух типов: индукционный и синхронный.
Индукционный генератор не требует отдельного возбуждения постоянного тока, регулятора, регулятора частоты или регулятора. Эта концепция имеет место, когда катушки проводника вращаются в магнитном поле, вызывая ток и напряжение. Генераторы должны работать с постоянной скоростью, чтобы обеспечить стабильное напряжение переменного тока даже при отсутствии нагрузки.
Генератор переменного токаСинхронные генераторы — это генераторы большого размера, которые в основном используются на электростанциях. Они могут быть с вращающимся полем или с вращающимся якорем.У вращающегося якоря якорь находится у ротора, а поле у статора. Ток якоря ротора снимается через контактные кольца и щетки. Они ограничены из-за высоких ветровых потерь. Они используются для приложений с низкой выходной мощностью. Генератор с вращающимся полем широко используется из-за его высокой мощности выработки и отсутствия контактных колец и щеток.
Это могут быть трехфазные или двухфазные генераторы. Двухфазный генератор вырабатывает два совершенно разных напряжения.Каждое напряжение можно рассматривать как однофазное напряжение. Каждый из них генерирует напряжение, полностью независимое от другого. Трехфазный генератор переменного тока имеет три однофазные обмотки, разнесенные таким образом, что индуцированное напряжение в любой одной фазе смещается на 120º относительно двух других.
Они могут быть подключены как треугольником, так и звездой. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Дельта-соединение выглядит как греческая буква «Дельта» (Δ). В соединении звездой один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних соединений.Соединение «звезда» обозначается буквой Y.
Эти генераторы комплектуются двигателем или турбиной, которые могут использоваться в качестве мотор-генераторной установки и использоваться в таких приложениях, как военно-морской флот, добыча нефти и газа, горнодобывающая техника, ветряные электростанции и т. Д.
Преимущества
К преимуществам генераторов переменного тока можно отнести следующее.
- Эти генераторы обычно не требуют обслуживания из-за отсутствия щеток.
- Легко повышайте и понижайте через трансформаторы.
- Размер линии передачи может быть меньше из-за функции повышения
- Размер генератора относительно меньше, чем у машины постоянного тока
- Потери относительно меньше, чем у машины постоянного тока
- Эти выключатели генератора относительно меньше, чем выключатели постоянного тока
Генераторы постоянного тока
Генераторы постоянного тока обычно используются в автономных системах. Эти генераторы обеспечивают бесперебойную подачу питания непосредственно в накопители электроэнергии и электрические сети постоянного тока без использования нового оборудования.Сохраненная мощность передается нагрузкам через преобразователи постоянного тока в переменный. Генераторами постоянного тока можно было управлять обратно на неподвижную скорость, так как батареи, как правило, стимулируют восстановление значительно большего количества топлива.
Генератор постоянного токаКлассификация генераторов постоянного тока
Генераторы постоянного тока классифицируются в зависимости от того, как их магнитное поле создается в статоре машины.
- Генераторы постоянного тока с постоянным магнитом
- Генераторы постоянного тока с раздельным возбуждением и
- Генераторы постоянного тока с самовозбуждением.
Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешнего поля, поскольку они имеют постоянные магниты для создания магнитного потока. Они используются для приложений с низким энергопотреблением, таких как динамо-машины. Генераторы постоянного тока с раздельным возбуждением требуют возбуждения внешнего поля для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность.
Используются в гальванических и электролитических рафинировках. Из-за остаточного магнетизма, присутствующего в полюсах статора, генераторы постоянного тока с самовозбуждением могут создавать собственное магнитное поле после запуска.Они просты по конструкции и не нуждаются во внешней цепи для изменения возбуждения поля. Опять же, эти генераторы постоянного тока с самовозбуждением подразделяются на шунтовые, последовательные и составные генераторы.
Они используются в таких приложениях, как зарядка аккумуляторов, сварка, обычное освещение и т. Д.
Преимущества
Преимущества генератора постоянного тока включают следующее.
- В основном машины постоянного тока обладают большим разнообразием рабочих характеристик, которые могут быть получены путем выбора метода возбуждения обмоток возбуждения.
- Выходное напряжение можно сгладить, регулярно располагая катушки вокруг якоря. Это приводит к меньшему количеству колебаний, что желательно для некоторых приложений в установившемся режиме.
- Нет необходимости в экранировании излучения, поэтому стоимость кабеля будет меньше по сравнению с кабелем переменного тока.
Другие типы электрических генераторов
Генераторы подразделяются на различные типы, такие как переносные, резервные и инверторные.
