РазноеСхема блока питания 5 вольт 2 ампера: БЛОК ПИТАНИЯ НА 5В 2А

Схема блока питания 5 вольт 2 ампера: БЛОК ПИТАНИЯ НА 5В 2А

Содержание

Самодельный импульсный блок питания 5 вольт 2 ампера


Обзавелся недавно я б/у планшетом для одной из моих задумок. Достался он без родного блока питания (5 вольт 2 ампера). Чтобы использовать планшет, решил собрать самостоятельно БП, тем более, что все необходимое было в наличии, т.к. в «закромах» имелось несколько сгоревших компьютерных блоков питания.


Никогда ранее не приходилось сталкиваться с импульсными блоками питания, так что я обратился на один из радиолюбительских форумов. Там пользователь Starichok51, привел свою схему импульсного блока питания. После сборки она не работала как нужно, тогда часть ее переделал Serj66610, и дело сдвинулось с мертвой точки. Пользователи Gaff и vertigo принимали активное участие в обсуждении и настройке. В результате совместной работы этих пользователей получился новый мощный (5v 2a) импульсный блок питания. Выражаю им свою глубокую благодарность.



В своей статье я хочу привести рабочую итоговую схему самодельного импульсного блока на 5 вольт 2 ампера, как она сейчас есть. В схеме, как и в печатной плате, учтены все переделки, изменения номиналов деталей. Печатную плату в формате *.lay6 можно скачать ЗДЕСЬ. Все номиналы на схеме указаны, которые у меня в БП. Печатной плата была разведена таким образом, чтобы плату блока питания можно было разместить в корпусе. Корпусом послужила часть от кейса для дискет.



Чтобы получить 5v 2a, нужно было перемотать трансформатор, с сердечником EE19 из компьютерного блока питания. Первичная обмотка содержит 130 витков проволоки диаметром 0.2мм, вторичная – 6 витков диаметром  1мм, обмотка обратной связи – 7 витков диаметром 0.2мм. Зазор между средними выступами элементов сердечника должен быть 0,4мм. Вначале наматывается первая половина первичной обмотки, вторичная обмотка, вторая половина первичной, и в конце — обмотка обратной связи. L1 содержит 10 витков витой пары, намотанных синфазно. L1 можно наматывать на ферритовом кольце любой марки, диаметром от 16 до 32 мм, в моем случае диаметр 18мм. L2 – 20 витков диаметром 0. 5мм на кольце от материнской платы. У меня L2 был готовый 1мм на кольце диаметром 16мм. Информацию по трансформатору предоставил Starichok51, а по фильтрам — Serj66610.



Вместо C945 можно использовать SS9014, КТ3102; вместо C5027R – 13003-13005, С4242; вместо TL431 – AZ431; вместо 1N5822 – 1N5820, SR310; вместо КД522 – КД510, 1N4148; вместо FR107 – FR154, FR157. Конечно, можно использовать и другие детали, подходящие по характеристикам, но при любом изменении схемы самодельного импульсного блока питания, возможно, понадобится ее перенастраивать. Напоминаю, что детали в схеме рассчитаны на БП 5v 2a, некоторые с запасом.


Данная статья является выжимкой основных моментов 8ми страниц обсуждения форума. Еще раз спасибо всем, кто принимал участие в настройке моего первого импульсного блока питания.

Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в

 

Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….

-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …

 

Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

 

Блок питания 12в 30а

Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.

Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы.
Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение.

Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса.

Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.

Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания

Схемы блоков питания

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

Все своими руками Блок питания 5В 2А

Опубликовал admin | Дата 5 июля, 2016

Как сделать блок питания своими руками, об этом пойдет речь в данной статье. Выходное стабилизированное напряжение блока – 5 вольт, номинальный ток нагрузки 2 ампера. Выход блока питания имеет защиту от короткого замыкания. Принципиальная схема устройства показана на рисунке 1.


В схеме применен унифицированный накальный трансформатор ТН-220-50. Данные на него можно посмотреть в таблице ниже.

ТН2-127/220-50, параметры

Данные трансформаторы имеют несколько модификаций. Поэтому подключение первичной обмотки у них отличается. Если трансформатор рассчитан только на напряжение 220 вольт, то это напряжение надо подключать к выводам 1 и 5 первичной обмотки, см. рисунок 2.

ТН2-127/220-50, схема включения

Если в своем обозначении трансформатор имеет 127, то его схема показана на рисунке 3. В этом случае надо будет еще поставить перемычку между выводами 2 и 4 первичной обмотки. Выходное переменное напряжение величиной 6,3 вольта поступает на выпрямительный мост, состоящий из четырех диодов КД202В, можно применить и готовый мост на ток не менее четырех ампер. Например, из импортных, это RS401, KBL005. Шести амперные мосты – KBU6A, RS601, BR605, KBPC6005 и др. Постоянное напряжение на конденсаторе фильтра будет примерно равно 6,6×1,41= 8,8 вольт. Основой стабилизатора служит микросхема К157ХП2, в состав которой входит источник опорного напряжения с устройством управления временем включения и выключения, усилитель сигнала рассогласования, регулирующий элемент с токовой тепловой защитой. Имеет все то, что нам надо! Правда в состав микросхемы входят еще два транзистора для генератора стирания и тока подмагничивания магнитофонов (микросхема то магнитофонная), но мы их использовать не будем. В качестве регулирующего транзистора в схеме используется мощный составной транзистор КТ829А (схема Дарлингтона). В крайнем случае, можно применить менее мощный транзистор КТ972А или соответствующие импортные, какие ни будь TIP120, 121,122, имеющий ток коллектора пять ампер.

И так, как уже говорилось выше, схема имеет вывод включения/выключения — 9. Что бы включить стабилизатор надо на этот вывод подать напряжение не ниже двух вольт. В первый момент после подачи напряжения на вход стабилизатора, это напряжение формируется цепочкой R1 и С2. За время протекания тока заряда этого конденсатора успевает включиться сам стабилизатор и часть его выходного напряжения через резистор обратной связи так же подается на вывод 9. Это удерживающее напряжение для поддержания стабилизатора в рабочем состоянии. Вывод 8 микросхемы, это выход напряжения источника опорного напряжения. У данной микросхемы это напряжение равно 1,3 вольта. С8 – конденсатор фильтра и одновременно конденсатор задержки включения стабилизатора. Таким образом, если у вас не будет включаться стабилизатор, то надо будет увеличить емкость конденсатора С2. Т.е. увеличить время заряда этого конденсатора, что бы успел включиться стабилизатор.

Чтобы выключить стабилизатор, надо нажать на кнопку SA3 – Стоп. Она зашунтирует вывод 9 DA1 на общий провод, открывающее напряжение пропадет, стабилизатор закроется. Прекрасная микросхема, напряжение выключенного стабилизатора в моем случае равно всего 7,6 мВ. То же самое произойдет, т.е. стабилизатор выключится, когда в его выходной цепи произойдет короткое замыкание. Так же пропадет открывающее напряжение. Через резистор R1 напряжение на вывод 9 поступать не будет, так как уже заряженный конденсатор для постоянного тока имеет очень большое сопротивление. В таком состоянии схема может находиться сколько угодно долго. Для повторного запуска стабилизатора необходимо или снять напряжение питания и снова подать, или нажать на кнопку пуск. В этом случае открывающее напряжение на вывод 9 поступит через резистор R1.

Подстроить выходное напряжение стабилизатора можно резистором R4. При токе нагрузки, равному 2 амперам и падении напряжения на регулирующем транзисторе 8,8-5=3,5 вольт, мощность, на нем выделяемая, будет равна P = U x I = 3,5 x 2 = 7 Вт. Отсюда следует, что транзистору необходим соответствующий теплоотвод, площадь которого можно прикинуть, посетив страницу со статьей «Расчет радиаторов». Я тут прикинул и получилось, примерно, 200см2.

На сайте есть другой блок питания с использованием этой же микросхемы, если интересно можете заглянуть в статью «Блок питания от2 до 30 вольт» или же сюда «Стабилизатор 5В». Пока все. Удачи. К.В.Ю.
Скачать статью «Блок питания 5В 2А своими руками»

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:12 822


5 Вольт 2 Ампера блок питания с microUSB штеккером

Началось все с того, что у старенького планшета начал барахлить блок питания и я решил подобрать ему замену. Нашел вариант с привычной нам вилкой и не отсоединяемым кабелем.
Старый блок питания я скорее всего починю и уже даже придумал куда его применить, а сегодня попробую протестировать новый.

Постараюсь сделать обзор коротким, но максимально по делу. Будут как всегда, тесты, разборка, анализ.

Упаковку спрячу под спойлер, там все равно ничего интересного.

Пришел блок питания в конверте, без всяких коробочек и т.п.
К слову в последнее время приятно удивляет скорость доставки с чайнабея, посылки удет примерно полторы недели.5 Вольт 2 Ампера блок питания с microUSB штеккером

Блок питания относительно маленьких размеров, на вид уменьшенная копия популярных блоков 12 Вольт 2 Ампера.
Длина кабеля около 1.4 метра, как по мне лучше бы он был раза в два короче.
Обрадовало несколько вещей.
1. Блок питания действительно с евро вилкой, а не с переходником в комплекте.
2. Кабель не отключаемый, лишние контакты никак не увеличивают надежность.
3. БП брался для планшета u9gt4. Он имеет алюминиевый корпус и далеко не все штеккеры нормально работают. Здесь проблем я не обнаружил.5 Вольт 2 Ампера блок питания с microUSB штеккером
Всем думаю понятно, что без тестов обзор блока питания это вообще не обзор, потому я собрал небольшой стенд для проверки.
В него входило:
Электронная нагрузка + блок питания к ней
Осциллограф
microUSB гнездо с припаянным проводом.
Ну и сам обозреваемый блок питания

Наверняка некоторые читатели скажут, что правильно измерять напряжение на выходе блока питания, а не после кабеля. Но я рассуждал так — раз кабель не отсоединяемый, то заменить его на лучший нельзя, значит он будет работать именно в таком виде, потому и тестировать надо именно так.