Переносной генератор
Они чрезвычайно используются в различных приложениях и доступны в различных конфигурациях с изменением мощности.Они полезны при обычных бедствиях после выхода из строя электросети. Они используются в жилых, небольших коммерческих учреждениях, таких как магазины, торговые точки, на стройплощадке, чтобы обеспечивать электроэнергией небольшие инструменты, свадьбы на открытом воздухе, кемпинг, мероприятия на открытом воздухе и обеспечивать питание сельскохозяйственных устройств, таких как скважины, в противном случае системы капельного орошения.
Генераторы этого типа работают на дизельном топливе, в противном случае — на газе, чтобы обеспечить кратковременную электрическую энергию. Основные характеристики портативного генератора:
- Он проводит электричество с помощью двигателя внутреннего сгорания.
- Может подключаться к разным инструментам и приборам через розетки.
- Может быть подключен к субпанелям.
- Используется в отдаленных районах.
- Он потребляет меньше энергии для работы морозильной камеры, телевизора и холодильника.
- Скорость двигателя должна быть 3600 об / мин, чтобы выдавать типичный ток с частотой 60 Гц.
- Обороты двигателя можно контролировать с помощью оператора.
- Он обеспечивает питание осветительных приборов, а также инструменты.
Инверторный генератор
В этом типе генератора используется двигатель путем подключения его к генератору переменного тока для выработки электроэнергии переменного тока. выпрямитель для преобразования переменного тока в постоянный.Они используются в холодильниках, кондиционерах, автомобилях-лодках, которые требуют значений определенной частоты, а также напряжения. Они доступны в менее тяжелых и твердых. Характеристики этого генератора в основном включают следующее.
- Это зависит от современных магнитов.
- Использует более высокие электронные схемы.
- Использует 3 фазы для выработки электроэнергии.
- Обеспечивает стабильную подачу тока на устройство.
- Он энергоэффективен, потому что скорость двигателя регулируется в зависимости от требуемой мощности.
- Когда он используется с надлежащим устройством, его переменный ток может быть установлен на любое напряжение и частоту.
- Они легкие и используются в автомобиле, лодке и т. Д.
Резервный генератор
Это один из видов электрической системы, используемый для работы через автоматический переключатель резерва, который дает сигнал для включения устройства. потеря. К лучшим характеристикам резервного генератора можно отнести следующее.
- Операция может выполняться автоматически.
- Используется в системах безопасности для резервного освещения, лифтов, оборудования жизнеобеспечения, медицинских и противопожарных систем.
- Обеспечивает стабильную защиту электропитания.
- Постоянно контролирует энергоснабжение.
- Каждую неделю автоматически выполняет самотестирование, чтобы проверить, правильно ли реагирует на пропадание электропитания.
- Он состоит из двух компонентов, таких как автоматический переключатель и резервный генератор.
- Он обнаруживает потерю мощности за секунды и усиливает электричество.
- Он работает с использованием природного газа или жидкого пропана.
- Внутри используется двигатель внутреннего сгорания.
Промышленные генераторы
Промышленные генераторы отличаются от коммерческих и жилых помещений. Они прочные и прочные, которые работают в суровых условиях. Характеристики источника питания будут варьироваться от 20 кВт до 2500 кВт, 120-48 В и от 1-фазного до 3-фазного источника питания.
Обычно они более индивидуализированы по сравнению с другими типами. Классификация этих генераторов может быть сделана на основе топлива, используемого для работы двигателя, чтобы можно было вырабатывать электроэнергию.В качестве топлива используется природный газ, дизельное топливо, бензин, пропан и керосин.
Индукционные генераторы
Эти генераторы бывают двух типов, например, с самовозбуждением и с внешним возбуждением. Самовозбуждающиеся используются в ветряных мельницах, где ветер используется как нетрадиционный источник энергии, преобразующийся в электрическую энергию. Внешнее возбуждение используется в приложениях рекуперативного торможения, таких как краны, подъемники, электровозы и лифты.
Техническое обслуживание электрогенератора
Техническое обслуживание электрогенератора во многом схоже со всеми типами двигателей.Для каждого производителя очень важно знать, как обслуживаются все генераторы. Нормальное техническое обслуживание — это общий осмотр, такой как проверка на утечки, уровни охлаждающей жидкости, проверка шлангов и ремней, кабелей и клемм аккумулятора. Важно проверять масло, чтобы его часто менять. Частота замены масла в основном зависит от производителя, от того, как часто оно используется. Если в генераторе используется дизельное топливо, необходимо заменить масло на 100 часов работы.