5 Вольт 2 Ампера блок питания с microUSB штеккером
Первое испытание на холостом ходу.
Выходное напряжение несколько завышено, позже я объясню почему, но скажу сразу, сделано это было специально.5 Вольт 2 Ампера блок питания с microUSB штеккером
Пульсации измерялись в положении делителя щупа 1:1.
Ну на холостом ходу пульсации бывают очень редко, потому здесь так же все в порядке.
Дальше четыре теста с разным током нагрузки, заодно здесь хорошо видно что такое электронная нагрузка и зачем она нужна.
Испытательные токи:
0.5 Ампера — напряжение в норме.
1.0 Ампера — напряжение в норме, пульсации почти такие же как при 0.5 Ампера и составляют 90мВ.
1.5 Ампера — напряжение еще в норме, но пульсации уже явно повыше, около 120мВ
2.0 Ампера — напряжение уже сильно просело, пульсации выросли до 150мВ.
Не скажу что напряжение пульсаций ну очень критичное, но мне скорее не нравится их форма.5 Вольт 2 Ампера блок питания с microUSB штеккером
Ну и осциллограммы.5 Вольт 2 Ампера блок питания с microUSB штеккером
Еще с далеких времен, когда в ходу была 155 и 555 серия логических микросхем, я привык считать, что пока напряжение питания находится в пределах ±5% (для 5 Вольт), то все нормально.
Соответственно я решил определить максимальный ток, который может выдать БП еще оставаясь в границах допуска.
Измерение показало, что это 1.71 Ампера, хотя БП промаркирован как 2 Ампера.
Но на самом деле это скорее не вина самого БП, а большой длины кабеля. Собственно потому я и жалел что кабель длинный.5 Вольт 2 Ампера блок питания с microUSB штеккером
После этого я погонял блок питания на токе 2 Ампера примерно с пол часа и измерил температуру. БП был включен в настенную розетку, кабелем вниз.
Самая горячая точка была примерно чуть ниже середины БП, температура корпуса в этом месте составила 62.2 градуса. В верху блока питания температура была около 55 градусов.5 Вольт 2 Ампера блок питания с microUSB штеккером
В процессе тестов я пробовал подключать этот БП к своему планшету и увидел знакомый многим дефект в виде «фантомных» нажатий тачскрина.
Выглядело это как:
Нажатие в одном месте, но реально отклик происходил в другом.
На одно нажатие несколько откликов
При длительном нажатии пробегает горизонтальная полоса с видимыми «фантомными» нажатиями. Т.е. правый клик (длительное удержание) произвести просто невозможно, вообще.
все глюки были в горизонтальной плоскости экрана.
Хотя БП брался и не для этого планшета, но я решил попробовать разобраться в проблеме.
Ну а как все понимают, любое разбирательство начинается с разборки 🙂
БП удивил меня в очередной раз. Я уже взял по привычке нож, молоток и стукнул пару раз по шву между половинками корпуса, но сразу понял что что-то не так, звук был другой.
Не дело, подумал я и начал искать крепеж, как и ожидалось он нашелся под наклейкой.
Удобно, уже так привык что БП клееные, что даже непривычно.5 Вольт 2 Ампера блок питания с microUSB штеккером
Долез я до платы и тут меня БП опять удивил.
Еще когда я увидел «фантомы», то первым делом подумал, что БП сделан как всегда по автогенераторной схеме, как самой дешевой и не имеет выходного дросселя.
БП был собран на довольно известном ШИМ контроллере Viper22A и имел выходной дроссель.
А вот входной дроссель отсутствовал 🙁
Зато стоял Y1 конденсатор между входом и выходом, хотя часто ставят просто высоковольтный керамический.
Выходные конденсаторы по 470мкФ, мало, при 2 Амперах надо хотя бы 1000мкФ.5 Вольт 2 Ампера блок питания с microUSB штеккером
Но первое что бросилось в глаза, это слишком мелкий трансформатор. Насколько я знаю, для частоты 60КГц, на которой работает этот ШИМ контроллер, трансформатор должен быть раза в полтора больше.
По входу присутствует предохранитель.
Выше я писал, что объясню почему завышено выходное напряжение. Это не дефект, а именно так и задумано. микросхема, которая следит за выходным напряжением, имеет пороговое напряжение в 2.5 Вольта, значит для 5 Вольт ставят делитель 1 к 2. но здесь стоял делитель из резисторов 4.7 и 5.1 КОм. Соответственно выходное напряжение поднимали специально, именно из расчета работы на большую длину кабеля, но помогло это слабо :(5 Вольт 2 Ампера блок питания с microUSB штеккером
Хоть плата сделана на дешевом гетинаксе, пайка вполне терпимая, но ШИМ контроллер явно менялся, присутствуют следы пайки и флюса.5 Вольт 2 Ампера блок питания с microUSB штеккером
Более подробные фотографии.
1. ШИМ контроллер Viper22A, при этих условиях расчетная мощность около 12 Ватт, запас совсем маленький.
2. Выходной диод SR560, Шоттки 5 Ампер, неплохо, при этом рядом присутствует место для еще одного диода, видимо расчет на установку двух более слабых диодов.
А вот кабель для такого тока тонковат, особенно при такой длине.
3. Входной конденсатор на 6.8 мкФ, мало. Для такого БП должно быть 10мкФ или больше.
4. Еще один электролитический конденсатор, в цепи питания ШИМ контроллера. Здесь емкость вполне достаточна. Проблем с запуском БП нет, стартует мгновенно.5 Вольт 2 Ампера блок питания с microUSB штеккером
После осмотра я составил принципиальную схему данного БП.5 Вольт 2 Ампера блок питания с microUSB штеккером
Так как я открыл Бп не только для осмотра, а и для попытки доработки, то я порылся в своих запасах и решил добавитьзаменить некоторые компоненты.
1. Увеличить емкость входного конденсатора, но 10мкФ не нашел, пришлось взять 2.2 и добавить параллельно существующему (уменьшение пульсаций на частоте 100Гц и снижение нагрева ШИМ контроллера)
2. Поставить керамические конденсаторы емкостью 0.22мкФ параллельно выходным конденсаторам (уменьшение пульсаций выходного напряжения на ВЧ)
3. Поставить RC цепочку параллельно выходному диоду (немного уменьшает помехи от переключения диода)
4. Заменить выходной дроссель с 10мкГн на 20мкГн, кроме того старый дроссель был намотан явно тонким проводом и замена дросселя даст чуть меньшие потери на нагрев.
5. Заменить одни из выходных конденсаторов на более емкий и качественный.5 Вольт 2 Ампера блок питания с microUSB штеккером
На схеме я пометил цветом измененные и добавленные компоненты.
На самом деле я пробовал еще увеличивать емкость С3 до 100нФ и ставить такой же конденсатор параллельно С4, но разницы не было.5 Вольт 2 Ампера блок питания с microUSB штеккером
Вот как выглядел БП после доработки.5 Вольт 2 Ампера блок питания с microUSB штеккером
Но как показала практика, разницы не было, вообще. Так же никуда не пропали «фантомы».
Увеличение С3 и установка керамического конденсатора параллельно С4 была уже последней попыткой, но это ничего не изменило.
Первый раз моя модификация не помогла. Думаю что объяснение этому может крыться в неправильном трансформаторе, который скорее всего работает в режимах близких к насыщению.

Зато в процессе экспериментов я проверил температуру компонентов в работе. Прогрев около получаса, быстрое открытие корпуса и замер температур:
Трансформатор — 90-93 градуса
ШИМ контроллер — 80 градусов
Выходной диод — 80-86 градусов.

5 Вольт 2 Ампера блок питания с microUSB штеккером5 Вольт 2 Ампера блок питания с microUSB штеккером
Но когда я подключил этот БП к планшету, для которого он вообще предназначался, то увидел что проблем с ним нет, все работает отлично.

После этого я решил уже скорее ради любопытства посмотреть как работает родной БП моего планшета. Ведь с ним проблем нет, можно спокойно работать во время заряда.
Измерение показало, что колебания напряжения от изменения нагрузки гораздо меньше.
При работе без нагрузки он показал около 5.06 Вольта, а под нагрузкой в 2 Ампера — 4.92 Вольта. Результат отличный.

5 Вольт 2 Ампера блок питания с microUSB штеккером
Но когда я увидел осциллограмму пульсаций по выходу этого БП, то подумал, КАК?
Как БП с таким уровнем пульсаций не дает помех работе тачскрина, а при БП с явно меньшим уровнем пульсаций работать вообще невозможно?

На основании тестов, проведенных выше, разборки и попытки переделки, я вполне могу определить плюсы и минусы данного БП.
Плюсы
Блок питания имеет евровилку, а не переходник
Схемотехника с применением специализированного ШИМ контроллера
Неразъемная конструкция кабеля (хотя в данном случае это оказалось и минусом)
Штеккер имеет нормальную фиксацию в разъеме планшета, даже если гнездо утоплено в корпусе.

Минусы
На некоторых устройствах возможны проблемы с тачскрином.
Отсутствие входного фильтра питания.
Занижена емкость конденсаторов и размеры трансформатора.
Большое падение на кабеле из-за большой его длины и малого сечения жил.

Мое мнение. Если рассматривать его как просто блок питания, то он вполне нормально может работать до тока в 1.5 Ампера, при этом не будет проблем с перегревом и просадкой напряжения. но при большем токе напряжение упадет ниже допустимых границ. Так же непонятна причина возникновения помех работе тачскрина, но проблема есть и видна невооруженным глазом, хотя пульсации выходного напряжения не такие уж и большие.

Я не знаю, поможет ли кому нибудь этот обзор, но я старался показать что это за блок питания максимально подробно.

Товар предоставлен для написания обзора магазином.

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП
  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Схемы блоков питания | 2 Схемы

Схемы самодельных блоков питания на различные напряжения и ток — простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.

Представляем обзор простого блока питания в стиле «сделай сам» на основе готовых электронных модулей, заказанных у китайских друзей. Такой подход здорово экономит время и деньги, …

Всем привет, вот ещё одна интересная схемка — простой симметричный источник питания. Это не полноценный лабораторный источник питания, так что не нужно слишком много от …

Хочу поделиться схемой универсального лабораторного блока питания 0-22 В, 0-2,5 А. БП имеет полностью цифровой контроль. Устройство работает безупречно уже третий год, только внес изменения …

Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. …

В этой статье представим два самых простых регулируемых блока питания на базе популярных микросхем LM317 и LM337. Конструкции были сделаны из дешевых и легкодоступных деталей. …

Этот мощный самодельный блок питания состоит из двух отдельных модулей: управляющей части со стабилизатором и инвертора. В данной конструкции блока питания отсутствует силовой трансформатор (как …

Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. …

Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 — 20 В и током защиты …

Блок питания — комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …

Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения. Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …

Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …

Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …

Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …

Очередная полезная покупка с сайта AliExpress — электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …

Это обзор китайского блока питания на 2,5 А, где есть плавная регулировка напряжения в диапазоне 3-24 В. Существуют и другие версии этого блока питания, например: …

Трудно назвать проект полностью самодельным, если всего-то надо спаять между собой несколько готовых модулей, но для начинающих радиолюбителей такой подход будет вполне оправдан, поэтому редакция …

Данное электронное устройство предназначено для преобразования низкого постоянного напряжения в диапазоне 8-32 В в более высокое постоянное напряжение на выходе (до 410 В) [1-2]. Устройство …

Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …

Блок питания своими руками ⋆ diodov.net

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Еще статьи по данной теме

Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике. Почти каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы завершаете свой первый дизайн блока питания, тестируете его, и он работает нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это дизайн, основанный на линейной технологии, он будет проходить вас на каждом этапе проектирования, пытаться представить все простым языком, выполнять некоторые математические вычисления, например, если в схеме используется конденсатор, вы должны знать, почему он там, и как рассчитывается его стоимость.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой, занимаясь своими руками, то этот набор для самостоятельного изготовления регулируемого блока питания (нажмите здесь) подойдет именно вам.Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные участки схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем перейдем к проектированию.Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Входной трансформатор

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор для понижения входящего переменного тока до требуемого нижнего уровня i.е. близко к 5В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная схема

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы это проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсаторный. Вы, наверное, слышали, конденсатор — это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Регулятор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали несколько основных концепций проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты схемы, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу шаг за шагом.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

В техническом описании 7805 также предписывается использование конденсатора 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсации, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для изучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается на основе вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т.е. 500 мА в нашей конструкции, Vo = выходное напряжение, т.е. в нашем случае 5 В, f = частота, например, 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — это сопротивление нагрузки

. Rf — коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5. Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит нашу поставку.

Практическое правило выбора номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить к микросхеме регулятора радиатор.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как проектировать источник питания постоянного тока на 5 Вольт.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

Сделайте источник питания 3,3 В и 5 В при 1,5 А. : 5 шагов (с картинками)

Я использую транзистор TIP41. В принципе, он может обеспечивать ток около 2А (в спецификации
указано, что его достаточно для использования. Мне нравится это число, потому что оно дешевое, эффективное, разумное.

Большинство из 1,2,3,4,5 А используют транзистор PNP (непопулярный ), а иногда и дороже, чем NPN.

Конфигурация транзистора является общей базой, которая говорит о схемах теории, в которых используется транзистор, который используется в этой конфигурации Основание к заземлению ЭМИТТЕР И КОЛЛЕКТОР в качестве входа и выхода, усиление находится в ТОКЕ

Давайте посмотрим немного теории:

в электронике усилитель с общей базой (также известный как усилитель с заземленной базой) является одной из трех основных топологий усилителя с одноступенчатым биполярным переходным транзистором (BJT), обычно используется в качестве буфера тока или усилителя напряжения.
В этой схеме вывод эмиттера транзистора служит входом, коллектор — выходом, а база соединена с землей или «общим», отсюда и его название. Аналогичная схема на полевом транзисторе представляет собой усилитель с общим затвором.

По мере того, как ток идет от эмиттера, это создает разность потенциалов, заставляя транзистор проводить. Ток, проводимый через коллектор, пропорционален напряжению на переходе база-эмиттер с учетом смещения, как и в других конфигурациях.[1]
Таким образом, если в эмиттере нет тока, транзистор не проводит.

— Википедия

Регулятор напряжения 3,3 В

Существуют различные типы регуляторов 3v3, которые в основном используются в SMD, я выбираю Tough-Hole T0-220 Package

is и LM1117 3V3 RE Linear Technologies

Список компонентов регулятора напряжения с 12 В до 5 В
IC1___LM7805___ Регулятор постоянного тока 5 В IC

Q1___ TIP41____2A Силовой транзистор NPN 50 В

C1____1000 мкФ 35 В___ Электролитический конденсатор

C3____100000 мкФ 25 В _______ 9 _______1 мкФ 50 В ___ Керамические или майларовые конденсаторы

C4 ____ 0,01 мкФ 50 В ____ ”____________” _______

D1____1N4007______1A 1000 В

Светодиодный диод 1____ LED любой цвет по вашему выбору Подача питания

R1

R1

Вт

Вт

R1

2 Вт 0,25 Вт 0,25 Вт 0,25 Вт Блок питания (PSU) является жизненно важной частью любого электронного продукта. Для работы большинства бытовых электронных продуктов, таких как мобильные зарядные устройства, динамики Bluetooth, блоки питания, умные часы и т. Д., Требуется схема источника питания, которая могла бы преобразовать напряжение сети переменного тока в 5 В постоянного тока.В этом проекте мы построим аналогичную схему AC / DC источника питания с номинальной мощностью 10 Вт. То есть наша схема преобразует сеть 220 В переменного тока в 5 В и обеспечит максимальный выходной ток до 2 А. Этой мощности должно хватить для питания большинства электронных устройств, работающих от 5 В. Также 5V 2A SMPS схема довольно популярна в электронике, поскольку существует множество микроконтроллеров, которые работают от 5V.

Идея проекта состоит в том, чтобы сделать сборку максимально простой, поэтому мы спроектируем полную схему на точечной плате (перфорированной плате), а также построим наш собственный трансформатор, чтобы любой мог воспроизвести эту конструкцию или построить аналогичные.В восторге! Итак, приступим. Ранее мы также построили схему SMPS 12 В 15 Вт с использованием печатной платы, поэтому люди, интересующиеся тем, как спроектировать печатную плату для проекта блока питания (блока питания), также могут это проверить.

Цепь ИИП, 5 В, 2 А — проектные характеристики

Различные типы источников питания по-разному работают в разных средах. Также SMPS работает в определенных границах ввода-вывода. Перед тем, как приступить к фактическому проектированию, необходимо провести надлежащий анализ спецификации .

Входная спецификация:

Это будет SMPS в области преобразования переменного тока в постоянный. Следовательно, на входе будет переменный ток. Для значения входного напряжения хорошо использовать универсальный входной рейтинг для SMPS. Таким образом, напряжение переменного тока будет 85-265 В переменного тока с номинальной частотой 50 Гц. Таким образом, SMPS можно использовать в любой стране, независимо от значения сетевого напряжения переменного тока.

Характеристики выхода:

Выходное напряжение выбрано 5 В при номинальном токе 2 А.Таким образом, будет на выходе 10Вт . Поскольку этот SMPS будет обеспечивать постоянное напряжение независимо от тока нагрузки, он будет работать в режиме CV (постоянное напряжение). Это выходное напряжение 5 В должно быть постоянным и устойчивым даже при самом низком входном напряжении при максимальной нагрузке (2 А) на выходе.

Очень желательно, чтобы хороший блок питания имел пульсации напряжения менее 30 мВ пик-пик . Целевое напряжение пульсаций для этого ИИП составляет менее 30 мВ пик-пик пульсаций.Поскольку этот SMPS будет построен на плате с использованием коммутирующего трансформатора ручной работы , мы можем ожидать немного более высокие значения пульсации. Этой проблемы можно избежать, используя печатную плату.

Защитные элементы:

Существуют различные схемы защиты, которые могут использоваться в SMPS для безопасной и надежной работы. Схема защиты защищает SMPS, а также связанную с ним нагрузку. В зависимости от типа схема защиты может быть подключена к входу или выходу.

Для этого SMPS будет использоваться защита от перенапряжения на входе с максимальным рабочим входным напряжением 275 В переменного тока. Кроме того, для решения проблем EMI будет использоваться синфазный фильтр для подавления генерируемых EMI. На стороне выхода мы будем включать защиту от короткого замыкания , защиту от перенапряжения и защиту от перегрузки по току .

Выбор микросхемы управления питанием

Для каждой цепи SMPS требуется ИС управления питанием, также известная как ИС переключения, ИС SMPS или ИС осушителя.Давайте подведем итоги проектных соображений, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашей конструкции. Наши требования к дизайну:

  1. Выход 10 Вт. 5В 2А при полной нагрузке.
  2. Универсальный входной рейтинг. 85-265 В переменного тока при 50 Гц
  3. Защита от перенапряжения на входе. Максимальное входное напряжение 275 В переменного тока.
  4. Выходная защита от короткого замыкания, перенапряжения и перегрузки по току.
  5. Работа с постоянным напряжением.