Один раз в год фильтрация и очистка топлива очень быстро ухудшают качество дизельного топлива.После нескольких дней эксплуатации это топливо может разлагаться из-за загрязнения воды и микробов, что приводит к закупорке топливопроводов, а также фильтров. При очистке топлива используются биоциды в год во всех типах генераторов, кроме резервного генератора, где он будет притягивать сырость.
Систему охлаждения следует обслуживать, поскольку она требует проверки уровня охлаждающей жидкости через доступные интервалы во время простоя.
Необходимо проверить уровень заряда батареи, поскольку проблемы с батареей могут вызвать сбои.Регулярное тестирование необходимо для определения текущего состояния батареи. Он включает в себя проверку уровней электролита, а также точную плотность электрических батарей.
Также очень важно отключать генератор на 30 минут еженедельно под нагрузкой. Удалите излишки влаги, смажьте двигатель и отфильтруйте топливо, а также фольгу. Если какие-либо подвижные части, найденные в любом месте на генераторе, должны быть стабильно расположены внутри.
Для дальнейшего осмотра необходимо вести записи, чтобы знать состояние вашего генератора.
Приложения
Приложения электрических генераторов включают следующее.
- В разных городах генераторы обеспечивают питание большинства электросетей
- Они используются на транспорте
- Малые генераторы служат отличным резервом для удовлетворения потребностей домашних хозяйств в электроснабжении, в противном случае малые предприятия
- Они используются для привода электродвигателей
- Используются перед подачей электроэнергии на строительных площадках.
- Используются в лабораториях для определения диапазона напряжений.
- Энергоэффективность, например, использование топлива, может быть значительно снижено
Недостатки
Главный недостаток — они не могут остановить сильные колебания напряжения, по этой причине, обычные. генераторы не подходят для работы с потребителями, чувствительными к напряжению, такими как ПК. ноутбуки, телевизоры или музыкальные системы, потому что они могут повредить их в плохом случае.
Итак, это все обзор электрогенератора.Электрогенератор работает по принципу электромагнитной индукции. Этот принцип был открыт Майклом Фарадеем. В основном генераторы представляют собой катушки с электрическими проводниками или, как правило, медную проволоку. Этот провод плотно намотан на металлический сердечник и помещен примерно так, чтобы вращаться в экспонате из больших магнитов.
Электрический проводник вращается в магнитном поле, и магнетизм соединяется через электроны внутри проводника, вызывая в нем ток. Здесь катушка проводника, а также ее сердечник называются якорем.Он подключен к валу источника питания. Теперь вы четко разобрались в принципах работы и типах генераторов. Кроме того, любые дополнительные вопросы по этой теме или по электрическим и электронным проектам оставляйте комментарии ниже.
Электрогенератор Источник изображения: topalternative
Как работают генераторы | Компания Wisconsin Valley Improvement Company
Как работает электрический генератор
Электрогенератор — это устройство, используемое для преобразования механической энергии в электрическую.
Генератор основан на принципе «электромагнитной индукции», открытом в 1831 году Майклом Фарадеем. Британский ученый. Фарадей обнаружил, что если электрический провод, например медный провод, провести через магнитное поле, поле, электрический ток будет течь (индуцироваться) в проводнике. Таким образом, механическая энергия движущегося провода равна преобразуется в электрическую энергию тока, протекающего в проводе.
Интерактивный электрический генератор
Воспользуйтесь нашим интерактивным онлайн-генераторомОбратите внимание: наш интерактивный генератор лучше всего просматривать на компьютере, и его загрузка может занять некоторое время.
Интерактивная электрическая анимация
На анимации ниже показан простой электрический генератор. В анимации механическая энергия, необходимая для поворота Генератор идет от коричневой рукоятки на передней части генератора. На гидроэлектростанции Механическая энергия для вращения генератора поступает от водяной турбины, которая вращается под действием падающей воды.
Кривошипная рукоятка в анимации заставляет красный провод вращаться внутри магнитного поля (синие линии).Как Фарадей научившись, перемещение провода через магнитное поле вызывает электрический ток, протекающий в проводе. Красный провод подключен к вольтметру, который показывает количество вырабатываемого электрического тока. На гидроэлектростанции, Генератор подключен к линиям электропередачи, по которым электроэнергия доставляется в ваш дом или офис.
Элементы управления анимацией позволяют управлять скоростью и направлением генератора, а также поворачивать части включение и выключение анимации для большей наглядности.Вы также можете использовать переключатели, чтобы показать постоянный ток или генератор постоянного тока. (с коммутатором) или переменного тока, или генератора переменного тока (без коммутатора).
Вот два изображения реальных генераторов на гидроэлектростанциях.