Из приведенных выше требований есть широкий выбор ИС, но для этого проекта мы выбрали Power integration .Power Integration — это компания, производящая полупроводники, которая предлагает широкий спектр микросхем драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из семейства крошечных коммутаторов II. Ранее мы использовали эту ИС для построения схемы 12 В SMPS на печатной плате.

На изображении выше показана максимальная мощность 15 Вт. Однако мы сделаем ИИП в открытом корпусе и для универсального входного номинала. В таком сегменте TNY268PN может обеспечить выходную мощность 15 Вт.Давайте посмотрим на схему контактов.

Проектирование цепи SMPS 5 В, 2 А

Лучший способ собрать 5V 2A SMPS Schematic — использовать экспертное программное обеспечение PI Power Integration. Загрузите программное обеспечение PI expert и используйте версию 8.6. Это отличное программное обеспечение для проектирования источников питания. Схема, показанная ниже, построена с использованием экспертного программного обеспечения PI Power Integration. Если вы новичок в этом программном обеспечении, вы можете обратиться к разделу проектирования этой схемы 12 В SMPS, чтобы понять, как использовать программное обеспечение.

Прежде чем приступить к созданию прототипа, давайте рассмотрим принципиальную схему ИИП 5v 2A и его работу.

Схема состоит из следующих участков —

  1. Защита от перенапряжения и отказа SMPS
  2. Преобразование переменного тока в постоянное
  3. ПИ-фильтр
  4. Схема драйвера или схема переключения
  5. Защита от пониженного напряжения.
  6. Цепь зажима.
  7. Магниты и гальваническая развязка.
  8. Фильтр электромагнитных помех
  9. Вторичный выпрямитель и демпферная цепь
  10. Секция фильтра
  11. Секция обратной связи.

Защита от перенапряжения на входе и отказа SMPS :

Этот раздел состоит из двух компонентов, F1 и RV1. F1 — это плавкий предохранитель на 1 А, 250 В переменного тока, а RV1 — это 7-миллиметровый, 275 В MOV (металлооксидный варистор , ). Во время скачка высокого напряжения (более 275 В переменного тока) MOV резко замыкается и перегорает входной предохранитель. Однако благодаря функции медленного срабатывания предохранитель выдерживает пусковой ток через ИИП.

Преобразование переменного тока в постоянное :

Эта секция регулируется диодным мостом. Эти четыре диода (внутри DB107) составляют полный мостовой выпрямитель. Диоды — 1N4006, но стандартный 1N4007 справится с этой задачей отлично. В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

ПИ-фильтр :

В разных штатах разный стандарт подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 класса 3, а фильтр PI разработан таким образом, чтобы уменьшить подавление синфазных электромагнитных помех .Этот раздел создается с использованием C1, C2 и L1. C1 и C2 — конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В. L1 — это синфазный дроссель, который принимает дифференциальный сигнал электромагнитных помех для подавления обоих.

Схема драйвера или схема переключения :

Это сердце ИИП. Первичная обмотка трансформатора управляется коммутационной схемой TNY268PN. Частота переключения 120-132 кГц. Из-за высокой частоты коммутации можно использовать трансформаторы меньшего размера.Схема переключения состоит из двух компонентов: U1 и C3. U1 — это основная микросхема драйвера TNY268PN. C3 — это обходной конденсатор , который необходим для работы нашей микросхемы драйвера.

Защита от пониженного напряжения :

Защита от блокировки при пониженном напряжении обеспечивается резисторами считывания R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет линейное напряжение. Значение R1 и R2 генерируется с помощью инструмента PI Expert .Два последовательно подключенных резистора — это мера безопасности и хороший способ избежать проблем с отказом резистора. Таким образом, вместо 2М в серии используются два резистора 1М.

Схема зажима :

D1 и D2 — цепь зажима. D1 — это TVS-диод , а D2 — — сверхбыстрый восстанавливающийся диод . Трансформатор действует как огромная катушка индуктивности на интегральной схеме драйвера питания TNY268PN. Следовательно, во время выключения трансформатор создает высокие пики напряжения из-за индуктивности рассеяния трансформатора.Эти высокочастотные всплески напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS. В соответствии с конструкцией заданное напряжение ограничения (VCLAMP) составляет 200 В. Поэтому выбран P6KE200A, а для проблем, связанных со сверхбыстрой блокировкой, UF4007 выбран как D2.

Магниты и гальваническая развязка :

Трансформатор представляет собой ферромагнитный трансформатор, который не только преобразует высокое напряжение переменного тока в низкое напряжение переменного тока, но также обеспечивает гальваническую развязку.

Фильтр электромагнитных помех :

Фильтрация электромагнитных помех осуществляется конденсатором C4. Это увеличивает невосприимчивость схемы, чтобы уменьшить высокие помехи EMI. Это конденсатор Y-класса с номинальным напряжением 2 кВ.

Цепь вторичного выпрямителя и демпфера :

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с помощью D6, выпрямительного диода Шоттки . Демпферная цепь на D6 обеспечивает подавление переходных процессов напряжения во время операций переключения.Схема демпфера состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра :

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Секция обратной связи :

Выходное напряжение определяется U3 TL431 и R6 и R7. После измерения линии U2 оптопара управляется и гальванически изолирует часть измерения вторичной обратной связи с контроллером первичной стороны.Оптопара имеет внутри транзистор и светодиод. Управляя светодиодом, можно управлять транзистором. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, что обеспечивает гальваническую развязку цепи обратной связи.

Теперь, когда светодиод напрямую управляет транзистором, обеспечивая достаточное смещение через светодиод оптопары, можно управлять транзистором оптопары , а точнее схемой драйвера. Эта система управления используется TL431.Шунтирующий регулятор. Поскольку у шунтирующего регулятора есть резисторный делитель на опорном выводе, он может управлять светодиодом оптопары, подключенным к нему. Контакт обратной связи имеет опорное напряжение 2,5 В . Следовательно, TL431 может быть активен только при достаточном напряжении на делителе. В нашем случае делитель напряжения установлен на значение 5В. Следовательно, когда выходное напряжение достигает 5 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно управляет TNY268PN.Если на выходе недостаточно напряжения, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет свой вывод EN. Если все в порядке, он продолжит переключение, если нет, через некоторое время он попытается еще раз. Этот цикл продолжается до тех пор, пока все не нормализуется, что предотвращает проблемы с коротким замыканием или перенапряжением. Вот почему это называется топологией обратного хода , поскольку выходное напряжение возвращается к драйверу для определения связанных операций.Кроме того, цикл попыток называется режимом икоты при отказе.

D3 — это диод с барьером Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. Диод Шоттки 3A 60V выбран для надежной работы. R4 и R5 выбираются и рассчитываются PI Expert. Он создает делитель напряжения и передает ток на светодиод оптопары от TL431.

R6 и R7 — это простой делитель напряжения, рассчитываемый по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение составляет 2,5 В, а Vout — 12 В. Выбрав значение R6 23,7k, R7 стал примерно 9,09k.

Создание коммутирующего трансформатора для нашей цепи SMPS

Обычно для цепи SMPS требуется коммутирующий трансформатор, эти трансформаторы можно приобрести у производителей трансформаторов в соответствии с вашими проектными требованиями. Но проблема здесь в том, что если вы изучаете материал по созданию прототипа, вы не можете найти на полках точный трансформатор для своего дизайна.Итак, мы узнаем, как создать переключающий трансформатор на основе проектных требований, предоставленных нашим экспертным программным обеспечением PI.

Рассмотрим построенную схему построения трансформатора.

Как показано на изображении выше, нам нужно выполнить 103 витка одного провода 32 AWG на первичной стороне и 5 витков двух проводов 25 AWG на вторичной стороне.

На изображении выше начальная точка обмотки и направление обмотки описаны в виде механической схемы.Для изготовления этого трансформатора необходимы следующие вещи —

  1. Сердечник EE19, NC-2H или эквивалентная спецификация и с зазором для ALG 79 nH / T 2
  2. Шпулька с 5 штифтами на первичной и вторичной стороне.
  3. Барьерная лента толщиной 1 мил. Требуется лента шириной 9 мм.
  4. 32 AWG эмалированный медный провод с паяемым покрытием.
  5. 25AWG эмалированный медный провод с паяемым покрытием.
  6. Измеритель LCR.

Требуется ядро ​​EE19 с NC-2H с зазором 79nH / T2; как правило, он доступен парами.Шпулька стандартная с 4-мя первичными и 5-ю вторичными штифтами. Однако здесь используется шпулька с 5 штифтами с обеих сторон.

Для барьерной ленты используется стандартная клейкая лента с базовой толщиной более 1 мил (обычно 2 мил). Во время операций, связанных с нарезанием резьбы, ножницами обрезают ленту до идеальной ширины. Медные провода закупаются у старых трансформаторов, а также их можно купить в местных магазинах. Сердечник и шпулька, которые я использую, показаны ниже

.

Шаг 1: Добавьте припой на 1-й и 5-й штырьки на первичной стороне.Припаяйте провод 32 AWG к выводу 5, направление намотки — по часовой стрелке. Продолжайте движение до 103 витков, как показано ниже

.

Это формирует первичную обмотку нашего трансформатора, после того как 103 витка обмотки завершены, мой трансформатор выглядел так, как показано ниже.

Шаг 2: Наклейте изоленту в качестве изоляции, необходимо 3 витка изоленты. Это также помогает удерживать катушку на месте.

Шаг 3: Запустите вторичную обмотку с выводов 9 и 10.Вторичная сторона сделана с использованием двух жил из эмалированных медных проводов 25AWG. Припаяйте один медный провод к контакту 9, а другой — к контакту 10. Направление намотки снова по часовой стрелке. Продолжайте до 5 витков и припаяйте концы на штырях 5 и 6. Добавьте изоленту, применив изоленту так же, как и раньше.

После того, как первичная и вторичная обмотки были выполнены и изолента была использована, мой трансформатор выглядел так, как показано ниже.

Шаг 4: Теперь мы можем плотно закрепить две жилы изолентой.После завершения готовый трансформатор должен выглядеть так, как показано ниже.

Шаг 5: Также не забудьте обернуть клейкую ленту бок о бок. Это снизит вибрацию при передаче магнитного потока высокой плотности.

После выполнения вышеуказанных шагов и тестирования трансформатора с помощью измерителя LCR, как показано ниже. Измеритель показывает индуктивность 1,125 мГн или 1125 мкГн.

Строительство цепи SMPS:

Как только трансформатор будет готов, мы можем приступить к сборке других компонентов на точечной плате.Детали, необходимые для схемы, можно найти в списке материалов ниже

.

После пайки компонентов моя плата выглядит примерно так.

Тестирование цепи SMPS 5 В, 2 А

Для проверки схемы я подключил входную сторону к источнику питания через VARIAC для управления входным напряжением сети переменного тока. Выходное напряжение при 85 и 230 В переменного тока показано ниже:

.


Как вы можете видеть в обоих случаях, выходное напряжение поддерживается на уровне 5 В.Но затем я подключил выход к моему прицелу и проверил, нет ли ряби. Измерение пульсации показано ниже

.

Пульсации на выходе довольно высокие, они показывают пульсации 150 мВ пик-пик на выходе. Это совершенно не подходит для цепи питания. Согласно анализу, высокая пульсация обусловлена ​​факторами ниже —

.
  1. Неправильное проектирование печатной платы.
  2. Проблема с отскоком от земли.
  3. Неправильный радиатор печатной платы.
  4. Нет отключения на шумных линиях питания.
  5. Повышенные допуски на трансформаторе из-за ручного наматывания. Производители трансформаторов наносят лак окунанием на обмотки машин для лучшей устойчивости трансформаторов.

Если схема преобразована в надлежащую печатную плату, мы можем ожидать пульсации выходного сигнала источника питания в пределах 50 мВ пик-пик даже с трансформатором с ручной обмоткой. Тем не менее, поскольку veroboard не является безопасным вариантом для создания импульсного источника питания в области переменного тока в постоянный, постоянно предлагается установить надлежащую печатную плату перед применением цепей высокого напряжения в практических сценариях.Вы можете посмотреть видео в конце этой страницы, чтобы проверить, как схема работает в условиях нагрузки.

Надеюсь, вы поняли руководство и научились создавать свои собственные схемы SMPS с помощью трансформатора ручной работы. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или воспользуйтесь нашим форумом, чтобы задать дополнительные вопросы.

12v | Электропитание | Адаптеры

Зачем заказывать блок питания в американской компании

В этой статье обсуждаются преимущества заказа необходимых вам адаптеров питания 12 В в компании, расположенной здесь, в США, по сравнению с прямым импортом из Китая.

Как производитель, оптовик, дистрибьютор или розничный торговец из США, вы ежедневно сталкиваетесь с некоторыми трудными проблемами и выборами. Импорт блоков питания для питания ваших продуктов не обязательно должен быть одним из них. Хотя это правда, что на первый взгляд, покупка блока питания 12 В немного дешевле прямо из Китая, при рассмотрении внимательно, сделка может быть не такой уж хорошей. Вот почему. Во-первых, доставка из Китая идет медленно и ненадежно, не говоря уже о дорогих.Хотя многие фабрики обещают отличную цену и изначально низкую стоимость доставки, по моему опыту, как только у них появится бизнес, они начнут накачивать стоимость доставки все выше и выше, даже если они берут такую ​​же плату за само устройство. Вторая проблема с покупкой напрямую из-за границы — это количество отказов. Наш опыт показывает, что производители будут экономить на минимальных затратах. Если вы не знаете фабрику и имеете с ней длительные отношения, они будут использовать самый дешевый материал, проводку самого низкого калибра и самый тонкий пластик.Это приводит к чрезвычайно высокому и растущему количеству отказов. Если вы покупаете блок питания здесь, в США, в случае его выхода из строя вы можете вернуть его. Покупая в Китае, вам не повезло, так как обратная доставка стоит очень дорого. Как только вы подсчитаете стоимость замены неисправных компонентов, включая их покупку и доставку, стоимость больше не будет такой низкой. Наконец, наш опыт внесен в список UL. Если вам нужен источник питания, внесенный в список UL, как для сертификации вашего продукта, так и для обеспечения безопасности и качества, мы обратили внимание на то, что большая часть списков на китайских сайтах оптовых торговцев выпускает поддельные листы UL.Это означает, что блоки питания низкого качества, имеют более высокую частоту отказов, поскольку они не соответствуют минимальным стандартам качества UL. Что еще хуже, их часто останавливают, изымают на таможне при въезде, оставляя вам плату за утилизацию и, возможно, штраф. Мы видели это снова и снова. Итак, подытоживая, из-за стоимости доставки, импорта, контроля качества, высокой частоты отказов и поддельных списков UL кажется, что покупка источников питания 12 В у американской компании с доставкой из США предлагает вам лучшая защита, лучшее время выполнения заказа и, наконец, лучшая цена.

На складе 12 вольт, 2 ампера, регулируемый с медицинской точки зрения 60601 2-контактный импульсный источник питания с двойной изоляцией, 110–12 В, 240–12 В от PowerStream.

см. ниже

Описание: Изолированный источник питания для медицинских оборудование, инновационный продукт, подходящий для любых продуктов 12 В постоянного тока, используемых в любом месте в мире. Он имеет высокий КПД, легкий и компактный. Он действует большая часть оборудования 12-14 В постоянного тока от розетки переменного тока 100-240 В Полностью регулируемый, низкий рябь — Легкий и компактный — Защита от короткого замыкания — Автоматический тепловое отключение — Автоматическое отключение от перегрузки Группа: Тип адаптера: Коммутационный Утверждение источника питания: Техническая информация UL, cUL; Входное напряжение: 100 В — 240 В переменного тока Частота: Входные вилки: американского типа с землей Выходное напряжение: Выходной ток 12 В постоянного тока: 2000 мА

Недорогой импульсный импульсный источник питания переменного тока AC / DC преобразователь.

КПД> 85%, в зависимости от входного напряжения и выходной мощности.

Номер модели PST-EM1024Q2 заменяет PST-F10242 Импульсный источник питания, одобренный для медицинских целей
Диапазон входного напряжения 100-240 В переменного тока, 50/60 Гц
Диапазон входной частоты от 47 Гц до 63 Гц
Время поддержки 10 мс минимум при полной нагрузке
Пиковая выходная мощность 24 Вт, всплеск 30 Вт
Текущий 2000 мА (2 А) непрерывно, 2500 мА (2.5А) всплеск
Регулировка нагрузки ± 5% от номинального тока: 0 — 2 Ампер
Стабильность ± 2% после 30 минут работы
Номинальное выходное напряжение 12 В постоянного тока
Пульсация и шум <240 мВ
Ток утечки 100 микроампер макс
Регламент динамической нагрузки ± 5% экскурсия на 50% до Изменение нагрузки от 100% или от 100% до 50% при любой частоте до 250 Гц, нагрузка 50% цикл
Пусковой ток 35A макс. При 115 В перем. Тока в холодном состоянии запуск
70A макс. при 230VAC холодный запуск
Защита от выпадения Остается регулируемым в течение 1/2 выпадение из цикла
Защита от обрыва цепи Отсутствие повреждений при эксплуатации без груз
Защита от короткого замыкания Отсутствие повреждений от прерывистого или непостоянного продолжительное короткое замыкание
Защита от перенапряжения Если через источник питания неправильная работа блок питания должен подавать более 16 вольт, он немедленно неисправность.
Защита от перегрузки по току Икает блок питания если потребляемая мощность определена слишком высокой. Эта мощность будет 5% или больше, чем номинальная мощность.
Изоляция HiPot 3000 В переменного тока в течение 1 минуты, утечка менее 10 мА
Сопротивление изоляции Гератер, чем 10 МОм при 500 VDC
Устойчивость к скачкам напряжения IEC Pub.801-5 уровень 4
ESD IEC Pub.801-2 Уровень 4
Температура от 0 до 40 ° C Эксплуатация
-20 до 85 ° C Хранение
Удары и вибрация 3-осевой сдвиг 0,5 мм 2 Гц от 55 Гц до 2 Гц, 7 минут на цикл в течение 30 минут
Транспортный амортизатор Падение 900 мм в транспортном контейнере 8 раз
Высота Эксплуатация на 10 000 футов
40 000 ножки для хранения
Входной разъем IEC C7, двухконтактная входная розетка для кабелей для использования в любой стране в комплект входит шнур для Северной Америки.
Выходной штекер цилиндрический соединитель 5,5 x 2,1 мм, центральный положительный результат, остальные
Размеры 50 мм x 32 мм x 90 мм (2 дюйма x 1,25 дюйма x 3,5 дюйма)
Допуски агентств UL, cUL, TUV 60601-1, EN60601-1, UL60601-1, CE
EMI / EMC FCC, часть 15 Calss B и SCPR, класс B
Другая регистрация ROHS, уровень эффективности Energy Star III,
Двойная изоляция
медицинский IEC60601
Среднее время безотказной работы 30000 часов при уровне достоверности 90% при Вход 220 В переменного тока, полная нагрузка и температура окружающей среды 40 ° C.
Масса 160 грамм, 5,7 унции без кабеля переменного тока
264 граммов, 9,3 унции со шнуром переменного тока
292 грамма, 10,3 унции, включая шнур и индивидуальная упаковочная коробка

Сборка источника питания экспериментатора



Для многих лазерных проектов требуется постоянный источник низкого напряжения постоянного тока. от 5 до 12 вольт. Вы можете использовать одну или несколько батарей для питания сок, но если вы планируете проводить много лазерных экспериментов, вы найдете что батареи неудобны и антипроизводительны. Просто когда ты Если схема доведена до совершенства, аккумулятор разрядится и его необходимо перезарядить.

Автономный источник питания, работающий от домашней электросети 117 В переменного тока. может поставлять вашу лазерную систему с регулируемой мощностью постоянного тока без необходимо установить, заменить или перезарядить батареи. Вы можете купить готовый блок питания (они распространены на излишках рынка) или сделать самостоятельно.

Далее следуют несколько конструкций источников питания, которые можно использовать для обеспечения работы. сок к вашим лазерным схемам. Рисунки показывают вам, как построить:

* Источник питания постоянного тока 5 В

* Источник питания постоянного тока 12 В

* Источник питания с четырьмя напряжениями ± 5 и ± 12 В

* Регулируемый источник питания (от 3 до 20 В постоянного тока).

Обратите внимание, что блоки питания, представленные в этом разделе, аналогичны за исключением различных значений для конденсаторов, диодных мостов и других компонентов. Вы можете использовать схемы для создания источников питания разные уровни напряжения. Источник питания с несколькими напряжениями предназначен для обеспечения четыре напряжения, общие для систем поддержки лазера: +5 вольт, +12 вольт, -5 вольт, и -12 вольт. Эти напряжения используются двигателями, соленоидами и ИС.

ОДИНОЧНЫЙ БЛОК ПИТАНИЯ

См. Фиг.12-1 и 12-2 для схем одно-напряжения питания запасы. На рис. 12-1 показана схема питания +5 В; больной. 12-2 показана схема питания +12 В. Есть несколько различий между их, поэтому следующее обсуждение применимо к обоим. Ради простоты, мы будем ссылаться только на цепь +5 В. Списки запчастей для двух расходных материалов представлены в ТАБЛИЦАХ 12-1 и 12-2.

В целях безопасности блок питания должен быть заключен в пластиковый или металлический корпус. (лучше пластик, так как меньше вероятность короткого замыкания).Используйте перфорированный плату, чтобы закрепить компоненты и спаять их вместе, используя калибр 18 или 16. изолированный провод. Не используйте двухточечную проводку там, где компоненты не прикреплен к доске.

В качестве альтернативы вы можете изготовить свою собственную печатную плату, используя набор для травления. Перед сборкой доски соберите все детали и спроектируйте доску. чтобы соответствовать имеющимся у вас деталям. Небольшая стандартизация размеров когда речь идет о компонентах источника питания и электролитических конденсаторах большой емкости, поэтому предварительный размер является обязательным.


ил. 12-1. Принципиальная схема стабилизированного источника питания 5 В постоянного тока .


ил. 12-2. Принципиальная схема стабилизированного источника питания 12 В постоянного тока.

Таблица 12-1. Источник питания 5 В постоянного тока Список деталей

IC1 7805 Регулятор напряжения +5 В постоянного тока

R1 Резистор 270 Ом

C1 2200 F конденсатор электролитический

Конденсатор электролитический 1 мкФ C2

BR1 Мостовой выпрямитель, 1 А

LED1 Светодиод

Т1 12.Трансформатор на 6 В, 1,2 А

S1 Переключатель SPST

Предохранитель F1 (2-амперный)

Разное. Вилка переменного тока, шнур, держатель предохранителя, шкаф.

Все резисторы имеют допуск от 5 до 10 процентов, Вт. Все конденсаторы имеют допуск от 10 до 20 процентов, номинальное напряжение 35 вольт или более.

Таблица 12-2. Источник питания 12 В постоянного тока Список деталей

IC1 7812 Регулятор напряжения + 12 В постоянного тока

R1 резистор 330 Ом

C1 2200 мкФ конденсатор электролитический

C2 1uF Электролитический конденсатор

BR1 Мостовой выпрямитель, 4 А

LED1 Светодиод

Трансформатор T1 18 В, 2 А

S1 Переключатель SPST

Предохранитель F1 (2-амперный)

Разное.Вилка переменного тока, шнур, держатель предохранителя, шкаф.

Все резисторы имеют допуск от 5 до 10 процентов, Вт. Все конденсаторы имеют допуск от 10 до 20 процентов, номинальное напряжение 35 вольт или более.

Чтобы объяснить схему на рис. 12-1, обратите внимание на входящий переменный ток, направленный на клеммы первичной обмотки трансформатора на 12,6 В. «Горячая» сторона переменного тока подключается через предохранитель и однополюсный однопозиционный переключатель (SPST) выключатель. Когда переключатель находится в положении ВЫКЛ. (Разомкнут), трансформатор получает нет питания, поэтому питание отключено.

Напряжение 117 В переменного тока понижено примерно до 12,6 В. Указанный трансформатор здесь рассчитан на 2 ампера, достаточный для поставленной задачи. Помни это источник питания ограничен мощностью трансформатора (а позже и регулятор напряжения). Мостовой выпрямитель BR1 преобразует ac в dc (схематично показано в пунктирной рамке). Вы также можете построить выпрямитель с использованием дискретных диодов (подключите их, как показано на коробке).

При использовании мостового выпрямителя обязательно подсоединяйте выводы к правильным терминалы.Две клеммы, помеченные знаком «-», подключаются к трансформатору. Клеммы «+» и «-» являются выходами и должны подключаться, как показано на схематический. Регулятор 7805 на 5 В и 1 А используется для поддержания напряжения. выход на устойчивом уровне 5 вольт.

Обратите внимание, что трансформатор выдает гораздо большее напряжение, чем необходимо. Это по двум причинам. Во-первых, низковольтные трансформаторы на 6,3 или 9 вольт. доступны, но большинство из них не обеспечивают более 0,5 А.Это намного проще найти трансформаторы на 12 или 15 вольт, обеспечивающие достаточную мощность. Второй, регулятору требуется несколько дополнительных вольт в качестве «накладных расходов» для правильной работы. Указанный здесь трансформатор на 12,6 В обеспечивает минимальное требуемое напряжение, а иногда и некоторое.

Конденсаторы C1 и C2 фильтруют пульсации, присущие выпрямленному постоянному току на выходы мостового выпрямителя. С конденсаторами, установленными, как показано (обратите внимание на полярность) пульсации на выходе блока питания незначительны.LED1 и R1 образуют простой индикатор. Светодиод светится, когда блок питания горит. Вспомните резистор на 270 Ом; без него светодиод будет гореть.

Выходные клеммы представляют собой изолированные клеммы. Не оставляйте выход провода оголены, или они могут случайно коснуться друг друга и замкнуть поставлять. Припаяйте выходные провода к ушкам на зажимных штырях и прикрепите стойки к передней части корпуса блока питания. Посты принимают голые провода, зажимы из крокодиловой кожи или даже банановые вилки.

Отличия 12-вольтовой версии

Варианты блока питания на 5 и 12 В в основном одинаковы, но с некоторыми важными изменениями. Снова обратитесь к больному. 12-2. Во-первых, трансформатор рассчитан на 18 вольт при 2 амперах. Выход 18 вольт больше чем достаточно для накладных расходов, требуемых 12-вольтовым регулятором, и обычно имеется в наличии. Вы можете использовать трансформатор на напряжение от 15 до 25 вольт.

Регулятор 7812 такой же, как и 7805, за исключением того, что он регулируемое + 12 вольт вместо + 5 вольт.Используйте регулятор серии T (Корпус ТО-220) для слаботочных приложений и серия К (ТО-3) для приложения с большей емкостью. Наконец, R1 увеличен до 330 Ом.

МНОГОНАПОРНЫЙ ИСТОЧНИК ПИТАНИЯ

Блок питания с несколькими напряжениями похож на четыре блока питания в одном. Скорее чем четыре громоздких трансформатора, однако в этой схеме используется только один, отвод напряжения в нужных местах для работы регуляторов +5, +12, -5 и -12.

Схема, изображенная на ил. 12-3, состоит из двух половин. Одна половина питания обеспечивает +12 и –12 вольт; другая половина обеспечивает +5 и –5 вольт. Каждая сторона подключена к общему трансформатору, предохранителю, выключателю и сетевой розетке. См. ТАБЛИЦУ 12-3 для списка деталей.

Основное различие между питанием с несколькими напряжениями и с одним напряжением расходные материалы, описанные ранее в этом разделе, являются добавлением отрицательных регуляторы мощности. Цепная земля — ​​это центральный отвод трансформатора.Сделайте две доски, по одной на каждую секцию. То есть одна доска будет ± 5-вольтовые регуляторы, а другая плата будет содержать регуляторы ± 12-вольт. Источник питания обеспечивает примерно 1 ампер на каждый из выходов.

Используйте нейлоновые зажимы для пяти выходов (земля, +5, +12, -5, -12). Четко пометьте каждое сообщение, чтобы не перепутать их при использовании ресурса. Проверьте правильность работы с помощью вольт-омметра.


ил. 12-3.Принципиальная схема четырехъядерного блока питания (± 5 и 12 вольт) .

Таблица 12-3. Quad Блок питания Список деталей

IC1 7812 Регулятор напряжения +12 В постоянного тока

IC2 7912 Регулятор напряжения -12 В постоянного тока

IC3 7805 Регулятор напряжения +5 В постоянного тока

IC4 7905 Регулятор напряжения -5 В постоянного тока

C1, C5 Конденсатор электролитический 2200 мкФ

Конденсатор электролитический С2, С3, 1 мкФ

Электролитический конденсатор C6, C7, C10, C11, C14, C15, C4, C8, 100 мкФ

Конденсатор электролитический C12, C16, C9, C13 1000 мкФ

C1, C5 Конденсатор электролитический 2200 мкФ

Все конденсаторы имеют допуск от 10 до 20 процентов, номинальное напряжение 35 В. или больше.

ИСТОЧНИК ПИТАНИЯ РЕГУЛИРУЕМОГО НАПРЯЖЕНИЯ

В регулируемом источнике питания используется регулируемый стабилизатор напряжения LM317. С добавлением нескольких компонентов вы можете выбрать любое напряжение между От 1,5 до 37 вольт. Используя потенциометр, вы можете выбрать напряжение, которое вы хотите, повернув ручку.

Схема на ил. 12-4 — простое приложение LM317, но в нем есть все необходимое для создания регулируемого, непрерывного регулируемый источник питания с положительным напряжением.Детали см. В ТАБЛИЦЕ 12-4. список. Регулятор рассчитан на ток более 3 ампер, поэтому вы должны установить его на сверхпрочный радиатор. Хотя вам не нужно принудительно охлаждать регулятор и радиатор, рекомендуется установить их снаружи шкафа источника питания, например сверху или сзади.

Таблица 12-4. Регулируемая мощность Перечень запасных частей

Регулируемый стабилизатор положительного напряжения IC LM317

R1 потенциометр 5 кОм

R2 резистор 220 Ом

C1 2200uF конденсатор электролитический

С2, С3 0.Конденсатор дисковый 1 мкФ

Конденсатор электролитический 1 мкФ C4

BR1 Мостовой выпрямитель, 4 А

Трансформатор T1 25 В, 2 А (или более)

S1 Переключатель SPST

Предохранитель F1 S-amp

Разное. Вилка переменного тока, шнур, держатель предохранителя, шкаф.

Все резисторы имеют допуск от 5 до 10 процентов, Вт. Все конденсаторы имеют допуск от 10 до 20 процентов, номинальное напряжение 35 вольт или более.


ил. 12-4. Регулируемый блок питания .

Помните, что корпус регулятора — это выход, поэтому обязательно предоставьте электрическая изоляция от радиатора или короткое замыкание. Используйте монтажный комплект транзистора ТО-3 и изолятор. В нем есть все необходимое оборудование и изолирующие шайбы. Нанесите силиконовую смазку на нижнюю часть регулятор, чтобы помочь в передаче тепла.

ПРОВЕРКА И ИСПЫТАНИЯ

Все источники питания постоянного тока должны быть проверены и протестированы перед использованием.Будьте особенно осторожны с проводами или компонентами, которые могут закоротить. Визуально проверьте свою проводку и проверьте наличие проблем с вольтметром. Когда все смотрит удовлетворительно, включите питание и следите за признаками проблем. Если есть дуга или происходит горение, немедленно отключите питание и проверьте все еще раз. Когда все работает нормально, проверьте выходную мощность. источник питания, чтобы обеспечить надлежащее напряжение.

АККУМУЛЯТОР УПАКОВКА РЕГУЛЯТОРА

Регуляторы напряжения

также могут использоваться с аккумуляторными батареями для портативного оборудования.Регулятор на 5 В можно использовать с одной батареей на 6 В для обеспечения стабильное питание 5 вольт. Схема в илл. 12-5 показано, как подключать части. Список деталей см. В ТАБЛИЦЕ 12-5. В качестве альтернативы используйте 12-вольтный регулятор. Батарея должна выдавать номинальное напряжение 13 В. для падения напряжения на регуляторе от 1 до 1,2 В. Большинство свинцово-кислотных и гелеобразных Батареи с электролитом выдают напряжение 13,8 В при полной зарядке. ТАБЛИЦУ 12-6, где представлена ​​таблица значений напряжения для различных типов аккумуляторов.

АККУМУЛЯТОР ЗАРЯДНОЕ УСТРОЙСТВО

С перезаряжаемой батареей вы можете использовать ее один раз, чтобы вдохнуть в нее новую жизнь, используйте его снова и повторите процесс несколько сотен или даже тысяч раз, прежде чем носить его. Более высокая начальная стоимость аккумуляторных батарей более чем окупается после третьей или четвертой подзарядки.


ил. 12.5. Batt. регулятор упаковки.

Аккумуляторы невозможно восстановить, просто подключив их к источник постоянного тока.Источник постоянного тока выдает слишком большой ток и пытается заряжать аккумулятор слишком быстро. Если вы заряжаете гелеобразный электролит или свинцово-кислотный батарейки, вы можете обойтись без адаптера переменного тока, для видеоигр, портативных магнитофонов и других устройств с батарейным питанием. оборудование (выход должен быть постоянным током). Конструктивно эти адаптеры ограничивают максимальный ток от 250 до 600 мА. Зарядное устройство 300 мА может быть эффективно используется на аккумуляторах емкостью 2.От 5 до 5 хиджры. 400 мА или 500 мА Адаптер переменного тока можно использовать с аккумуляторами емкостью от 3,5 до 6,5 Ач.

Однако одна проблема заключается в том, что вы должны быть осторожны, чтобы аккумулятор не оставался на зарядке намного дольше, чем от 12 до 16 часов. Оставив на день или два может испортить аккумулятор. Особенно это касается свинцово-кислотных аккумуляторов. В Схема показана на ил. 12-6 сводит к минимуму опасность перезарядки.

Таблица 12-5. 5 В постоянного тока Батарея Напряжение Регулятор

IC1 7805 Регулятор напряжения +5 В постоянного тока

C1 2200 мкФ конденсатор электролитический

Конденсатор электролитический 1 мкФ C2

Все конденсаторы имеют допуск от 10 до 20 процентов, номинальное напряжение 35 В. или больше.

Таблица 12-6. Аккумулятор Напряжение Уровни

Аккумулятор

Недавно заряженные

Номинал

Выпущено

Щелочная

никель-кадмиевый

Мощность / 1 элемент *

Мощность / мульти

Мощность / мульти

1.4 вольта

2,3 В

6,5 В

13,8 В

1,2 В

2,0 В

6,0 вольт

12,0 В

1,1 В

1,6 В

4,8 В

9,6 В

* Гелеобразный электролит и свинцово-кислотный аккумулятор; одиночная ячейка, ячейки 6 вольт в серия), 12 вольт (шесть ячеек последовательно).


ил. 12-6. Принципиальная схема зарядного устройства. См. Стр. 180 для значения R и pg 182 для настроек для R4 и R5 .

Build the Universal Аккумулятор Зарядное устройство

Универсальное зарядное устройство для аккумуляторов показано на илл. 12-6 построен вокруг Регулируемый стабилизатор напряжения LM317 IC. Как указано в ТАБЛИЦЕ 12-7, это ИС поставляется в корпусе транзистора ТО-3 и должна использоваться с радиатором для обеспечить прохладную работу.Радиатор абсолютно необходим при подзарядке батареи на 500 мА или выше.

Схема работает путем контроля уровня напряжения на аккумуляторе. В течение при подзарядке схема выдает постоянный ток на выходе; напряжение уровень постепенно повышается по мере зарядки аккумулятора. Когда аккумулятор почти полностью заряжен заряда, схема удаляет источник постоянного тока и поддерживает регулируемое напряжение для завершения или поддержания заряда. Путем перехода на постоянное напряжение выходной мощности, аккумулятор можно оставлять заряженным дольше, чем рекомендуется от производителя.

Таблица 12-7. Универсальный Аккумулятор Зарядное устройство Список деталей

Регулируемый стабилизатор положительного напряжения IC1 LM317

R1 См. Текст; Таблица 12-8

R2 резистор 220 Ом

R3 Резистор 470 Ом

Прецизионные потенциометры R4, R5, 5 кОм, 10 оборотов

R6 Резистор 330 Ом

C1 2200uF конденсатор электролитический

Конденсатор электролитический 10 мкФ C2

D1 1N4004 диод

BR1 Мостовой выпрямитель, 4 А

SCR1 Кремниевый управляемый выпрямитель на 200 В (1 А или более)

LED1 Светодиод

S1, S2 Переключатель SPST

Трансформатор T1 18 В, 2 А

F1 Предохранитель на 2 А

Разное.Вилка переменного тока, шнур, держатель предохранителя, шкаф, радиатор для LM317, крепежные штыри для аккумулятора под зарядом

Все резисторы имеют допуск от 5 до 10 процентов, ¼ Вт, если не указано иное. указано. Все конденсаторы имеют допуск от 10 до 20 процентов, номинальный 35 вольт или больше.

Таблица 12-8. Общие токи и номиналы резисторов

млн лет

Ом

50

100

200

400

500

25.00

12,50

6,25

3,13

2,50

Перед тем, как построить схему, следует подумать о типе батарей вы хотите подзарядиться. Вам нужно будет подумать, будете ли вы заряжаться 6-вольтовые или 12-вольтовые батареи (или оба) и максимальный выходной ток, который можно безопасно доставить в аккумулятор (используйте правило 10 процентов или следуйте рекомендации производителя).

Резистор R1 определяет ток, протекающий в батарее. Его ценность может можно найти по этой формуле:

R1 = 1,25 / Icc

, где Icc — желаемый зарядный ток в мА. Например, для подзарядки аккумулятор на 500 мА (0,5 ампер), расчет для R1 1,25 / 0,5 или 2,5 Ом. В ТАБЛИЦЕ 12-8 перечислены общие токи для подзарядки и расчетные значения. значения R1. Для токов менее 400 мА можно использовать резистор на 1 Вт. При токах от 400 мА до 1 А используйте резистор на 2 Вт.

Если резистор нестандартного номинала, выберите ближайший. к нему, если значение находится в пределах 10 процентов. Если нет, используйте два стандартных значения резисторы, включенные параллельно или последовательно, равные R1. Если вы хотите сделать выбор зарядного устройства, подключите несколько резисторов к однополюсному многопозиционному поворотный переключатель, как показано на илл. 12-7. Наберите желаемую текущую настройку.


ил. 12.7. Поворотный переключатель для выбора тока изменения .

Выходные клеммы могут быть банановыми, зажимами типа «крокодил» или любыми другими. оборудование, которое вы желаете. Вы можете использовать банановые гнезда и построить кабели. которые могут тянуться между гнездами и батареями или системами, которые вы хотите для подзарядки. Например, вы можете подключить зарядное устройство к 12-вольтовому He-Ne. лазерный аккумулятор. В комплект входит обычная телефонная вилка ¼ дюйма. для легкого подключения к лазеру. Чтобы зарядить аккумулятор, вы просто снимаете кабель, соединяющий его с лазером, и замените его на кабель из зарядное устройство.

Создание схемы . Для достижения наилучших результатов соберите схему на печатная плата. Как вариант, вы можете подключить схему к перфорированной доска. Электропроводка не критична, но вы должны проявлять обычную осторожность, особенно во входящей секции переменного тока. Убедитесь, что вы предоставили предохранитель для вашего зарядного устройства.

Калибровка контура . После того, как схема построена, она должна быть откалиброванным перед использованием. Сначала установите R4, отрегулируйте напряжение.Этот потенциометр устанавливает напряжение окончания заряда. Затем установите точку срабатывания, которая регулируется. пользователя R5. Следуй этим шагам.

1. Перед тем, как присоединить аккумулятор к клеммам и повернуть схему на, установите переменные резисторы R4 и R5 на их средние значения. С зарядным устройством выключенного, используйте вольт-омметр для калибровки R4, обращаясь к ТАБЛИЦЕ 12-9. Регулировать R4, пока омметр не покажет сопротивление, соответствующее текущему значению. вы выбрали для зарядного устройства.

2. Подключите резистор 4,7 кОм, 5 Вт к выходным клеммам зарядное устройство (это примерно соответствует заряду аккумулятора). Подайте питание на цепь. Измерьте выход на резисторе. Для работы на 12 В с гелевым электролитных элементов и свинцово-кислотных аккумуляторов, мощность должна быть примерно 13,8 вольт; для работы от 6 В выходная мощность должна быть примерно 6,9 вольт. Если вы не получаете показание или оно низкое, отрегулируйте R5. Если ты все еще не получить показания или, если оно значительно отклоняется от описанной отметки, поверните R4 пару раз в ту или иную сторону.

3. Подключить вольт-омметр между массой и дворником R5, точкой срабатывания. потенциометр. Поворачивайте R5, пока счетчик не покажет ноль. Выключите зарядное устройство.

4. Снимаем резистор 4,7к, а на его место подключаем частично разряженный аккумулятор к выходным клеммам (обязательно использовать разряженный аккумулятор), соблюдая правильную полярность. Включите зарядное устройство и посмотрите на светодиод. Он не должен загораться.

5. Подключите вольт-омметр к клеммам аккумуляторной батареи и измерьте выходное напряжение.Следите за напряжением, пока не будет достигнут желаемый выход (см. шаг 2 выше).

6. Когда вы достигнете желаемой мощности, отрегулируйте R5 так, чтобы светодиод светился. В этот момент источник постоянного тока отключается от выхода, и аккумуляторная батарея заряжается при установленном напряжении.

Замечания по применению . Если у вас есть как 6-, так и 12-вольтовые батареи для зарядки, вы можете перенастроить потенциометры на каждом время. Лучше построить два зарядных устройства (компоненты недорогие) и используйте один на 6 вольт, а другой на 12 вольт.В качестве альтернативы, вы можете подключить селекторный переключатель, который выбирает между двумя наборами напряжения кастрюли регулировочные и путевые.

По крайней мере, один производитель LM317, National Semiconductor, предоставляет подробные указания по применению этого и других регуляторов напряжения. Ссылаться к Национальному линейному справочнику, том 1, если вам нужно перезарядить батареи с необычными напряжениями и токами питания.

Таблица 12-9. Значения для R4

R1

6-вольт (в омах)

12 В (в Ом)

25.00

12,50

6,25

3,13

2,50

1578

1497

1457

1437

1433

2950

2799

2724

2686

2679

В зависимости от вашей батареи и допусков используемых вами компонентов, вам может потребоваться поэкспериментировать со значениями двух других резисторов.Если выходное напряжение не может быть отрегулировано до желаемой точки (либо высокое или низкий), увеличивайте или уменьшайте значение R2. Если светодиод никогда не горит, или светится постоянно, отрегулируйте значение R6. Будьте осторожны, чтобы не попасть под около 200 Ом для R6, иначе SCR может быть поврежден.

Когда аккумулятор заряжается, вы знаете, что он полностью заряжен. Светодиод горит. На всякий случай выключите зарядное устройство и подождите пять минут. до 10 секунд, чтобы SCR разблокировался.Повторно подайте питание. Если светодиод остается горит, аккумулятор заряжен. Если светодиод снова погаснет, оставьте аккумулятор. на зарядке чуть дольше.

АККУМУЛЯТОР МОНИТОРЫ

Монитор батареи просто обеспечивает звуковой или визуальный индикатор того, что батарея выдает слишком большое или слишком низкое напряжение. Илл. 12-8 показывает схему простого монитора батареи «оконного компаратора» (см. ТАБЛИЦА 12-10 для списка деталей). Он предназначен для использования с 12-вольтовыми батареями, но вы можете заменить один или несколько стабилитронов на другие. напряжения.


ил. 12-8. Простой индикатор состояния батареи. Выбираем стабилитрон диоды для обеспечения «окна» для индикации повышенного / пониженного напряжения .

Таблица 12-10. Аккумулятор Монитор Список деталей для двойного светодиода

R1 Резистор 680 кОм

R2 Резистор 1,2 кОм

D1 стабилитрон 10 вольт

D2 стабилитрон 13 вольт

LED1, 2 светодиода

Все резисторы имеют допуск 5-10%,-ватт.

В нормальном режиме работы светодиод LED1 светится, когда напряжение от аккумулятора равно минимум 10 вольт. Также желательно знать, доставляет ли аккумулятор слишком большое напряжение, поэтому используется второй стабилитрон. Если LED2 горит, схема получает слишком много энергии и может быть повреждена. Однако более вероятно, что уровень заряда батареи упадет, а светодиод LED1 погаснет или полностью погаснет. Если LED1 не горит или тусклый, аккумулятор необходимо зарядить.

Вольт в ватты, из ватт в амперы, из вольт в амперы Калькулятор преобразования

Наш онлайн-калькулятор / средство преобразования может преобразовывать ватты в амперы, из вольт в ватты и из вольт в амперы. Калькулятор работает, заполняя любое из двух из трех полей (вольт амперы ватты) для вычисления значения третьего поля. Этот инструмент может преобразовать любое значение, если вы вводите два других значения.


Пример преобразования

Пример 1: Чтобы преобразовать вольт в амперы для блока питания 24 В VA50, введите 24 В и 50 Вт.Щелкните Рассчитать.

Пример 2: Чтобы преобразовать ватты в амперы для блока питания 12 В постоянного тока 500 мА, введите 12 В и 0,5 А. Щелкните Рассчитать.


Часто задаваемые вопросы (FAQ)

  1. Как перевести из вольт в ватты?
    Формула для преобразования напряжения в ватты: ватт = ампер x вольт.
  2. Как перевести ватты в амперы?
    Формула для преобразования ватт в амперы при фиксированном напряжении: ампер = ватт / вольт.
  3. Как перевести из вольт в амперы?
    Формула для преобразования вольт в амперы при фиксированной мощности: ампер = ватт / вольт.
  4. Как перевести ампер в ватт?
    Формула для преобразования ампер в ватты при фиксированном напряжении: ватты = амперы x вольт.

Преобразование ватт в амперы (подробный пример)

Вот один пример того, как этот калькулятор обычно используется установщиками систем безопасности в качестве калькулятора усилителя. Установщику необходимо рассчитать расстояние, на которое можно проложить кабель питания от видеорегистратора видеонаблюдения до камеры видеонаблюдения, камеры видеонаблюдения HD и даже одной из новейших камер видеонаблюдения UHD 4K.Сначала им нужно рассчитать, сколько ампер выдает источник питания 24 В переменного тока. Обычно блоки питания 24 В переменного тока имеют номинальные значения ВА (амперы напряжения), а не амперы. Например, источник питания 24VAC50 — это 24 вольт, 50 вольт-ампер (ватты также известны как вольт-амперы). В приведенном выше калькуляторе установщик введет значение 24 в поле вольт и значение 50 в поле ватт.


Определения электрических терминов

Вот несколько полезных электрических терминов, относящихся к вычислению вольт в ватт, ватт в ампер и из вольт в амперы.

  • Вольт — единица измерения электрической силы или давления, которая заставляет электрический ток течь в цепи. Один вольт — это величина давления, необходимая для протекания тока в один ампер против одного ома сопротивления. Концепция аналогична напору воды.
  • Ватт — единица измерения прилагаемой электрической мощности в цепи. Ватты также известны как вольт-амперы и представляют собой электрическую единицу измерения, обычно используемую в цепях переменного тока.Ватты рассчитываются путем умножения силы тока (измеренного в амперах) на электрическое давление (измеренное в вольтах).
  • Ампер (Ампер) — единица измерения силы тока в электрической цепи. Один ампер — это сила тока, когда один вольт электрического давления прикладывается к одному ому сопротивления. Амперы используются для измерения расхода электроэнергии аналогично тому, как GPM (галлонов в минуту) используются для измерения объема протекающей воды.
  • Ом — прибор для измерения сопротивления потоку в электрическом токе.Электрические проводники (например, проволока) оказывают сопротивление потоку тока. Это похоже на то, как трубка или шланг оказывает сопротивление потоку воды. Один Ом — это величина сопротивления, которая ограничивает ток до одного ампера в цепи с одним вольт электрическим давлением.
  • Закон Ома — Закон Ома гласит, что когда электрический ток течет по проводнику (например, кабелю), сила тока (амперы) равна движущей его электродвижущей силе (вольт), деленной на сопротивление проводника.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *